from __future__ import print_function, division
import os
import torch
import numpy as np
import pandas as pd
import math
import re
import pdb
import pickle
from scipy import stats
from torch.utils.data import Dataset
import h5py
from utils.utils import generate_split, nth
def save_splits(split_datasets, column_keys, filename, boolean_style=False):
splits = [split_datasets[i].slide_data['slide_id'] for i in range(len(split_datasets))]
if not boolean_style:
df = pd.concat(splits, ignore_index=True, axis=1)
df.columns = column_keys
else:
df = pd.concat(splits, ignore_index = True, axis=0)
index = df.values.tolist()
one_hot = np.eye(len(split_datasets)).astype(bool)
bool_array = np.repeat(one_hot, [len(dset) for dset in split_datasets], axis=0)
df = pd.DataFrame(bool_array, index=index, columns = ['train', 'val', 'test'])
df.to_csv(filename)
class Generic_WSI_MTL_Dataset(Dataset):
def __init__(self,
csv_path = None,
shuffle = False,
seed = 7,
print_info = True,
label_dicts = [{}, {}, {}],
patient_strat=False,
label_cols = ['label', 'site', 'sex'],
patient_voting = 'max',
filter_dict = {},
):
"""
Args:
csv_file (string): Path to the dataset csv file.
shuffle (boolean): Whether to shuffle
seed (int): random seed for shuffling the data
print_info (boolean): Whether to print a summary of the dataset
label_dicts (list of dict): List of dictionaries with key, value pairs for converting str labels to int for each label column
label_cols (list): List of column headings to use as labels and map with label_dicts
filter_dict (dict): Dictionary of key, value pairs to exclude from the dataset where key represents a column name,
and value is a list of values to ignore in that column
patient_voting (string): Rule for deciding the patient-level label
"""
self.custom_test_ids = None
self.seed = seed
self.print_info = print_info
self.patient_strat = patient_strat
self.train_ids, self.val_ids, self.test_ids = (None, None, None)
self.data_dir = None
self.label_cols = label_cols
self.split_gen = None
slide_data = pd.read_csv(csv_path)
slide_data = self.filter_df(slide_data, filter_dict)
self.label_dicts = label_dicts
self.num_classes=[len(set(label_dict.values())) for label_dict in self.label_dicts]
slide_data = self.df_prep(slide_data, self.label_dicts, self.label_cols)
###shuffle data
if shuffle:
np.random.seed(seed)
np.random.shuffle(slide_data)
self.slide_data = slide_data
self.patient_data_prep(patient_voting)
self.cls_ids_prep()
if print_info:
self.summarize()
def cls_ids_prep(self):
# store ids corresponding each class at the patient or case level
self.patient_cls_ids = [[] for i in range(self.num_classes[0])]
for i in range(self.num_classes[0]):
self.patient_cls_ids[i] = np.where(self.patient_data['label'] == i)[0]
# store ids corresponding each class at the slide level
self.slide_cls_ids = [[] for i in range(self.num_classes[0])]
for i in range(self.num_classes[0]):
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0]
def patient_data_prep(self, patient_voting='max'):
patients = np.unique(np.array(self.slide_data['case_id'])) # get unique patients
patient_labels = []
for p in patients:
locations = self.slide_data[self.slide_data['case_id'] == p].index.tolist()
assert len(locations) > 0
label = self.slide_data['label'][locations].values
if patient_voting == 'max':
label = label.max() # get patient label (MIL convention)
elif patient_voting == 'maj':
label = stats.mode(label)[0]
else:
raise NotImplementedError
patient_labels.append(label)
self.patient_data = {'case_id':patients, 'label':np.array(patient_labels)}
@staticmethod
def filter_df(df, filter_dict={}):
if len(filter_dict) > 0:
filter_mask = np.full(len(df), True, bool)
# assert 'label' not in filter_dict.keys()
for key, val in filter_dict.items():
mask = df[key].isin(val)
filter_mask = np.logical_and(filter_mask, mask)
df = df[filter_mask]
return df
@staticmethod
def df_prep(data, label_dicts, label_cols):
if label_cols[0] != 'label':
data['label'] = data[label_cols[0]].copy()
data.reset_index(drop=True, inplace=True)
for i in data.index:
key = data.loc[i, 'label']
data.at[i, 'label'] = label_dicts[0][key]
for idx, (label_dict, label_col) in enumerate(zip(label_dicts[1:], label_cols[1:])):
print(label_dict, label_col)
data[label_col] = data[label_col].map(label_dict)
return data
def __len__(self):
if self.patient_strat:
return len(self.patient_data['case_id'])
else:
return len(self.slide_data)
def summarize(self):
for task in range(len(self.label_dicts)):
print('task: ', task)
print("label column: {}".format(self.label_cols[task]))
print("label dictionary: {}".format(self.label_dicts[task]))
print("number of classes: {}".format(self.num_classes[task]))
print("slide-level counts: ", '\n', self.slide_data[self.label_cols[task]].value_counts(sort = False))
for i in range(self.num_classes[0]):
print('Patient-LVL; Number of samples registered in class %d: %d' % (i, self.patient_cls_ids[i].shape[0]))
print('Slide-LVL; Number of samples registered in class %d: %d' % (i, self.slide_cls_ids[i].shape[0]))
def create_splits(self, k = 3, val_num = (25, 25), test_num = (40, 40), label_frac = 1.0, custom_test_ids = None):
settings = {
'n_splits' : k,
'val_num' : val_num,
'test_num': test_num,
'label_frac': label_frac,
'seed': self.seed,
'custom_test_ids': custom_test_ids
}
if self.patient_strat:
settings.update({'cls_ids' : self.patient_cls_ids, 'samples': len(self.patient_data['case_id'])})
else:
settings.update({'cls_ids' : self.slide_cls_ids, 'samples': len(self.slide_data)})
self.split_gen = generate_split(**settings)
def sample_held_out(self, test_num = (40, 40)):
test_ids = []
np.random.seed(self.seed) #fix seed
if self.patient_strat:
cls_ids = self.patient_cls_ids
else:
cls_ids = self.slide_cls_ids
for c in range(len(test_num)):
test_ids.extend(np.random.choice(cls_ids[c], test_num[c], replace = False)) # validation ids
if self.patient_strat:
slide_ids = []
for idx in test_ids:
case_id = self.patient_data['case_id'][idx]
slide_indices = self.slide_data[self.slide_data['case_id'] == case_id].index.tolist()
slide_ids.extend(slide_indices)
return slide_ids
else:
return test_ids
def set_splits(self,start_from=None):
if start_from:
ids = nth(self.split_gen, start_from)
else:
ids = next(self.split_gen)
if self.patient_strat:
slide_ids = [[] for i in range(len(ids))]
for split in range(len(ids)):
for idx in ids[split]:
case_id = self.patient_data['case_id'][idx]
slide_indices = self.slide_data[self.slide_data['case_id'] == case_id].index.tolist()
slide_ids[split].extend(slide_indices)
self.train_ids, self.val_ids, self.test_ids = slide_ids[0], slide_ids[1], slide_ids[2]
else:
self.train_ids, self.val_ids, self.test_ids = ids
def get_split_from_df(self, all_splits=None, split_key='train', return_ids_only=False, split=None):
if split is None:
split = all_splits[split_key]
split = split.dropna().reset_index(drop=True)
if len(split) > 0:
mask = self.slide_data['slide_id'].isin(split.tolist())
if return_ids_only:
ids = np.where(mask)[0]
return ids
df_slice = self.slide_data[mask].dropna().reset_index(drop=True)
split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols)
else:
split = None
return split
def get_merged_split_from_df(self, all_splits, split_keys=['train']):
merged_split = []
for split_key in split_keys:
split = all_splits[split_key]
split = split.dropna().reset_index(drop=True).tolist()
merged_split.extend(split)
if len(split) > 0:
mask = self.slide_data['slide_id'].isin(merged_split)
df_slice = self.slide_data[mask].dropna().reset_index(drop=True)
split = Generic_Split(df_slice, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols)
else:
split = None
return split
def return_splits(self, from_id=True, csv_path=None):
if from_id:
if len(self.train_ids) > 0:
train_data = self.slide_data.loc[self.train_ids].reset_index(drop=True)
train_split = Generic_Split(train_data, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols)
else:
train_split = None
if len(self.val_ids) > 0:
val_data = self.slide_data.loc[self.val_ids].reset_index(drop=True)
val_split = Generic_Split(val_data, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols)
else:
val_split = None
if len(self.test_ids) > 0:
test_data = self.slide_data.loc[self.test_ids].reset_index(drop=True)
test_split = Generic_Split(test_data, data_dir=self.data_dir, num_classes=self.num_classes, label_cols=self.label_cols)
else:
test_split = None
else:
assert csv_path
all_splits = pd.read_csv(csv_path)
train_split = self.get_split_from_df(all_splits, 'train')
val_split = self.get_split_from_df(all_splits, 'val')
test_split = self.get_split_from_df(all_splits, 'test')
return train_split, val_split, test_split
def get_list(self, ids):
return self.slide_data['slide_id'][ids]
def getlabel(self, ids, task):
if task > 0:
return self.slide_data[self.label_cols[task]][ids]
else:
return self.slide_data['label'][ids]
def __getitem__(self, idx):
return None
def test_split_gen(self, return_descriptor=False):
if return_descriptor:
dfs = []
for task in range(len(self.label_dicts)):
index = [list(self.label_dicts[task].keys())[list(self.label_dicts[task].values()).index(i)] for i in range(self.num_classes[task])]
columns = ['train', 'val', 'test']
df = pd.DataFrame(np.full((len(index), len(columns)), 0, dtype=np.int32), index= index,
columns= columns)
dfs.append(df)
for task in range(len(self.label_dicts)):
index = [list(self.label_dicts[task].keys())[list(self.label_dicts[task].values()).index(i)] for i in range(self.num_classes[task])]
for split_name, ids in zip(['train', 'val', 'test'], [self.train_ids, self.val_ids, self.test_ids]):
count = len(ids)
print('\nnumber of {} samples: {}'.format(split_name, count))
labels = self.getlabel(ids, task)
unique, counts = np.unique(labels, return_counts=True)
missing_classes = np.setdiff1d(np.arange(self.num_classes[task]), unique)
unique = np.append(unique, missing_classes)
counts = np.append(counts, np.full(len(missing_classes), 0))
inds = unique.argsort()
counts = counts[inds]
for u in range(len(unique)):
print('number of samples in cls {}: {}'.format(unique[u], counts[u]))
if return_descriptor:
dfs[task].loc[index[u], split_name] = counts[u]
assert len(np.intersect1d(self.train_ids, self.test_ids)) == 0
assert len(np.intersect1d(self.train_ids, self.val_ids)) == 0
assert len(np.intersect1d(self.val_ids, self.test_ids)) == 0
if return_descriptor:
df = pd.concat(dfs, axis=0)
return df
def save_split(self, filename):
train_split = self.get_list(self.train_ids)
val_split = self.get_list(self.val_ids)
test_split = self.get_list(self.test_ids)
df_tr = pd.DataFrame({'train': train_split})
df_v = pd.DataFrame({'val': val_split})
df_t = pd.DataFrame({'test': test_split})
df = pd.concat([df_tr, df_v, df_t], axis=1)
df.to_csv(filename, index = False)
class Generic_MIL_MTL_Dataset(Generic_WSI_MTL_Dataset):
def __init__(self,
data_dir,
**kwargs):
super(Generic_MIL_MTL_Dataset, self).__init__(**kwargs)
self.data_dir = data_dir
self.use_h5 = False
def load_from_h5(self, toggle):
self.use_h5 = toggle
def __getitem__(self, idx):
slide_id = self.slide_data['slide_id'][idx]
label = self.slide_data['label'][idx]
site = self.slide_data[self.label_cols[1]][idx]
sex = self.slide_data[self.label_cols[2]][idx]
if type(self.data_dir) == dict:
source = self.slide_data['source'][idx]
data_dir = self.data_dir[source]
else:
data_dir = self.data_dir
if not self.use_h5:
full_path = os.path.join(data_dir, '{}.pt'.format(slide_id))
features = torch.load(full_path)
return features, label, site, sex
else:
full_path = os.path.join(data_dir, '{}.h5'.format(slide_id))
with h5py.File(full_path,'r') as hdf5_file:
features = hdf5_file['features'][:]
coords = hdf5_file['coords'][:]
features = torch.from_numpy(features)
return features, label, site, sex, coords
class Generic_Split(Generic_MIL_MTL_Dataset):
def __init__(self, slide_data, data_dir=None, num_classes=2, label_cols=None):
self.use_h5 = False
self.slide_data = slide_data
self.data_dir = data_dir
self.num_classes = num_classes
self.slide_cls_ids = [[] for i in range(self.num_classes[0])]
self.label_cols = label_cols
self.infer = False
for i in range(self.num_classes[0]):
self.slide_cls_ids[i] = np.where(self.slide_data['label'] == i)[0]
def __len__(self):
return len(self.slide_data)