--- a +++ b/main_mtl_concat.py @@ -0,0 +1,191 @@ +from __future__ import print_function + +import argparse +import pdb +import os +import math + +# internal imports +from utils.file_utils import save_pkl, load_pkl +from utils.utils import * +from utils.core_utils_mtl_concat import train +from datasets.dataset_mtl_concat import Generic_WSI_MTL_Dataset, Generic_MIL_MTL_Dataset + +# pytorch imports +import torch +from torch.utils.data import DataLoader, sampler +import torch.nn as nn +import torch.nn.functional as F + +import pandas as pd +import numpy as np + +def main(args): + # create results directory if necessary + if not os.path.isdir(args.results_dir): + os.mkdir(args.results_dir) + + if args.k_start == -1: + start = 0 + else: + start = args.k_start + if args.k_end == -1: + end = args.k + else: + end = args.k_end + + all_cls_test_auc = [] + all_cls_val_auc = [] + all_cls_test_acc = [] + all_cls_val_acc = [] + + all_site_test_auc = [] + all_site_val_auc = [] + all_site_test_acc = [] + all_site_val_acc = [] + folds = np.arange(start, end) + for i in folds: + seed_torch(args.seed) + train_dataset, val_dataset, test_dataset = dataset.return_splits(from_id=False, + csv_path='{}/splits_{}.csv'.format(args.split_dir, i)) + + print('training: {}, validation: {}, testing: {}'.format(len(train_dataset), len(val_dataset), len(test_dataset))) + datasets = (train_dataset, val_dataset, test_dataset) + results, cls_test_auc, cls_val_auc, cls_test_acc, cls_val_acc, site_test_auc, site_val_auc, site_test_acc, site_val_acc = train(datasets, i, args) + all_cls_test_auc.append(cls_test_auc) + all_cls_val_auc.append(cls_val_auc) + all_cls_test_acc.append(cls_test_acc) + all_cls_val_acc.append(cls_val_acc) + + all_site_test_auc.append(site_test_auc) + all_site_val_auc.append(site_val_auc) + all_site_test_acc.append(site_test_acc) + all_site_val_acc.append(site_val_acc) + #write results to pkl + filename = os.path.join(args.results_dir, 'split_{}_results.pkl'.format(i)) + save_pkl(filename, results) + + final_df = pd.DataFrame({'folds': folds, 'cls_test_auc': all_cls_test_auc, + 'cls_val_auc': all_cls_val_auc, 'cls_test_acc': all_cls_test_acc, 'cls_val_acc' : all_cls_val_acc, + 'site_test_auc': all_site_test_auc, + 'site_val_auc': all_site_val_auc, 'site_test_acc': all_site_test_acc, 'site_val_acc' : all_site_val_acc}) + + + if len(folds) != args.k: + save_name = 'summary_partial_{}_{}.csv'.format(start, end) + else: + save_name = 'summary.csv' + final_df.to_csv(os.path.join(args.results_dir, save_name)) + +# Training settings +parser = argparse.ArgumentParser(description='Configurations for WSI Training') +parser.add_argument('--data_root_dir', type=str, help='data directory') +parser.add_argument('--max_epochs', type=int, default=200, + help='maximum number of epochs to train (default: 200)') +parser.add_argument('--lr', type=float, default=1e-4, + help='learning rate (default: 0.0001)') +parser.add_argument('--reg', type=float, default=1e-5, + help='weight decay (default: 1e-5)') +parser.add_argument('--seed', type=int, default=1, + help='random seed for reproducible experiment (default: 1)') +parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)') +parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)') +parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)') +parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)') +parser.add_argument('--split_dir', type=str, default=None, + help='manually specify the set of splits to use, ' + +'instead of infering from the task and label_frac argument (default: None)') +parser.add_argument('--log_data', action='store_true', default=False, help='log data using tensorboard') +parser.add_argument('--testing', action='store_true', default=False, help='debugging tool') +parser.add_argument('--early_stopping', action='store_true', default=False, help='enable early stopping') +parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam') +parser.add_argument('--drop_out', action='store_true', default=False, help='enabel dropout (p=0.25)') +parser.add_argument('--exp_code', type=str, help='experiment code for saving results') +parser.add_argument('--weighted_sample', action='store_true', default=False, help='enable weighted sampling') +parser.add_argument('--task', type=str, choices=['dummy_mtl_concat']) +args = parser.parse_args() +device=torch.device("cuda" if torch.cuda.is_available() else "cpu") + +def seed_torch(seed=7): + import random + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + np.random.seed(seed) + torch.manual_seed(seed) + if device.type == 'cuda': + torch.cuda.manual_seed(seed) + torch.cuda.manual_seed_all(seed) # if you are using multi-GPU. + torch.backends.cudnn.benchmark = False + torch.backends.cudnn.deterministic = True + +seed_torch(args.seed) + +encoding_size = 1024 +settings = {'num_splits': args.k, + 'k_start': args.k_start, + 'k_end': args.k_end, + 'task': args.task, + 'max_epochs': args.max_epochs, + 'results_dir': args.results_dir, + 'lr': args.lr, + 'experiment': args.exp_code, + 'reg': args.reg, + 'seed': args.seed, + "use_drop_out": args.drop_out, + 'weighted_sample': args.weighted_sample, + 'opt': args.opt} + +print('\nLoad Dataset') + +if args.task == 'dummy_mtl_concat': + args.n_classes=18 + dataset = Generic_MIL_MTL_Dataset(csv_path = 'dataset_csv/dummy_dataset.csv', + data_dir= os.path.join(args.data_root_dir,'DUMMY_DATA_DIR'), + shuffle = False, + seed = args.seed, + print_info = True, + label_dicts = [{'Lung':0, 'Breast':1, 'Colorectal':2, 'Ovarian':3, + 'Pancreatobiliary':4, 'Adrenal':5, + 'Skin':6, 'Prostate':7, 'Renal':8, 'Bladder':9, + 'Esophagogastric':10, 'Thyroid':11, + 'Head Neck':12, 'Glioma':13, + 'Germ Cell':14, 'Endometrial': 15, + 'Cervix': 16, 'Liver': 17}, + {'Primary':0, 'Metastatic':1}, + {'F':0, 'M':1}], + label_cols = ['label', 'site', 'sex'], + patient_strat= False) +else: + raise NotImplementedError + + + +if not os.path.isdir(args.results_dir): + os.mkdir(args.results_dir) + +args.results_dir = os.path.join(args.results_dir, str(args.exp_code) + '_s{}'.format(args.seed)) +if not os.path.isdir(args.results_dir): + os.mkdir(args.results_dir) + +if args.split_dir is None: + args.split_dir = os.path.join('splits', args.task+'_{}'.format(int(100))) +else: + args.split_dir = os.path.join('splits', args.split_dir) +assert os.path.isdir(args.split_dir) + +settings.update({'split_dir': args.split_dir}) + +with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f: + print(settings, file=f) +f.close() + +print("################# Settings ###################") +for key, val in settings.items(): + print("{}: {}".format(key, val)) + +if __name__ == "__main__": + results = main(args) + print("finished!") + print("end script") + +