|
a |
|
b/datasets/dataset_mtl_concat.py |
|
|
1 |
from __future__ import print_function, division |
|
|
2 |
import os |
|
|
3 |
import torch |
|
|
4 |
import numpy as np |
|
|
5 |
import pandas as pd |
|
|
6 |
import math |
|
|
7 |
import re |
|
|
8 |
import pdb |
|
|
9 |
import pickle |
|
|
10 |
from scipy import stats |
|
|
11 |
from torch.utils.data import Dataset |
|
|
12 |
import h5py |
|
|
13 |
from utils.utils import generate_split, nth |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
def save_splits(split_datasets, column_keys, filename, boolean_style=False): |
|
|
17 |
splits = [split_datasets[i].slide_data['slide_id'] for i in range(len(split_datasets))] |
|
|
18 |
if not boolean_style: |
|
|
19 |
df = pd.concat(splits, ignore_index=True, axis=1) |
|
|
20 |
df.columns = column_keys |
|
|
21 |
else: |
|
|
22 |
df = pd.concat(splits, ignore_index = True, axis=0) |
|
|
23 |
index = df.values.tolist() |
|
|
24 |
one_hot = np.eye(len(split_datasets)).astype(bool) |
|
|
25 |
bool_array = np.repeat(one_hot, [len(dset) for dset in split_datasets], axis=0) |
|
|
26 |
df = pd.DataFrame(bool_array, index=index, columns = ['train', 'val', 'test']) |
|
|
27 |
|
|
|
28 |
df.to_csv(filename) |
|
|
29 |
|
|
|
30 |
class Generic_WSI_MTL_Dataset(Dataset): |
|
|
31 |
def __init__(self, |
|
|
32 |
csv_path = None, |
|
|
33 |
shuffle = False, |
|
|
34 |
seed = 7, |
|
|
35 |
print_info = True, |
|
|
36 |
label_dicts = [{}, {}, {}], |
|
|
37 |
patient_strat=False, |
|
|
38 |
label_cols = ['label', 'site', 'sex'], |
|
|
39 |
patient_voting = 'max', |
|
|
40 |
filter_dict = {}, |
|
|
41 |
): |
|
|
42 |
""" |
|
|
43 |
Args: |
|
|
44 |
csv_file (string): Path to the dataset csv file. |
|
|
45 |
shuffle (boolean): Whether to shuffle |
|
|
46 |
seed (int): random seed for shuffling the data |
|
|
47 |
print_info (boolean): Whether to print a summary of the dataset |
|
|
48 |
label_dicts (list of dict): List of dictionaries with key, value pairs for converting str labels to int for each label column |
|
|
49 |
label_cols (list): List of column headings to use as labels and map with label_dicts |
|
|
50 |
filter_dict (dict): Dictionary of key, value pairs to exclude from the dataset where key represents a column name, |
|
|
51 |
and value is a list of values to ignore in that column |
|
|
52 |
patient_voting (string): Rule for deciding the patient-level label |
|
|
53 |
""" |
|
|
54 |
self.custom_test_ids = None |
|
|
55 |
self.seed = seed |
|
|
56 |
self.print_info = print_info |
|
|
57 |
self.patient_strat = patient_strat |
|
|
58 |
self.train_ids, self.val_ids, self.test_ids = (None, None, None) |
|
|
59 |
self.data_dir = None |
|
|
60 |
self.label_cols = label_cols |
|
|
61 |
self.split_gen = None |
|
|
62 |
|
|
|
63 |
slide_data = pd.read_csv(csv_path) |
|
|
64 |
slide_data = self.filter_df(slide_data, filter_dict) |
|
|
65 |
|
|
|
66 |
self.label_dicts = label_dicts |
|
|
67 |
self.num_classes=[len(set(label_dict.values())) for label_dict in self.label_dicts] |
|
|
68 |
|
|
|
69 |
slide_data = self.df_prep(slide_data, self.label_dicts, self.label_cols) |
|
|
70 |
###shuffle data |
|
|
71 |
if shuffle: |
|
|
72 |
np.random.seed(seed) |
|
|
73 |
np.random.shuffle(slide_data) |
|
|
74 |
|
|
|
75 |
self.slide_data = slide_data |
|
|
76 |
|
|
|
77 |
self.patient_data_prep(patient_voting) |
|
|
78 |
self.cls_ids_prep() |
|
|
79 |
|
|
|
80 |
if print_info: |
|
|
81 |
self.summarize() |
|
|
82 |
|
|
|
83 |
def cls_ids_prep(self): |
|
|
84 |
# store ids corresponding each class at the patient or case level |
|
|
85 |
self.patient_cls_ids = [[] for i in range(self.num_classes[0])] |
|
|
86 |
for i in range(self.num_classes[0]): |
|
|
87 |
self.patient_cls_ids[i] = np.where(self.patient_data['label'] == i)[0] |
|
|
88 |
|
|
|
89 |
# store ids corresponding each class at the slide level |
|
|
90 |
self.slide_cls_ids = [[] for i in range(self.num_classes[0])] |
|
|
91 |
for i in range(self.num_classes[0]): |
|
|
92 |
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0] |
|
|
93 |
|
|
|
94 |
def patient_data_prep(self, patient_voting='max'): |
|
|
95 |
patients = np.unique(np.array(self.slide_data['case_id'])) # get unique patients |
|
|
96 |
patient_labels = [] |
|
|
97 |
|
|
|
98 |
for p in patients: |
|
|
99 |
locations = self.slide_data[self.slide_data['case_id'] == p].index.tolist() |
|
|
100 |
assert len(locations) > 0 |
|
|
101 |
label = self.slide_data['label'][locations].values |
|
|
102 |
if patient_voting == 'max': |
|
|
103 |
label = label.max() # get patient label (MIL convention) |
|
|
104 |
elif patient_voting == 'maj': |
|
|
105 |
label = stats.mode(label)[0] |
|
|
106 |
else: |
|
|
107 |
raise NotImplementedError |
|
|
108 |
patient_labels.append(label) |
|
|
109 |
|
|
|
110 |
self.patient_data = {'case_id':patients, 'label':np.array(patient_labels)} |
|
|
111 |
|
|
|
112 |
@staticmethod |
|
|
113 |
def filter_df(df, filter_dict={}): |
|
|
114 |
if len(filter_dict) > 0: |
|
|
115 |
filter_mask = np.full(len(df), True, bool) |
|
|
116 |
# assert 'label' not in filter_dict.keys() |
|
|
117 |
for key, val in filter_dict.items(): |
|
|
118 |
mask = df[key].isin(val) |
|
|
119 |
filter_mask = np.logical_and(filter_mask, mask) |
|
|
120 |
df = df[filter_mask] |
|
|
121 |
return df |
|
|
122 |
|
|
|
123 |
@staticmethod |
|
|
124 |
def df_prep(data, label_dicts, label_cols): |
|
|
125 |
if label_cols[0] != 'label': |
|
|
126 |
data['label'] = data[label_cols[0]].copy() |
|
|
127 |
|
|
|
128 |
data.reset_index(drop=True, inplace=True) |
|
|
129 |
for i in data.index: |
|
|
130 |
key = data.loc[i, 'label'] |
|
|
131 |
data.at[i, 'label'] = label_dicts[0][key] |
|
|
132 |
|
|
|
133 |
for idx, (label_dict, label_col) in enumerate(zip(label_dicts[1:], label_cols[1:])): |
|
|
134 |
print(label_dict, label_col) |
|
|
135 |
data[label_col] = data[label_col].map(label_dict) |
|
|
136 |
|
|
|
137 |
return data |
|
|
138 |
|
|
|
139 |
def __len__(self): |
|
|
140 |
if self.patient_strat: |
|
|
141 |
return len(self.patient_data['case_id']) |
|
|
142 |
|
|
|
143 |
else: |
|
|
144 |
return len(self.slide_data) |
|
|
145 |
|
|
|
146 |
def summarize(self): |
|
|
147 |
|
|
|
148 |
for task in range(len(self.label_dicts)): |
|
|
149 |
print('task: ', task) |
|
|
150 |
print("label column: {}".format(self.label_cols[task])) |
|
|
151 |
print("label dictionary: {}".format(self.label_dicts[task])) |
|
|
152 |
print("number of classes: {}".format(self.num_classes[task])) |
|
|
153 |
print("slide-level counts: ", '\n', self.slide_data[self.label_cols[task]].value_counts(sort = False)) |
|
|
154 |
|
|
|
155 |
for i in range(self.num_classes[0]): |
|
|
156 |
print('Patient-LVL; Number of samples registered in class %d: %d' % (i, self.patient_cls_ids[i].shape[0])) |
|
|
157 |
print('Slide-LVL; Number of samples registered in class %d: %d' % (i, self.slide_cls_ids[i].shape[0])) |
|
|
158 |
|
|
|
159 |
def create_splits(self, k = 3, val_num = (25, 25), test_num = (40, 40), label_frac = 1.0, custom_test_ids = None): |
|
|
160 |
settings = { |
|
|
161 |
'n_splits' : k, |
|
|
162 |
'val_num' : val_num, |
|
|
163 |
'test_num': test_num, |
|
|
164 |
'label_frac': label_frac, |
|
|
165 |
'seed': self.seed, |
|
|
166 |
'custom_test_ids': custom_test_ids |
|
|
167 |
} |
|
|
168 |
|
|
|
169 |
if self.patient_strat: |
|
|
170 |
settings.update({'cls_ids' : self.patient_cls_ids, 'samples': len(self.patient_data['case_id'])}) |
|
|
171 |
else: |
|
|
172 |
settings.update({'cls_ids' : self.slide_cls_ids, 'samples': len(self.slide_data)}) |
|
|
173 |
|
|
|
174 |
self.split_gen = generate_split(**settings) |
|
|
175 |
|
|
|
176 |
def sample_held_out(self, test_num = (40, 40)): |
|
|
177 |
|
|
|
178 |
test_ids = [] |
|
|
179 |
np.random.seed(self.seed) #fix seed |
|
|
180 |
|
|
|
181 |
if self.patient_strat: |
|
|
182 |
cls_ids = self.patient_cls_ids |
|
|
183 |
else: |
|
|
184 |
cls_ids = self.slide_cls_ids |
|
|
185 |
|
|
|
186 |
for c in range(len(test_num)): |
|
|
187 |
test_ids.extend(np.random.choice(cls_ids[c], test_num[c], replace = False)) # validation ids |
|
|
188 |
|
|
|
189 |
if self.patient_strat: |
|
|
190 |
slide_ids = [] |
|
|
191 |
for idx in test_ids: |
|
|
192 |
case_id = self.patient_data['case_id'][idx] |
|
|
193 |
slide_indices = self.slide_data[self.slide_data['case_id'] == case_id].index.tolist() |
|
|
194 |
slide_ids.extend(slide_indices) |
|
|
195 |
|
|
|
196 |
return slide_ids |
|
|
197 |
else: |
|
|
198 |
return test_ids |
|
|
199 |
|
|
|
200 |
def set_splits(self,start_from=None): |
|
|
201 |
if start_from: |
|
|
202 |
ids = nth(self.split_gen, start_from) |
|
|
203 |
|
|
|
204 |
else: |
|
|
205 |
ids = next(self.split_gen) |
|
|
206 |
|
|
|
207 |
if self.patient_strat: |
|
|
208 |
slide_ids = [[] for i in range(len(ids))] |
|
|
209 |
|
|
|
210 |
for split in range(len(ids)): |
|
|
211 |
for idx in ids[split]: |
|
|
212 |
case_id = self.patient_data['case_id'][idx] |
|
|
213 |
slide_indices = self.slide_data[self.slide_data['case_id'] == case_id].index.tolist() |
|
|
214 |
slide_ids[split].extend(slide_indices) |
|
|
215 |
|
|
|
216 |
self.train_ids, self.val_ids, self.test_ids = slide_ids[0], slide_ids[1], slide_ids[2] |
|
|
217 |
|
|
|
218 |
else: |
|
|
219 |
self.train_ids, self.val_ids, self.test_ids = ids |
|
|
220 |
|
|
|
221 |
def get_split_from_df(self, all_splits=None, split_key='train', return_ids_only=False, split=None): |
|
|
222 |
if split is None: |
|
|
223 |
split = all_splits[split_key] |
|
|
224 |
split = split.dropna().reset_index(drop=True) |
|
|
225 |
|
|
|
226 |
if len(split) > 0: |
|
|
227 |
mask = self.slide_data['slide_id'].isin(split.tolist()) |
|
|
228 |
if return_ids_only: |
|
|
229 |
ids = np.where(mask)[0] |
|
|
230 |
return ids |
|
|
231 |
|
|
|
232 |
df_slice = self.slide_data[mask].dropna().reset_index(drop=True) |
|
|
233 |
split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols) |
|
|
234 |
|
|
|
235 |
else: |
|
|
236 |
split = None |
|
|
237 |
|
|
|
238 |
return split |
|
|
239 |
|
|
|
240 |
def get_merged_split_from_df(self, all_splits, split_keys=['train']): |
|
|
241 |
merged_split = [] |
|
|
242 |
for split_key in split_keys: |
|
|
243 |
split = all_splits[split_key] |
|
|
244 |
split = split.dropna().reset_index(drop=True).tolist() |
|
|
245 |
merged_split.extend(split) |
|
|
246 |
|
|
|
247 |
if len(split) > 0: |
|
|
248 |
mask = self.slide_data['slide_id'].isin(merged_split) |
|
|
249 |
df_slice = self.slide_data[mask].dropna().reset_index(drop=True) |
|
|
250 |
split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols) |
|
|
251 |
else: |
|
|
252 |
split = None |
|
|
253 |
|
|
|
254 |
return split |
|
|
255 |
|
|
|
256 |
|
|
|
257 |
def return_splits(self, from_id=True, csv_path=None): |
|
|
258 |
if from_id: |
|
|
259 |
if len(self.train_ids) > 0: |
|
|
260 |
train_data = self.slide_data.loc[self.train_ids].reset_index(drop=True) |
|
|
261 |
train_split = Generic_Split(train_data, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols) |
|
|
262 |
|
|
|
263 |
else: |
|
|
264 |
train_split = None |
|
|
265 |
|
|
|
266 |
if len(self.val_ids) > 0: |
|
|
267 |
val_data = self.slide_data.loc[self.val_ids].reset_index(drop=True) |
|
|
268 |
val_split = Generic_Split(val_data, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols) |
|
|
269 |
|
|
|
270 |
else: |
|
|
271 |
val_split = None |
|
|
272 |
|
|
|
273 |
if len(self.test_ids) > 0: |
|
|
274 |
test_data = self.slide_data.loc[self.test_ids].reset_index(drop=True) |
|
|
275 |
test_split = Generic_Split(test_data, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols) |
|
|
276 |
|
|
|
277 |
else: |
|
|
278 |
test_split = None |
|
|
279 |
|
|
|
280 |
|
|
|
281 |
else: |
|
|
282 |
assert csv_path |
|
|
283 |
all_splits = pd.read_csv(csv_path) |
|
|
284 |
train_split = self.get_split_from_df(all_splits, 'train') |
|
|
285 |
val_split = self.get_split_from_df(all_splits, 'val') |
|
|
286 |
test_split = self.get_split_from_df(all_splits, 'test') |
|
|
287 |
|
|
|
288 |
return train_split, val_split, test_split |
|
|
289 |
|
|
|
290 |
def get_list(self, ids): |
|
|
291 |
return self.slide_data['slide_id'][ids] |
|
|
292 |
|
|
|
293 |
def getlabel(self, ids, task): |
|
|
294 |
if task > 0: |
|
|
295 |
return self.slide_data[self.label_cols[task]][ids] |
|
|
296 |
else: |
|
|
297 |
return self.slide_data['label'][ids] |
|
|
298 |
|
|
|
299 |
def __getitem__(self, idx): |
|
|
300 |
return None |
|
|
301 |
|
|
|
302 |
def test_split_gen(self, return_descriptor=False): |
|
|
303 |
if return_descriptor: |
|
|
304 |
dfs = [] |
|
|
305 |
for task in range(len(self.label_dicts)): |
|
|
306 |
index = [list(self.label_dicts[task].keys())[list(self.label_dicts[task].values()).index(i)] for i in range(self.num_classes[task])] |
|
|
307 |
columns = ['train', 'val', 'test'] |
|
|
308 |
df = pd.DataFrame(np.full((len(index), len(columns)), 0, dtype=np.int32), index= index, |
|
|
309 |
columns= columns) |
|
|
310 |
dfs.append(df) |
|
|
311 |
|
|
|
312 |
for task in range(len(self.label_dicts)): |
|
|
313 |
index = [list(self.label_dicts[task].keys())[list(self.label_dicts[task].values()).index(i)] for i in range(self.num_classes[task])] |
|
|
314 |
for split_name, ids in zip(['train', 'val', 'test'], [self.train_ids, self.val_ids, self.test_ids]): |
|
|
315 |
count = len(ids) |
|
|
316 |
print('\nnumber of {} samples: {}'.format(split_name, count)) |
|
|
317 |
labels = self.getlabel(ids, task) |
|
|
318 |
unique, counts = np.unique(labels, return_counts=True) |
|
|
319 |
missing_classes = np.setdiff1d(np.arange(self.num_classes[task]), unique) |
|
|
320 |
unique = np.append(unique, missing_classes) |
|
|
321 |
counts = np.append(counts, np.full(len(missing_classes), 0)) |
|
|
322 |
inds = unique.argsort() |
|
|
323 |
counts = counts[inds] |
|
|
324 |
for u in range(len(unique)): |
|
|
325 |
print('number of samples in cls {}: {}'.format(unique[u], counts[u])) |
|
|
326 |
if return_descriptor: |
|
|
327 |
dfs[task].loc[index[u], split_name] = counts[u] |
|
|
328 |
|
|
|
329 |
assert len(np.intersect1d(self.train_ids, self.test_ids)) == 0 |
|
|
330 |
assert len(np.intersect1d(self.train_ids, self.val_ids)) == 0 |
|
|
331 |
assert len(np.intersect1d(self.val_ids, self.test_ids)) == 0 |
|
|
332 |
|
|
|
333 |
if return_descriptor: |
|
|
334 |
df = pd.concat(dfs, axis=0) |
|
|
335 |
return df |
|
|
336 |
|
|
|
337 |
def save_split(self, filename): |
|
|
338 |
train_split = self.get_list(self.train_ids) |
|
|
339 |
val_split = self.get_list(self.val_ids) |
|
|
340 |
test_split = self.get_list(self.test_ids) |
|
|
341 |
df_tr = pd.DataFrame({'train': train_split}) |
|
|
342 |
df_v = pd.DataFrame({'val': val_split}) |
|
|
343 |
df_t = pd.DataFrame({'test': test_split}) |
|
|
344 |
df = pd.concat([df_tr, df_v, df_t], axis=1) |
|
|
345 |
df.to_csv(filename, index = False) |
|
|
346 |
|
|
|
347 |
class Generic_MIL_MTL_Dataset(Generic_WSI_MTL_Dataset): |
|
|
348 |
def __init__(self, |
|
|
349 |
data_dir, |
|
|
350 |
**kwargs): |
|
|
351 |
super(Generic_MIL_MTL_Dataset, self).__init__(**kwargs) |
|
|
352 |
self.data_dir = data_dir |
|
|
353 |
self.use_h5 = False |
|
|
354 |
|
|
|
355 |
def load_from_h5(self, toggle): |
|
|
356 |
self.use_h5 = toggle |
|
|
357 |
|
|
|
358 |
def __getitem__(self, idx): |
|
|
359 |
slide_id = self.slide_data['slide_id'][idx] |
|
|
360 |
label = self.slide_data['label'][idx] |
|
|
361 |
site = self.slide_data[self.label_cols[1]][idx] |
|
|
362 |
sex = self.slide_data[self.label_cols[2]][idx] |
|
|
363 |
if type(self.data_dir) == dict: |
|
|
364 |
source = self.slide_data['source'][idx] |
|
|
365 |
data_dir = self.data_dir[source] |
|
|
366 |
else: |
|
|
367 |
data_dir = self.data_dir |
|
|
368 |
|
|
|
369 |
if not self.use_h5: |
|
|
370 |
full_path = os.path.join(data_dir, '{}.pt'.format(slide_id)) |
|
|
371 |
features = torch.load(full_path) |
|
|
372 |
|
|
|
373 |
return features, label, site, sex |
|
|
374 |
|
|
|
375 |
|
|
|
376 |
else: |
|
|
377 |
full_path = os.path.join(data_dir, '{}.h5'.format(slide_id)) |
|
|
378 |
with h5py.File(full_path,'r') as hdf5_file: |
|
|
379 |
features = hdf5_file['features'][:] |
|
|
380 |
coords = hdf5_file['coords'][:] |
|
|
381 |
|
|
|
382 |
features = torch.from_numpy(features) |
|
|
383 |
return features, label, site, sex, coords |
|
|
384 |
|
|
|
385 |
|
|
|
386 |
|
|
|
387 |
class Generic_Split(Generic_MIL_MTL_Dataset): |
|
|
388 |
def __init__(self, slide_data, data_dir=None, num_classes=2, label_cols=None): |
|
|
389 |
self.use_h5 = False |
|
|
390 |
self.slide_data = slide_data |
|
|
391 |
self.data_dir = data_dir |
|
|
392 |
self.num_classes = num_classes |
|
|
393 |
self.slide_cls_ids = [[] for i in range(self.num_classes[0])] |
|
|
394 |
self.label_cols = label_cols |
|
|
395 |
self.infer = False |
|
|
396 |
for i in range(self.num_classes[0]): |
|
|
397 |
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0] |
|
|
398 |
|
|
|
399 |
def __len__(self): |
|
|
400 |
return len(self.slide_data) |