894 lines (894 with data), 18.3 kB
{
"metadata": {
"celltoolbar": "Slideshow",
"name": "",
"signature": "sha256:5dfa5098b5370799316e25d5c2a66062a5f6b75c6502b8192cbf3896a72c9b71"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn\n",
"from matplotlib import rcParams\n",
"rcParams[\"figure.figsize\"] = (14, 8)\n",
"rcParams[\"xtick.labelsize\"] = 12\n",
"rcParams[\"ytick.labelsize\"] = 12\n",
"rcParams[\"font.size\"] = 14\n",
"rcParams[\"axes.titlesize\"] = 16\n",
"#rcParams[\"text.usetex\"] = False\n",
"rcParams[\"font.family\"] = \"Serif\"\n",
"rcParams[\"figure.dpi\"] = 600\n",
"\n",
"\n",
"a = pd.read_csv(\"../data/villagebay_population.csv\")\n",
"b = pd.read_csv(\"../data/exposure.csv\")\n",
"\n",
"fig, (ax, ax2) = plt.subplots(2, 1, sharex=True)\n",
"\n",
"#ax = plt.subplot(211)\n",
"ax.plot(a.Year, a.VillageBay, c=seaborn.color_palette(\"deep\", 8)[0], lw=3)\n",
"ax.scatter(a.Year, a.VillageBay, c=seaborn.color_palette(\"deep\", 8)[0], s=50)\n",
"ax.set_title(\"Village Bay Population\")\n",
"ax.set_ylim([180, 700])\n",
"\n",
"\n",
"#ax2 = plt.subplot(212, sharex=ax)\n",
"\n",
"ax2.plot(b.BirthYear, b.AvgOfLambWS, c=seaborn.color_palette(\"deep\", 8)[2], lw=3)\n",
"ax2.scatter(b.BirthYear, b.AvgOfLambWS, c=seaborn.color_palette(\"deep\", 8)[2], s=50)\n",
"ax2.set_title(\"Lamb Winter Survival\")\n",
"ax2.set_xlim([1984.5, 2013.5])\n",
"ax2.set_ylim([0, 0.8])\n",
"\n",
"plt.savefig(\"figures/population2.jpg\", dpi=300, jpeg_quality=100)\n"
],
"language": "python",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"outputs": [],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 1,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Robust Extraction of Quantitative Information from Histology Images"
]
},
{
"cell_type": "heading",
"level": 4,
"metadata": {},
"source": [
"Quentin Caudron"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"The Soay Sheep"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/graphics/soay.jpg\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/graphics/population2.jpg\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/graphics/lit1.jpg\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img src=\"figures/graphics/lit2.jpg\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"<img src=\"figures/graphics/lit4.jpg\" />"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Outline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- Methods and data collection\n",
"- Image processing\n",
"- Extracted measures\n",
"- Preliminary analysis\n",
"- Future directions"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**In the field, winter of 2011 - 2012 :**\n",
" \n",
"- Daily study area monitoring for deaths\n",
"- 143 liver samples collected within a day of death"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"**In the lab :**\n",
"\n",
"- Sectioning after paraffin treatment\n",
"- H&E staining of about 1000 slides"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"**Analysis :**\n",
"\n",
"- Pathology standard : semi-quantitative scoring\n",
"- Image processing"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"The Field ©"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sweat-and-blood-collected in cold, cold Scotland."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Eight physical measurements :\n",
"- Age at death\n",
"- Weight\n",
"- Sex\n",
"- Limb length\n",
"- Environmental \"stress\""
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Clinical Pathology"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Operator-driven visual analysis of 98 slides under microscopy."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Eleven discrete and continuous measures :\n",
"\n",
"- Inflammation\n",
"- Necrosis\n",
"- Apoptosis\n",
"- Hyperplasia\n",
"- Fibrosis\n",
"- Hepatitis"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Image Processing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Automated analysis of 4430 images of slides representing 143 sheep."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"Seven structural and textural measures with varying levels of biological interpretation :\n",
"\n",
"- Inflammation\n",
"- Hyperplasia / tissue density\n",
"- Best-guess proxies for \"generic degeneration\""
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Image Processing"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/graphics/sheep.jpg\"></img>"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/graphics/processed.jpg\"></img>"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"The Challenge"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"source": [
"**Information extraction must be**\n",
"- automagical - no operator input\n",
"- reasonably quick - restricted computing time\n",
"- robust - invariant to slicing, staining, field-related variation \n",
"- unbiased - same algorithms for everyone"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/graphics/gif.gif\"></img>"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Structural and Textural Measures"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"- characteristic **scale** of sinusoid widths\n",
"- **directional** amplitude of preferred sinusoid alignment\n",
"- **tissue to sinusoid** ratio\n",
"- **count** of inflammatory foci per image\n",
"- **mean size** of inflammatory foci per image\n",
"- information **entropy** of sinusoid distribution\n",
"- **lacunarity** ( clustering ) of sinusoids"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Exploratory Analysis"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"by individual"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/BDHyperplasia/lm-0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/PortalInflammation/lm-0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/PortalInflammation/lm-1.png\" />"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Exploratory Analysis"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"controlled for age / cohort"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/PortalInflammation/mm_0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/BDHyperplasia/mm_0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/BDHyperplasia/mm_1.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/TawfikTotal/mm_0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/Fibrosis/mm_0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/PortalInflammation/mm_0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/Hindleg/mm_0.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/Weight/mm_0.png\" />"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Further analysis"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Age or cohort effect ?"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/BDHyperplasia/mm_coefs_color_E.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/BDHyperplasia/mm_coefs_color_CES.png\" />"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/regressions/BDHyperplasia/mm_coefs_color_RES.png\" />"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Conclusions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- our image measures capture **relevant** and **useful** information\n",
"- a number of correlations can be **explained** biologically\n",
"- underlying **structure** in the data needs thought\n",
"- still no **map** from image or histological measures to condition of individual"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"Future directions"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Further exploration of the dataset"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "-"
}
},
"source": [
"- 145 sheep ( 89 females )\n",
"- 12 age classes\n",
"- potential redundancy in various measures"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"source": [
"- 4460 entries across 27 variables\n",
"- 3330 with full image and histological information\n",
"- 1196 for which **complete** information is available"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"More data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- nutritional information\n",
"- immunity data"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"Narrow-field images"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- 12536 images\n",
"- spatial distribution of nuclei"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"<img src=\"figures/graphics/10x.png\" width=100%></src>"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"With thanks to"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Romain Garnier\n",
"\n",
"Andrea Graham\n",
"\n",
"Tawfik Aboellail (CSU)\n",
"\n",
"Bryan Grenfell\n"
]
}
],
"metadata": {}
}
]
}