--- a +++ b/eval_mtl_concat.py @@ -0,0 +1,149 @@ +from __future__ import print_function + +import numpy as np + +import argparse +import torch +import torch.nn as nn +import pdb +import os +import pandas as pd +from utils.utils import * +from math import floor +import matplotlib.pyplot as plt +from datasets.dataset_mtl_concat import Generic_MIL_MTL_Dataset, save_splits +import h5py +from utils.eval_utils_mtl_concat import * + +# Training settings +parser = argparse.ArgumentParser(description='TOAD Evaluation Script') +parser.add_argument('--data_root_dir', type=str, help='data directory') +parser.add_argument('--results_dir', type=str, default='./results', + help='relative path to results folder, i.e. '+ + 'the directory containing models_exp_code relative to project root (default: ./results)') +parser.add_argument('--save_exp_code', type=str, default=None, + help='experiment code to save eval results') +parser.add_argument('--models_exp_code', type=str, default=None, + help='experiment code to load trained models (directory under results_dir containing model checkpoints') +parser.add_argument('--splits_dir', type=str, default=None, + help='splits directory, if using custom splits other than what matches the task (default: None)') +parser.add_argument('--drop_out', action='store_true', default=False, + help='whether model uses dropout') +parser.add_argument('--k', type=int, default=1, help='number of folds (default: 1)') +parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)') +parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)') +parser.add_argument('--fold', type=int, default=-1, help='single fold to evaluate') +parser.add_argument('--micro_average', action='store_true', default=False, + help='use micro_average instead of macro_avearge for multiclass AUC') +parser.add_argument('--split', type=str, choices=['train', 'val', 'test', 'all'], default='test') +parser.add_argument('--task', type=str, choices=['dummy_mtl_concat']) + +args = parser.parse_args() + +device=torch.device("cuda" if torch.cuda.is_available() else "cpu") + +encoding_size = 1024 + +args.save_dir = os.path.join('./eval_results', 'EVAL_' + str(args.save_exp_code)) +args.models_dir = os.path.join(args.results_dir, str(args.models_exp_code)) + +os.makedirs(args.save_dir, exist_ok=True) + +if args.splits_dir is None: + args.splits_dir = args.models_dir + +assert os.path.isdir(args.models_dir) +assert os.path.isdir(args.splits_dir) + +settings = {'task': args.task, + 'split': args.split, + 'save_dir': args.save_dir, + 'models_dir': args.models_dir, + 'drop_out': args.drop_out, + 'micro_avg': args.micro_average} + +with open(args.save_dir + '/eval_experiment_{}.txt'.format(args.save_exp_code), 'w') as f: + print(settings, file=f) +f.close() + +print(settings) + + +if args.task == 'dummy_mtl_concat': + args.n_classes=18 + dataset = Generic_MIL_MTL_Dataset(csv_path = 'dataset_csv/dummy_dataset.csv', + data_dir= os.path.join(args.data_root_dir,'DATASET_DIR'), + shuffle = False, + print_info = True, + label_dicts = [{'Lung':0, 'Breast':1, 'Colorectal':2, 'Ovarian':3, + 'Pancreatic':4, 'Adrenal':5, + 'Skin':6, 'Prostate':7, 'Renal':8, 'Bladder':9, + 'Esophagogastric':10, 'Thyroid':11, + 'Head Neck':12, 'Glioma':13, + 'Germ Cell':14, 'Endometrial': 15, 'Cervix': 16, 'Liver': 17}, + {'Primary':0, 'Metastatic':1}, + {'F':0, 'M':1}], + label_cols = ['label', 'site', 'sex'], + patient_strat= False) + +else: + raise NotImplementedError + +if args.k_start == -1: + start = 0 +else: + start = args.k_start +if args.k_end == -1: + end = args.k +else: + end = args.k_end + +if args.fold == -1: + folds = range(start, end) +else: + folds = range(args.fold, args.fold+1) +ckpt_paths = [os.path.join(args.models_dir, 's_{}_checkpoint.pt'.format(fold)) for fold in folds] +datasets_id = {'train': 0, 'val': 1, 'test': 2, 'all': -1} + +if __name__ == "__main__": + + all_cls_auc = [] + all_cls_acc = [] + all_site_auc = [] + all_site_acc = [] + all_cls_top3_acc = [] + all_cls_top5_acc = [] + + for ckpt_idx in range(len(ckpt_paths)): + if datasets_id[args.split] < 0: + split_dataset = dataset + csv_path = None + else: + csv_path = '{}/splits_{}.csv'.format(args.splits_dir, folds[ckpt_idx]) + datasets = dataset.return_splits(from_id=False, csv_path=csv_path) + split_dataset = datasets[datasets_id[args.split]] + + model, results_dict = eval(split_dataset, args, ckpt_paths[ckpt_idx]) + + for cls_idx in range(len(results_dict['cls_aucs'])): + print('class {} auc: {}'.format(cls_idx, results_dict['cls_aucs'][cls_idx])) + + all_cls_auc.append(results_dict['cls_auc']) + all_cls_acc.append(1-results_dict['cls_test_error']) + all_site_auc.append(results_dict['site_auc']) + all_site_acc.append(1-results_dict['site_test_error']) + all_cls_top3_acc.append(results_dict['top3_acc']) + all_cls_top5_acc.append(results_dict['top5_acc']) + df = results_dict['df'] + df.to_csv(os.path.join(args.save_dir, 'fold_{}.csv'.format(folds[ckpt_idx])), index=False) + + + df_dict = {'folds': folds, 'cls_test_auc': all_cls_auc, 'cls_test_acc': all_cls_acc, 'cls_top3_acc': all_cls_top3_acc, 'cls_top5_acc': all_cls_top5_acc, + 'site_test_auc': all_site_auc, 'site_test_acc': all_site_acc} + + final_df = pd.DataFrame(df_dict) + if len(folds) != args.k: + save_name = 'summary_partial_{}_{}.csv'.format(folds[0], folds[-1]) + else: + save_name = 'summary.csv' + final_df.to_csv(os.path.join(args.save_dir, save_name))