|
a |
|
b/talk/GrahamGroup.tex |
|
|
1 |
|
|
|
2 |
% Default to the notebook output style |
|
|
3 |
|
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
|
7 |
% Inherit from the specified cell style. |
|
|
8 |
|
|
|
9 |
|
|
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
\documentclass{article} |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
|
17 |
\usepackage{graphicx} % Used to insert images |
|
|
18 |
\usepackage{adjustbox} % Used to constrain images to a maximum size |
|
|
19 |
\usepackage{color} % Allow colors to be defined |
|
|
20 |
\usepackage{enumerate} % Needed for markdown enumerations to work |
|
|
21 |
\usepackage{geometry} % Used to adjust the document margins |
|
|
22 |
\usepackage{amsmath} % Equations |
|
|
23 |
\usepackage{amssymb} % Equations |
|
|
24 |
\usepackage[mathletters]{ucs} % Extended unicode (utf-8) support |
|
|
25 |
\usepackage[utf8x]{inputenc} % Allow utf-8 characters in the tex document |
|
|
26 |
\usepackage{fancyvrb} % verbatim replacement that allows latex |
|
|
27 |
\usepackage{grffile} % extends the file name processing of package graphics |
|
|
28 |
% to support a larger range |
|
|
29 |
% The hyperref package gives us a pdf with properly built |
|
|
30 |
% internal navigation ('pdf bookmarks' for the table of contents, |
|
|
31 |
% internal cross-reference links, web links for URLs, etc.) |
|
|
32 |
\usepackage{hyperref} |
|
|
33 |
\usepackage{longtable} % longtable support required by pandoc >1.10 |
|
|
34 |
\usepackage{booktabs} % table support for pandoc > 1.12.2 |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
|
39 |
\definecolor{orange}{cmyk}{0,0.4,0.8,0.2} |
|
|
40 |
\definecolor{darkorange}{rgb}{.71,0.21,0.01} |
|
|
41 |
\definecolor{darkgreen}{rgb}{.12,.54,.11} |
|
|
42 |
\definecolor{myteal}{rgb}{.26, .44, .56} |
|
|
43 |
\definecolor{gray}{gray}{0.45} |
|
|
44 |
\definecolor{lightgray}{gray}{.95} |
|
|
45 |
\definecolor{mediumgray}{gray}{.8} |
|
|
46 |
\definecolor{inputbackground}{rgb}{.95, .95, .85} |
|
|
47 |
\definecolor{outputbackground}{rgb}{.95, .95, .95} |
|
|
48 |
\definecolor{traceback}{rgb}{1, .95, .95} |
|
|
49 |
% ansi colors |
|
|
50 |
\definecolor{red}{rgb}{.6,0,0} |
|
|
51 |
\definecolor{green}{rgb}{0,.65,0} |
|
|
52 |
\definecolor{brown}{rgb}{0.6,0.6,0} |
|
|
53 |
\definecolor{blue}{rgb}{0,.145,.698} |
|
|
54 |
\definecolor{purple}{rgb}{.698,.145,.698} |
|
|
55 |
\definecolor{cyan}{rgb}{0,.698,.698} |
|
|
56 |
\definecolor{lightgray}{gray}{0.5} |
|
|
57 |
|
|
|
58 |
% bright ansi colors |
|
|
59 |
\definecolor{darkgray}{gray}{0.25} |
|
|
60 |
\definecolor{lightred}{rgb}{1.0,0.39,0.28} |
|
|
61 |
\definecolor{lightgreen}{rgb}{0.48,0.99,0.0} |
|
|
62 |
\definecolor{lightblue}{rgb}{0.53,0.81,0.92} |
|
|
63 |
\definecolor{lightpurple}{rgb}{0.87,0.63,0.87} |
|
|
64 |
\definecolor{lightcyan}{rgb}{0.5,1.0,0.83} |
|
|
65 |
|
|
|
66 |
% commands and environments needed by pandoc snippets |
|
|
67 |
% extracted from the output of `pandoc -s` |
|
|
68 |
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}} |
|
|
69 |
% Add ',fontsize=\small' for more characters per line |
|
|
70 |
\newenvironment{Shaded}{}{} |
|
|
71 |
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}} |
|
|
72 |
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{{#1}}} |
|
|
73 |
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}} |
|
|
74 |
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}} |
|
|
75 |
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}} |
|
|
76 |
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}} |
|
|
77 |
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}} |
|
|
78 |
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{{#1}}}} |
|
|
79 |
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{{#1}}} |
|
|
80 |
\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}} |
|
|
81 |
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{{#1}}} |
|
|
82 |
\newcommand{\RegionMarkerTok}[1]{{#1}} |
|
|
83 |
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}} |
|
|
84 |
\newcommand{\NormalTok}[1]{{#1}} |
|
|
85 |
|
|
|
86 |
% Define a nice break command that doesn't care if a line doesn't already |
|
|
87 |
% exist. |
|
|
88 |
\def\br{\hspace*{\fill} \\* } |
|
|
89 |
% Math Jax compatability definitions |
|
|
90 |
\def\gt{>} |
|
|
91 |
\def\lt{<} |
|
|
92 |
% Document parameters |
|
|
93 |
\title{GrahamGroup} |
|
|
94 |
|
|
|
95 |
|
|
|
96 |
|
|
|
97 |
|
|
|
98 |
% Pygments definitions |
|
|
99 |
|
|
|
100 |
\makeatletter |
|
|
101 |
\def\PY@reset{\let\PY@it=\relax \let\PY@bf=\relax% |
|
|
102 |
\let\PY@ul=\relax \let\PY@tc=\relax% |
|
|
103 |
\let\PY@bc=\relax \let\PY@ff=\relax} |
|
|
104 |
\def\PY@tok#1{\csname PY@tok@#1\endcsname} |
|
|
105 |
\def\PY@toks#1+{\ifx\relax#1\empty\else% |
|
|
106 |
\PY@tok{#1}\expandafter\PY@toks\fi} |
|
|
107 |
\def\PY@do#1{\PY@bc{\PY@tc{\PY@ul{% |
|
|
108 |
\PY@it{\PY@bf{\PY@ff{#1}}}}}}} |
|
|
109 |
\def\PY#1#2{\PY@reset\PY@toks#1+\relax+\PY@do{#2}} |
|
|
110 |
|
|
|
111 |
\expandafter\def\csname PY@tok@gd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.00,0.00}{##1}}} |
|
|
112 |
\expandafter\def\csname PY@tok@gu\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.50,0.00,0.50}{##1}}} |
|
|
113 |
\expandafter\def\csname PY@tok@gt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.27,0.87}{##1}}} |
|
|
114 |
\expandafter\def\csname PY@tok@gs\endcsname{\let\PY@bf=\textbf} |
|
|
115 |
\expandafter\def\csname PY@tok@gr\endcsname{\def\PY@tc##1{\textcolor[rgb]{1.00,0.00,0.00}{##1}}} |
|
|
116 |
\expandafter\def\csname PY@tok@cm\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} |
|
|
117 |
\expandafter\def\csname PY@tok@vg\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} |
|
|
118 |
\expandafter\def\csname PY@tok@m\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} |
|
|
119 |
\expandafter\def\csname PY@tok@mh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} |
|
|
120 |
\expandafter\def\csname PY@tok@go\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.53,0.53}{##1}}} |
|
|
121 |
\expandafter\def\csname PY@tok@ge\endcsname{\let\PY@it=\textit} |
|
|
122 |
\expandafter\def\csname PY@tok@vc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} |
|
|
123 |
\expandafter\def\csname PY@tok@il\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} |
|
|
124 |
\expandafter\def\csname PY@tok@cs\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} |
|
|
125 |
\expandafter\def\csname PY@tok@cp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.74,0.48,0.00}{##1}}} |
|
|
126 |
\expandafter\def\csname PY@tok@gi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.63,0.00}{##1}}} |
|
|
127 |
\expandafter\def\csname PY@tok@gh\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}} |
|
|
128 |
\expandafter\def\csname PY@tok@ni\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.60,0.60,0.60}{##1}}} |
|
|
129 |
\expandafter\def\csname PY@tok@nl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.63,0.00}{##1}}} |
|
|
130 |
\expandafter\def\csname PY@tok@nn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}} |
|
|
131 |
\expandafter\def\csname PY@tok@no\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.00,0.00}{##1}}} |
|
|
132 |
\expandafter\def\csname PY@tok@na\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.49,0.56,0.16}{##1}}} |
|
|
133 |
\expandafter\def\csname PY@tok@nb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
134 |
\expandafter\def\csname PY@tok@nc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}} |
|
|
135 |
\expandafter\def\csname PY@tok@nd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}} |
|
|
136 |
\expandafter\def\csname PY@tok@ne\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.82,0.25,0.23}{##1}}} |
|
|
137 |
\expandafter\def\csname PY@tok@nf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}} |
|
|
138 |
\expandafter\def\csname PY@tok@si\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}} |
|
|
139 |
\expandafter\def\csname PY@tok@s2\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} |
|
|
140 |
\expandafter\def\csname PY@tok@vi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} |
|
|
141 |
\expandafter\def\csname PY@tok@nt\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
142 |
\expandafter\def\csname PY@tok@nv\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} |
|
|
143 |
\expandafter\def\csname PY@tok@s1\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} |
|
|
144 |
\expandafter\def\csname PY@tok@sh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} |
|
|
145 |
\expandafter\def\csname PY@tok@sc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} |
|
|
146 |
\expandafter\def\csname PY@tok@sx\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
147 |
\expandafter\def\csname PY@tok@bp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
148 |
\expandafter\def\csname PY@tok@c1\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} |
|
|
149 |
\expandafter\def\csname PY@tok@kc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
150 |
\expandafter\def\csname PY@tok@c\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}} |
|
|
151 |
\expandafter\def\csname PY@tok@mf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} |
|
|
152 |
\expandafter\def\csname PY@tok@err\endcsname{\def\PY@bc##1{\setlength{\fboxsep}{0pt}\fcolorbox[rgb]{1.00,0.00,0.00}{1,1,1}{\strut ##1}}} |
|
|
153 |
\expandafter\def\csname PY@tok@kd\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
154 |
\expandafter\def\csname PY@tok@ss\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}} |
|
|
155 |
\expandafter\def\csname PY@tok@sr\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}} |
|
|
156 |
\expandafter\def\csname PY@tok@mo\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} |
|
|
157 |
\expandafter\def\csname PY@tok@kn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
158 |
\expandafter\def\csname PY@tok@mi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} |
|
|
159 |
\expandafter\def\csname PY@tok@gp\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}} |
|
|
160 |
\expandafter\def\csname PY@tok@o\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}} |
|
|
161 |
\expandafter\def\csname PY@tok@kr\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
162 |
\expandafter\def\csname PY@tok@s\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} |
|
|
163 |
\expandafter\def\csname PY@tok@kp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
164 |
\expandafter\def\csname PY@tok@w\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.73,0.73}{##1}}} |
|
|
165 |
\expandafter\def\csname PY@tok@kt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.69,0.00,0.25}{##1}}} |
|
|
166 |
\expandafter\def\csname PY@tok@ow\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}} |
|
|
167 |
\expandafter\def\csname PY@tok@sb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} |
|
|
168 |
\expandafter\def\csname PY@tok@k\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}} |
|
|
169 |
\expandafter\def\csname PY@tok@se\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.13}{##1}}} |
|
|
170 |
\expandafter\def\csname PY@tok@sd\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}} |
|
|
171 |
|
|
|
172 |
\def\PYZbs{\char`\\} |
|
|
173 |
\def\PYZus{\char`\_} |
|
|
174 |
\def\PYZob{\char`\{} |
|
|
175 |
\def\PYZcb{\char`\}} |
|
|
176 |
\def\PYZca{\char`\^} |
|
|
177 |
\def\PYZam{\char`\&} |
|
|
178 |
\def\PYZlt{\char`\<} |
|
|
179 |
\def\PYZgt{\char`\>} |
|
|
180 |
\def\PYZsh{\char`\#} |
|
|
181 |
\def\PYZpc{\char`\%} |
|
|
182 |
\def\PYZdl{\char`\$} |
|
|
183 |
\def\PYZhy{\char`\-} |
|
|
184 |
\def\PYZsq{\char`\'} |
|
|
185 |
\def\PYZdq{\char`\"} |
|
|
186 |
\def\PYZti{\char`\~} |
|
|
187 |
% for compatibility with earlier versions |
|
|
188 |
\def\PYZat{@} |
|
|
189 |
\def\PYZlb{[} |
|
|
190 |
\def\PYZrb{]} |
|
|
191 |
\makeatother |
|
|
192 |
|
|
|
193 |
|
|
|
194 |
% Exact colors from NB |
|
|
195 |
\definecolor{incolor}{rgb}{0.0, 0.0, 0.5} |
|
|
196 |
\definecolor{outcolor}{rgb}{0.545, 0.0, 0.0} |
|
|
197 |
|
|
|
198 |
|
|
|
199 |
|
|
|
200 |
|
|
|
201 |
% Prevent overflowing lines due to hard-to-break entities |
|
|
202 |
\sloppy |
|
|
203 |
% Setup hyperref package |
|
|
204 |
\hypersetup{ |
|
|
205 |
breaklinks=true, % so long urls are correctly broken across lines |
|
|
206 |
colorlinks=true, |
|
|
207 |
urlcolor=blue, |
|
|
208 |
linkcolor=darkorange, |
|
|
209 |
citecolor=darkgreen, |
|
|
210 |
} |
|
|
211 |
% Slightly bigger margins than the latex defaults |
|
|
212 |
|
|
|
213 |
\geometry{verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in} |
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
\begin{document} |
|
|
218 |
|
|
|
219 |
|
|
|
220 |
\maketitle |
|
|
221 |
|
|
|
222 |
|
|
|
223 |
|
|
|
224 |
|
|
|
225 |
|
|
|
226 |
\section{Robust Extraction of Quantitative Information from Histology Images} |
|
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
|
230 |
\paragraph{Quentin Caudron Romain Garnier \emph{with Bryan Grenfell and Andrea |
|
|
231 |
Graham}} |
|
|
232 |
|
|
|
233 |
|
|
|
234 |
|
|
|
235 |
\subsubsection{Outline} |
|
|
236 |
|
|
|
237 |
|
|
|
238 |
\begin{itemize} |
|
|
239 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
240 |
\item |
|
|
241 |
Image processing |
|
|
242 |
\item |
|
|
243 |
Extracted measures |
|
|
244 |
\item |
|
|
245 |
Preliminary analysis |
|
|
246 |
\item |
|
|
247 |
Future directions |
|
|
248 |
\end{itemize} |
|
|
249 |
|
|
|
250 |
\begin{enumerate} |
|
|
251 |
\def\labelenumi{\arabic{enumi}.} |
|
|
252 |
\setcounter{enumi}{3} |
|
|
253 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
254 |
\item |
|
|
255 |
Age as random effect \textless{}--- |
|
|
256 |
\end{enumerate} |
|
|
257 |
|
|
|
258 |
{[}``interface\_hepatitis'', ``confluent\_necrosis'', |
|
|
259 |
``portal\_inflammation'', ``ln\_ap\_ri''{]} |
|
|
260 |
|
|
|
261 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
262 |
{\color{incolor}In [{\color{incolor}3}]:} \PY{k}{def} \PY{n+nf}{normalise}\PY{p}{(}\PY{n}{df}\PY{p}{,} \PY{n}{skip} \PY{o}{=} \PY{p}{[}\PY{p}{]}\PY{p}{)} \PY{p}{:} |
|
|
263 |
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n}{df}\PY{o}{.}\PY{n}{columns} \PY{p}{:} |
|
|
264 |
\PY{k}{if} \PY{n}{i} \PY{o+ow}{not} \PY{o+ow}{in} \PY{n}{skip} \PY{p}{:} |
|
|
265 |
\PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]} \PY{o}{\PYZhy{}}\PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{.}\PY{n}{mean}\PY{p}{(}\PY{p}{)} |
|
|
266 |
\PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]} \PY{o}{/}\PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{.}\PY{n}{std}\PY{p}{(}\PY{p}{)} |
|
|
267 |
\PY{k}{return} \PY{n}{df} |
|
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
|
271 |
|
|
|
272 |
|
|
|
273 |
|
|
|
274 |
\PY{k}{def} \PY{n+nf}{rescale}\PY{p}{(}\PY{n}{df}\PY{p}{,} \PY{n}{skip} \PY{o}{=} \PY{p}{[}\PY{p}{]}\PY{p}{)} \PY{p}{:} |
|
|
275 |
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n}{df}\PY{o}{.}\PY{n}{columns} \PY{p}{:} |
|
|
276 |
\PY{k}{if} \PY{n}{i} \PY{o+ow}{not} \PY{o+ow}{in} \PY{n}{skip} \PY{p}{:} |
|
|
277 |
\PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]} \PY{o}{\PYZhy{}}\PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{.}\PY{n}{min}\PY{p}{(}\PY{p}{)} |
|
|
278 |
\PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]} \PY{o}{/}\PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{.}\PY{n}{max}\PY{p}{(}\PY{p}{)} |
|
|
279 |
\PY{k}{return} \PY{n}{df} |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
|
283 |
\PY{c}{\PYZsh{} Remove a layer from a list} |
|
|
284 |
\PY{k}{def} \PY{n+nf}{delayer}\PY{p}{(}\PY{n}{m}\PY{p}{)} \PY{p}{:} |
|
|
285 |
\PY{n}{out} \PY{o}{=} \PY{p}{[}\PY{p}{]} |
|
|
286 |
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n}{m} \PY{p}{:} |
|
|
287 |
\PY{k}{if} \PY{n+nb}{isinstance}\PY{p}{(}\PY{n}{i}\PY{p}{,} \PY{n+nb}{list}\PY{p}{)} \PY{p}{:} |
|
|
288 |
\PY{k}{for} \PY{n}{j} \PY{o+ow}{in} \PY{n}{i} \PY{p}{:} |
|
|
289 |
\PY{n}{out}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{j}\PY{p}{)} |
|
|
290 |
\PY{k}{else} \PY{p}{:} |
|
|
291 |
\PY{n}{out}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{i}\PY{p}{)} |
|
|
292 |
\PY{k}{return} \PY{n}{out} |
|
|
293 |
|
|
|
294 |
|
|
|
295 |
|
|
|
296 |
|
|
|
297 |
|
|
|
298 |
|
|
|
299 |
|
|
|
300 |
\PY{c}{\PYZsh{} Remove all layers from a list} |
|
|
301 |
\PY{k}{def} \PY{n+nf}{flatten}\PY{p}{(}\PY{n}{m}\PY{p}{)} \PY{p}{:} |
|
|
302 |
\PY{n}{out} \PY{o}{=} \PY{n}{m}\PY{p}{[}\PY{p}{:}\PY{p}{]} |
|
|
303 |
|
|
|
304 |
\PY{k}{while} \PY{n}{out} \PY{o}{!=} \PY{n}{delayer}\PY{p}{(}\PY{n}{out}\PY{p}{)} \PY{p}{:} |
|
|
305 |
\PY{n}{out} \PY{o}{=} \PY{n}{delayer}\PY{p}{(}\PY{n}{out}\PY{p}{)} |
|
|
306 |
|
|
|
307 |
\PY{k}{return} \PY{n}{out} |
|
|
308 |
|
|
|
309 |
|
|
|
310 |
|
|
|
311 |
|
|
|
312 |
|
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
|
316 |
\PY{c}{\PYZsh{} Generate all combinations of objects in a list} |
|
|
317 |
\PY{k}{def} \PY{n+nf}{combinatorial}\PY{p}{(}\PY{n}{l}\PY{p}{)} \PY{p}{:} |
|
|
318 |
\PY{n}{out} \PY{o}{=} \PY{p}{[}\PY{p}{]} |
|
|
319 |
|
|
|
320 |
\PY{k}{for} \PY{n}{numel} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{l}\PY{p}{)}\PY{p}{)} \PY{p}{:} |
|
|
321 |
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n}{itertools}\PY{o}{.}\PY{n}{combinations}\PY{p}{(}\PY{n}{l}\PY{p}{,} \PY{n}{numel}\PY{o}{+}\PY{l+m+mi}{1}\PY{p}{)} \PY{p}{:} |
|
|
322 |
\PY{n}{out}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n+nb}{list}\PY{p}{(}\PY{n}{i}\PY{p}{)}\PY{p}{)} |
|
|
323 |
|
|
|
324 |
\PY{k}{return} \PY{n}{out} |
|
|
325 |
|
|
|
326 |
|
|
|
327 |
|
|
|
328 |
|
|
|
329 |
|
|
|
330 |
|
|
|
331 |
|
|
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
|
335 |
\PY{k}{def} \PY{n+nf}{pcaplot}\PY{p}{(}\PY{n}{df}\PY{p}{)} \PY{p}{:} |
|
|
336 |
|
|
|
337 |
\PY{c}{\PYZsh{} PCA} |
|
|
338 |
\PY{n}{pca} \PY{o}{=} \PY{n}{decomposition}\PY{o}{.}\PY{n}{PCA}\PY{p}{(}\PY{n}{whiten} \PY{o}{=} \PY{n+nb+bp}{True}\PY{p}{)} |
|
|
339 |
\PY{n}{pca}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{n}{df}\PY{p}{)} |
|
|
340 |
\PY{n}{p1} \PY{o}{=} \PY{n}{pca}\PY{o}{.}\PY{n}{components\PYZus{}}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]} \PY{o}{/} \PY{n}{np}\PY{o}{.}\PY{n}{abs}\PY{p}{(}\PY{n}{pca}\PY{o}{.}\PY{n}{components\PYZus{}}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{max}\PY{p}{(}\PY{p}{)} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{/}\PY{l+m+mi}{2} |
|
|
341 |
\PY{n}{p2} \PY{o}{=} \PY{n}{pca}\PY{o}{.}\PY{n}{components\PYZus{}}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{]} \PY{o}{/} \PY{n}{np}\PY{o}{.}\PY{n}{abs}\PY{p}{(}\PY{n}{pca}\PY{o}{.}\PY{n}{components\PYZus{}}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{max}\PY{p}{(}\PY{p}{)} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{/}\PY{l+m+mi}{2} |
|
|
342 |
|
|
|
343 |
\PY{c}{\PYZsh{} Normalise} |
|
|
344 |
\PY{n}{norms} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{max}\PY{p}{(}\PY{p}{[}\PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{p}{(}\PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n+nb}{zip}\PY{p}{(}\PY{n}{p1}\PY{p}{,} \PY{n}{p2}\PY{p}{)}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{.}\PY{n}{sum}\PY{p}{(}\PY{p}{)}\PY{p}{)} \PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{p1}\PY{p}{)}\PY{p}{)}\PY{p}{]}\PY{p}{)} |
|
|
345 |
\PY{n}{c} \PY{o}{=} \PY{n}{plt}\PY{o}{.}\PY{n}{Circle}\PY{p}{(} \PY{p}{(}\PY{l+m+mi}{0}\PY{p}{,} \PY{l+m+mi}{0}\PY{p}{)}\PY{p}{,} \PY{n}{radius} \PY{o}{=} \PY{l+m+mi}{1}\PY{p}{,} \PY{n}{alpha} \PY{o}{=} \PY{l+m+mf}{0.2}\PY{p}{)} |
|
|
346 |
\PY{n}{plt}\PY{o}{.}\PY{n}{axes}\PY{p}{(}\PY{n}{aspect} \PY{o}{=} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
347 |
\PY{n}{plt}\PY{o}{.}\PY{n}{gca}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{add\PYZus{}artist}\PY{p}{(}\PY{n}{c}\PY{p}{)} |
|
|
348 |
|
|
|
349 |
\PY{n}{plt}\PY{o}{.}\PY{n}{scatter}\PY{p}{(}\PY{n}{p1} \PY{o}{/} \PY{n}{norms}\PY{p}{,} \PY{n}{p2} \PY{o}{/} \PY{n}{norms}\PY{p}{)} |
|
|
350 |
\PY{n}{plt}\PY{o}{.}\PY{n}{xlim}\PY{p}{(}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)} |
|
|
351 |
\PY{n}{plt}\PY{o}{.}\PY{n}{ylim}\PY{p}{(}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)} |
|
|
352 |
|
|
|
353 |
\PY{k}{for} \PY{n}{i}\PY{p}{,} \PY{n}{text} \PY{o+ow}{in} \PY{n+nb}{enumerate}\PY{p}{(}\PY{n}{df}\PY{o}{.}\PY{n}{columns}\PY{p}{)} \PY{p}{:} |
|
|
354 |
\PY{n}{plt}\PY{o}{.}\PY{n}{annotate}\PY{p}{(}\PY{n}{text}\PY{p}{,} \PY{n}{xy} \PY{o}{=} \PY{p}{[}\PY{n}{p1}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{,} \PY{n}{p2}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{]}\PY{p}{)} |
|
|
355 |
|
|
|
356 |
\PY{n}{plt}\PY{o}{.}\PY{n}{tight\PYZus{}layout}\PY{p}{(}\PY{p}{)} |
|
|
357 |
|
|
|
358 |
|
|
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
|
362 |
|
|
|
363 |
|
|
|
364 |
|
|
|
365 |
|
|
|
366 |
|
|
|
367 |
|
|
|
368 |
\PY{k}{def} \PY{n+nf}{test\PYZus{}all\PYZus{}linear}\PY{p}{(}\PY{n}{df}\PY{p}{,} \PY{n}{y}\PY{p}{,} \PY{n}{x}\PY{p}{,} \PY{n}{return\PYZus{}significant} \PY{o}{=} \PY{n+nb+bp}{False}\PY{p}{,} \PY{n}{group} \PY{o}{=} \PY{n+nb+bp}{None}\PY{p}{)} \PY{p}{:} |
|
|
369 |
|
|
|
370 |
\PY{c}{\PYZsh{} All possible combinations of independent variables} |
|
|
371 |
\PY{n}{independent} \PY{o}{=} \PY{n}{combinatorial}\PY{p}{(}\PY{n}{x}\PY{p}{)} |
|
|
372 |
|
|
|
373 |
\PY{n}{fits} \PY{o}{=} \PY{p}{\PYZob{}}\PY{p}{\PYZcb{}} |
|
|
374 |
\PY{n}{pval} \PY{o}{=} \PY{p}{\PYZob{}}\PY{p}{\PYZcb{}} |
|
|
375 |
\PY{n}{linmodels} \PY{o}{=} \PY{p}{\PYZob{}}\PY{p}{\PYZcb{}} |
|
|
376 |
\PY{n}{qsum} \PY{o}{=} \PY{p}{\PYZob{}}\PY{p}{\PYZcb{}} |
|
|
377 |
\PY{n}{aic} \PY{o}{=} \PY{p}{\PYZob{}}\PY{p}{\PYZcb{}} |
|
|
378 |
|
|
|
379 |
\PY{c}{\PYZsh{} For all dependent variables, one at a time} |
|
|
380 |
\PY{k}{for} \PY{n}{dependent} \PY{o+ow}{in} \PY{n}{y} \PY{p}{:} |
|
|
381 |
|
|
|
382 |
\PY{k}{print} \PY{l+s}{\PYZdq{}}\PY{l+s}{Fitting for }\PY{l+s+si}{\PYZpc{}s}\PY{l+s}{.}\PY{l+s}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{n}{dependent} |
|
|
383 |
|
|
|
384 |
\PY{c}{\PYZsh{} For all combinations of independent variables} |
|
|
385 |
\PY{k}{for} \PY{n}{covariate} \PY{o+ow}{in} \PY{n}{independent} \PY{p}{:} |
|
|
386 |
|
|
|
387 |
\PY{c}{\PYZsh{} Standard mixed model} |
|
|
388 |
\PY{k}{if} \PY{n}{group} \PY{o+ow}{is} \PY{n+nb+bp}{None} \PY{p}{:} |
|
|
389 |
|
|
|
390 |
\PY{c}{\PYZsh{} Fit a linear model} |
|
|
391 |
\PY{n}{subset} \PY{o}{=} \PY{n}{delayer}\PY{p}{(}\PY{p}{[}\PY{n}{covariate}\PY{p}{,} \PY{n}{dependent}\PY{p}{]}\PY{p}{)} |
|
|
392 |
\PY{n}{df2} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{n}{delayer}\PY{p}{(}\PY{n}{subset}\PY{p}{)}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
393 |
\PY{n}{df2}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df2}\PY{p}{)}\PY{p}{)} |
|
|
394 |
|
|
|
395 |
\PY{n}{ols} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df2}\PY{p}{[}\PY{n}{dependent}\PY{p}{]}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df2}\PY{p}{[}\PY{n}{delayer}\PY{p}{(}\PY{p}{[}\PY{n}{covariate}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{)}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)} |
|
|
396 |
|
|
|
397 |
\PY{c}{\PYZsh{} Save the results} |
|
|
398 |
\PY{k}{if} \PY{p}{(}\PY{n}{return\PYZus{}significant} \PY{o+ow}{and} \PY{n}{ols}\PY{o}{.}\PY{n}{f\PYZus{}pvalue} \PY{o}{\PYZlt{}} \PY{l+m+mf}{0.05}\PY{p}{)} \PY{o+ow}{or} \PY{p}{(}\PY{o+ow}{not} \PY{n}{return\PYZus{}significant}\PY{p}{)} \PY{p}{:} |
|
|
399 |
\PY{n}{linmodels}\PY{o}{.}\PY{n}{setdefault}\PY{p}{(}\PY{n}{dependent}\PY{p}{,} \PY{p}{[}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{ols}\PY{p}{)} |
|
|
400 |
\PY{n}{fits}\PY{o}{.}\PY{n}{setdefault}\PY{p}{(}\PY{n}{dependent}\PY{p}{,} \PY{p}{[}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{ols}\PY{o}{.}\PY{n}{rsquared}\PY{p}{)} |
|
|
401 |
\PY{n}{pval}\PY{o}{.}\PY{n}{setdefault}\PY{p}{(}\PY{n}{dependent}\PY{p}{,} \PY{p}{[}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{ols}\PY{o}{.}\PY{n}{f\PYZus{}pvalue}\PY{p}{)} |
|
|
402 |
\PY{n}{aic}\PY{o}{.}\PY{n}{setdefault}\PY{p}{(}\PY{n}{dependent}\PY{p}{,} \PY{p}{[}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{ols}\PY{o}{.}\PY{n}{aic}\PY{p}{)} |
|
|
403 |
|
|
|
404 |
|
|
|
405 |
\PY{c}{\PYZsh{} Mixed effects model} |
|
|
406 |
\PY{k}{else} \PY{p}{:} |
|
|
407 |
\PY{n}{subset} \PY{o}{=} \PY{n}{delayer}\PY{p}{(}\PY{p}{[}\PY{n}{covariate}\PY{p}{,} \PY{n}{dependent}\PY{p}{,} \PY{n}{group}\PY{p}{]}\PY{p}{)} |
|
|
408 |
\PY{n}{df2} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{n}{delayer}\PY{p}{(}\PY{n}{subset}\PY{p}{)}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
409 |
|
|
|
410 |
\PY{c}{\PYZsh{} Fit a mixed effects model} |
|
|
411 |
\PY{n}{ols} \PY{o}{=} \PY{n}{MixedLM}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df2}\PY{p}{[}\PY{n}{dependent}\PY{p}{]}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df2}\PY{p}{[}\PY{n}{covariate}\PY{p}{]}\PY{p}{,} \PY{n}{groups} \PY{o}{=} \PY{n}{df2}\PY{p}{[}\PY{n}{group}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)} |
|
|
412 |
|
|
|
413 |
\PY{c}{\PYZsh{} Calculate AIC} |
|
|
414 |
\PY{n}{linmodels}\PY{o}{.}\PY{n}{setdefault}\PY{p}{(}\PY{n}{dependent}\PY{p}{,} \PY{p}{[}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{ols}\PY{p}{)} |
|
|
415 |
\PY{n}{fits}\PY{o}{.}\PY{n}{setdefault}\PY{p}{(}\PY{n}{dependent}\PY{p}{,} \PY{p}{[}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{l+m+mi}{2} \PY{o}{*} \PY{p}{(}\PY{n}{ols}\PY{o}{.}\PY{n}{k\PYZus{}fe} \PY{o}{+} \PY{l+m+mi}{1}\PY{p}{)} \PY{o}{\PYZhy{}} \PY{l+m+mi}{2} \PY{o}{*} \PY{n}{ols}\PY{o}{.}\PY{n}{llf}\PY{p}{)} |
|
|
416 |
\PY{n}{pval}\PY{o}{.}\PY{n}{setdefault}\PY{p}{(}\PY{n}{dependent}\PY{p}{,} \PY{p}{[}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{append}\PY{p}{(}\PY{n}{ols}\PY{o}{.}\PY{n}{pvalues}\PY{p}{)} |
|
|
417 |
|
|
|
418 |
\PY{k}{if} \PY{n}{group} \PY{o+ow}{is} \PY{o+ow}{not} \PY{n+nb+bp}{None} \PY{p}{:} |
|
|
419 |
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n}{y} \PY{p}{:} |
|
|
420 |
\PY{n}{f} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n}{fits}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)} |
|
|
421 |
\PY{n}{models} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n}{linmodels}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)} |
|
|
422 |
\PY{n}{idx} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{where}\PY{p}{(}\PY{n}{f} \PY{o}{\PYZhy{}} \PY{n}{f}\PY{o}{.}\PY{n}{min}\PY{p}{(}\PY{p}{)} \PY{o}{\PYZlt{}}\PY{o}{=} \PY{l+m+mi}{2}\PY{p}{)}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]} |
|
|
423 |
\PY{n}{bestmodelDoF} \PY{o}{=} \PY{p}{[}\PY{n}{j}\PY{o}{.}\PY{n}{k\PYZus{}fe} \PY{k}{for} \PY{n}{j} \PY{o+ow}{in} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{n}{linmodels}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)}\PY{p}{[}\PY{n}{idx}\PY{p}{]}\PY{p}{]} |
|
|
424 |
\PY{n}{bestmodels} \PY{o}{=} \PY{p}{[}\PY{n}{idx}\PY{p}{[}\PY{n}{j}\PY{p}{]} \PY{k}{for} \PY{n}{j} \PY{o+ow}{in} \PY{n}{np}\PY{o}{.}\PY{n}{where}\PY{p}{(}\PY{n}{bestmodelDoF} \PY{o}{==} \PY{n}{np}\PY{o}{.}\PY{n}{min}\PY{p}{(}\PY{n}{bestmodelDoF}\PY{p}{)}\PY{p}{)}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{]} |
|
|
425 |
\PY{n}{qsum}\PY{p}{[}\PY{n}{i}\PY{p}{]} \PY{o}{=} \PY{n}{models}\PY{p}{[}\PY{n}{idx}\PY{p}{[}\PY{n}{np}\PY{o}{.}\PY{n}{where}\PY{p}{(}\PY{n}{f}\PY{p}{[}\PY{n}{bestmodels}\PY{p}{]} \PY{o}{==} \PY{n}{np}\PY{o}{.}\PY{n}{min}\PY{p}{(}\PY{n}{f}\PY{p}{[}\PY{n}{bestmodels}\PY{p}{]}\PY{p}{)}\PY{p}{)}\PY{p}{]}\PY{p}{]} |
|
|
426 |
|
|
|
427 |
|
|
|
428 |
\PY{k}{return} \PY{n}{linmodels}\PY{p}{,} \PY{n}{fits}\PY{p}{,} \PY{n}{pval}\PY{p}{,} \PY{n}{qsum} |
|
|
429 |
|
|
|
430 |
\PY{k}{return} \PY{n}{linmodels}\PY{p}{,} \PY{n}{fits}\PY{p}{,} \PY{n}{pval}\PY{p}{,} \PY{n}{aic} |
|
|
431 |
|
|
|
432 |
|
|
|
433 |
|
|
|
434 |
|
|
|
435 |
|
|
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
|
439 |
|
|
|
440 |
|
|
|
441 |
|
|
|
442 |
|
|
|
443 |
|
|
|
444 |
|
|
|
445 |
|
|
|
446 |
|
|
|
447 |
|
|
|
448 |
|
|
|
449 |
\PY{k}{def} \PY{n+nf}{summary}\PY{p}{(}\PY{n}{models}\PY{p}{)} \PY{p}{:} |
|
|
450 |
|
|
|
451 |
\PY{c}{\PYZsh{} Generate list of everything} |
|
|
452 |
\PY{n}{r2} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}\PY{n}{m}\PY{o}{.}\PY{n}{r2} \PY{k}{for} \PY{n}{dependent} \PY{o+ow}{in} \PY{n}{models}\PY{o}{.}\PY{n}{keys}\PY{p}{(}\PY{p}{)} \PY{k}{for} \PY{n}{m} \PY{o+ow}{in} \PY{n}{models}\PY{p}{[}\PY{n}{dependent}\PY{p}{]}\PY{p}{]}\PY{p}{)} |
|
|
453 |
\PY{n}{p} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}\PY{n}{m}\PY{o}{.}\PY{n}{f\PYZus{}stat}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{p\PYZhy{}value}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{k}{for} \PY{n}{dependent} \PY{o+ow}{in} \PY{n}{models}\PY{o}{.}\PY{n}{keys}\PY{p}{(}\PY{p}{)} \PY{k}{for} \PY{n}{m} \PY{o+ow}{in} \PY{n}{models}\PY{p}{[}\PY{n}{dependent}\PY{p}{]}\PY{p}{]}\PY{p}{)} |
|
|
454 |
\PY{n}{mod} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}\PY{n}{m} \PY{k}{for} \PY{n}{dependent} \PY{o+ow}{in} \PY{n}{models}\PY{o}{.}\PY{n}{keys}\PY{p}{(}\PY{p}{)} \PY{k}{for} \PY{n}{m} \PY{o+ow}{in} \PY{n}{models}\PY{p}{[}\PY{n}{dependent}\PY{p}{]}\PY{p}{]}\PY{p}{)} |
|
|
455 |
\PY{n}{dependent} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}\PY{n}{dependent} \PY{k}{for} \PY{n}{dependent} \PY{o+ow}{in} \PY{n}{models}\PY{o}{.}\PY{n}{keys}\PY{p}{(}\PY{p}{)} \PY{k}{for} \PY{n}{m} \PY{o+ow}{in} \PY{n}{models}\PY{p}{[}\PY{n}{dependent}\PY{p}{]}\PY{p}{]}\PY{p}{)} |
|
|
456 |
|
|
|
457 |
\PY{c}{\PYZsh{} Sort by R2} |
|
|
458 |
\PY{n}{idx} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{argsort}\PY{p}{(}\PY{n}{r2}\PY{p}{)}\PY{p}{[}\PY{p}{:}\PY{p}{:}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{]} |
|
|
459 |
|
|
|
460 |
\PY{c}{\PYZsh{} Output string} |
|
|
461 |
\PY{n}{s} \PY{o}{=} \PY{l+s}{\PYZdq{}}\PY{l+s+si}{\PYZpc{}d}\PY{l+s}{ significant regressions.}\PY{l+s+se}{\PYZbs{}n}\PY{l+s+se}{\PYZbs{}n}\PY{l+s}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{n+nb}{len}\PY{p}{(}\PY{n}{r2}\PY{p}{)} |
|
|
462 |
\PY{n}{s} \PY{o}{+}\PY{o}{=} \PY{l+s}{\PYZdq{}}\PY{l+s}{Ten most correlated :}\PY{l+s+se}{\PYZbs{}n}\PY{l+s+se}{\PYZbs{}n}\PY{l+s}{\PYZdq{}} |
|
|
463 |
|
|
|
464 |
\PY{c}{\PYZsh{} Print a summary of the top ten correlations} |
|
|
465 |
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n}{idx}\PY{p}{[}\PY{p}{:}\PY{l+m+mi}{10}\PY{p}{]} \PY{p}{:} |
|
|
466 |
\PY{n}{s} \PY{o}{+}\PY{o}{=} \PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s+si}{\PYZpc{}s}\PY{l+s}{ \PYZti{} }\PY{l+s+si}{\PYZpc{}s}\PY{l+s+se}{\PYZbs{}n}\PY{l+s}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{p}{(}\PY{n}{dependent}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{ + }\PY{l+s}{\PYZdq{}}\PY{o}{.}\PY{n}{join}\PY{p}{(}\PY{n}{mod}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{o}{.}\PY{n}{x}\PY{o}{.}\PY{n}{columns}\PY{p}{[}\PY{p}{:}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{p}{)}\PY{p}{)} |
|
|
467 |
\PY{n}{s} \PY{o}{+}\PY{o}{=} \PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{R\PYZca{}2 = }\PY{l+s+si}{\PYZpc{}f}\PY{l+s+se}{\PYZbs{}t}\PY{l+s}{p = }\PY{l+s+si}{\PYZpc{}f}\PY{l+s+se}{\PYZbs{}n}\PY{l+s+se}{\PYZbs{}n}\PY{l+s}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{p}{(}\PY{n}{r2}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{,} \PY{n}{p}\PY{p}{[}\PY{n}{i}\PY{p}{]}\PY{p}{)}\PY{p}{)} |
|
|
468 |
|
|
|
469 |
\PY{k}{print} \PY{n}{s} |
|
|
470 |
|
|
|
471 |
|
|
|
472 |
|
|
|
473 |
|
|
|
474 |
|
|
|
475 |
|
|
|
476 |
|
|
|
477 |
\PY{k}{def} \PY{n+nf}{rstr}\PY{p}{(}\PY{n}{y}\PY{p}{,} \PY{n}{x}\PY{p}{)} \PY{p}{:} |
|
|
478 |
\PY{n}{formatstr} \PY{o}{=} \PY{l+s}{\PYZdq{}}\PY{l+s+si}{\PYZpc{}s}\PY{l+s}{ \PYZti{} }\PY{l+s}{\PYZdq{}} \PY{o}{\PYZpc{}} \PY{n}{y} |
|
|
479 |
\PY{k}{for} \PY{n}{i} \PY{o+ow}{in} \PY{n}{x}\PY{p}{[}\PY{p}{:}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{]} \PY{p}{:} |
|
|
480 |
\PY{n}{formatstr} \PY{o}{+}\PY{o}{=} \PY{n+nb}{str}\PY{p}{(}\PY{n}{i}\PY{p}{)} |
|
|
481 |
\PY{n}{formatstr} \PY{o}{+}\PY{o}{=} \PY{l+s}{\PYZdq{}}\PY{l+s}{ + }\PY{l+s}{\PYZdq{}} |
|
|
482 |
\PY{n}{formatstr} \PY{o}{+}\PY{o}{=} \PY{n+nb}{str}\PY{p}{(}\PY{n}{x}\PY{p}{[}\PY{o}{\PYZhy{}}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)} |
|
|
483 |
\PY{k}{return} \PY{n}{formatstr} |
|
|
484 |
\end{Verbatim} |
|
|
485 |
|
|
|
486 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
487 |
{\color{incolor}In [{\color{incolor}14}]:} \PY{k+kn}{import} \PY{n+nn}{numpy} \PY{k+kn}{as} \PY{n+nn}{np} |
|
|
488 |
\PY{k+kn}{from} \PY{n+nn}{sklearn.neighbors} \PY{k+kn}{import} \PY{n}{KernelDensity} |
|
|
489 |
\PY{k+kn}{from} \PY{n+nn}{matplotlib} \PY{k+kn}{import} \PY{n}{rcParams} |
|
|
490 |
\PY{k+kn}{import} \PY{n+nn}{matplotlib.pyplot} \PY{k+kn}{as} \PY{n+nn}{plt} |
|
|
491 |
\PY{k+kn}{import} \PY{n+nn}{seaborn} |
|
|
492 |
\PY{k+kn}{import} \PY{n+nn}{pandas} \PY{k+kn}{as} \PY{n+nn}{pd} |
|
|
493 |
\PY{k+kn}{import} \PY{n+nn}{itertools} |
|
|
494 |
\PY{k+kn}{from} \PY{n+nn}{sklearn} \PY{k+kn}{import} \PY{n}{linear\PYZus{}model}\PY{p}{,} \PY{n}{ensemble}\PY{p}{,} \PY{n}{decomposition}\PY{p}{,} \PY{n}{cross\PYZus{}validation}\PY{p}{,} \PY{n}{preprocessing} |
|
|
495 |
\PY{k+kn}{from} \PY{n+nn}{statsmodels.regression.mixed\PYZus{}linear\PYZus{}model} \PY{k+kn}{import} \PY{n}{MixedLM} |
|
|
496 |
\PY{k+kn}{import} \PY{n+nn}{statsmodels.api} \PY{k+kn}{as} \PY{n+nn}{sm} |
|
|
497 |
\PY{k+kn}{from} \PY{n+nn}{statsmodels.regression.linear\PYZus{}model} \PY{k+kn}{import} \PY{n}{OLSResults} |
|
|
498 |
\PY{k+kn}{from} \PY{n+nn}{statsmodels.tools.tools} \PY{k+kn}{import} \PY{n}{add\PYZus{}constant} |
|
|
499 |
|
|
|
500 |
|
|
|
501 |
\PY{o}{\PYZpc{}}\PY{k}{matplotlib} \PY{n}{inline} |
|
|
502 |
\PY{n}{rcParams}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{figure.figsize}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{p}{(}\PY{l+m+mi}{14}\PY{p}{,} \PY{l+m+mi}{8}\PY{p}{)} |
|
|
503 |
|
|
|
504 |
|
|
|
505 |
\PY{c}{\PYZsh{} RAW DATA} |
|
|
506 |
|
|
|
507 |
\PY{n}{raw\PYZus{}physical} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../data/physical.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)} |
|
|
508 |
\PY{n}{raw\PYZus{}histo} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../data/tawfik.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)} |
|
|
509 |
\PY{n}{ent} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../4x/results/entropy.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Unnamed: 0}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
510 |
\PY{n}{foci} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../4x/results/foci.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Unnamed: 0}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
511 |
\PY{n}{lac} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../4x/results/normalised\PYZus{}lacunarity.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Unnamed: 0}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
512 |
\PY{n}{gabor} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../4x/results/gabor\PYZus{}filters.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Unnamed: 0}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
513 |
\PY{n}{ts} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{read\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../4x/results/tissue\PYZus{}sinusoid\PYZus{}ratio.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Unnamed: 0}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
514 |
|
|
|
515 |
\PY{n}{raw\PYZus{}image} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{merge}\PY{p}{(}\PY{n}{lac}\PY{p}{,} \PY{n}{ent}\PY{p}{,} |
|
|
516 |
\PY{n}{on}\PY{o}{=}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Sheep}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Image}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{merge}\PY{p}{(}\PY{n}{foci}\PY{p}{,} |
|
|
517 |
\PY{n}{on}\PY{o}{=}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Sheep}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Image}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{merge}\PY{p}{(}\PY{n}{gabor}\PY{p}{,} |
|
|
518 |
\PY{n}{on}\PY{o}{=}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Sheep}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Image}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{merge}\PY{p}{(}\PY{n}{ts}\PY{p}{,} |
|
|
519 |
\PY{n}{on}\PY{o}{=}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Sheep}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Image}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{)} |
|
|
520 |
\PY{n}{raw\PYZus{}image}\PY{o}{.}\PY{n}{rename}\PY{p}{(}\PY{n}{columns} \PY{o}{=} \PY{p}{\PYZob{}} \PY{l+s}{\PYZdq{}}\PY{l+s}{meanSize}\PY{l+s}{\PYZdq{}} \PY{p}{:} \PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{,} |
|
|
521 |
\PY{l+s}{\PYZdq{}}\PY{l+s}{TSRatio}\PY{l+s}{\PYZdq{}} \PY{p}{:} \PY{l+s}{\PYZdq{}}\PY{l+s}{TissueToSinusoid}\PY{l+s}{\PYZdq{}}\PY{p}{,} |
|
|
522 |
\PY{l+s}{\PYZdq{}}\PY{l+s}{Count}\PY{l+s}{\PYZdq{}} \PY{p}{:} \PY{l+s}{\PYZdq{}}\PY{l+s}{FociCount}\PY{l+s}{\PYZdq{}} \PY{p}{\PYZcb{}}\PY{p}{,} \PY{n}{inplace}\PY{o}{=}\PY{n+nb+bp}{True}\PY{p}{)} |
|
|
523 |
|
|
|
524 |
|
|
|
525 |
|
|
|
526 |
\PY{c}{\PYZsh{} CLEAN DATA} |
|
|
527 |
|
|
|
528 |
\PY{n}{physcols} \PY{o}{=} \PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Weight}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Sex}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{AgeAtDeath}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Foreleg}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Hindleg}\PY{l+s}{\PYZdq{}}\PY{p}{]} |
|
|
529 |
\PY{n}{imagecols} \PY{o}{=} \PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Entropy}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Lacunarity}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Scale}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Directionality}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{FociCount}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{TissueToSinusoid}\PY{l+s}{\PYZdq{}}\PY{p}{]} |
|
|
530 |
\PY{n}{histcols} \PY{o}{=} \PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Lobular\PYZus{}collapse}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Interface\PYZus{}hepatitis}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Confluent\PYZus{}necrosis}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Ln\PYZus{}ap\PYZus{}ri}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Portal\PYZus{}inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{BD\PYZus{}hyperplasia}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Fibrosis}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{TawfikTotal}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Mean\PYZus{}hep\PYZus{}size}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Min\PYZus{}hep\PYZus{}size}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Max\PYZus{}hep\PYZus{}size}\PY{l+s}{\PYZdq{}}\PY{p}{]} |
|
|
531 |
|
|
|
532 |
|
|
|
533 |
|
|
|
534 |
|
|
|
535 |
|
|
|
536 |
\PY{c}{\PYZsh{} IMAGE} |
|
|
537 |
|
|
|
538 |
\PY{c}{\PYZsh{} Set FociSize to zero if FociCount is zero} |
|
|
539 |
\PY{c}{\PYZsh{} Drop stdSize} |
|
|
540 |
\PY{n}{image} \PY{o}{=} \PY{n}{raw\PYZus{}image} |
|
|
541 |
\PY{n}{image} \PY{o}{=} \PY{n}{image}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{stdSize}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
542 |
\PY{n}{image}\PY{o}{.}\PY{n}{FociSize}\PY{p}{[}\PY{n}{raw\PYZus{}image}\PY{o}{.}\PY{n}{FociCount} \PY{o}{==} \PY{l+m+mi}{0}\PY{p}{]} \PY{o}{=} \PY{l+m+mi}{0} |
|
|
543 |
|
|
|
544 |
|
|
|
545 |
|
|
|
546 |
\PY{c}{\PYZsh{} HISTO} |
|
|
547 |
|
|
|
548 |
\PY{n}{histo} \PY{o}{=} \PY{n}{raw\PYZus{}histo} |
|
|
549 |
\PY{n}{histo} \PY{o}{=} \PY{n}{histo}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Vessels}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Vacuol}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Pigment}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Std\PYZus{}hep\PYZus{}size}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
550 |
|
|
|
551 |
|
|
|
552 |
|
|
|
553 |
\PY{c}{\PYZsh{} PHYSICAL} |
|
|
554 |
|
|
|
555 |
\PY{n}{physical} \PY{o}{=} \PY{n}{raw\PYZus{}physical} |
|
|
556 |
\PY{n}{physical} \PY{o}{=} \PY{n}{physical}\PY{o}{.}\PY{n}{drop}\PY{p}{(}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{CurrTag}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{DeathDate}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Category}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{)} |
|
|
557 |
\PY{n}{physical} |
|
|
558 |
|
|
|
559 |
|
|
|
560 |
|
|
|
561 |
|
|
|
562 |
\PY{c}{\PYZsh{} COMPLETE DATASET} |
|
|
563 |
|
|
|
564 |
\PY{n}{raw\PYZus{}data} \PY{o}{=} \PY{n}{pd}\PY{o}{.}\PY{n}{merge}\PY{p}{(}\PY{n}{pd}\PY{o}{.}\PY{n}{merge}\PY{p}{(}\PY{n}{image}\PY{p}{,} \PY{n}{histo}\PY{p}{,} \PY{n}{on}\PY{o}{=}\PY{l+s}{\PYZdq{}}\PY{l+s}{Sheep}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{n}{how}\PY{o}{=}\PY{l+s}{\PYZdq{}}\PY{l+s}{outer}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{p}{,} \PY{n}{physical}\PY{p}{,} \PY{n}{on}\PY{o}{=}\PY{l+s}{\PYZdq{}}\PY{l+s}{Sheep}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{n}{how}\PY{o}{=}\PY{l+s}{\PYZdq{}}\PY{l+s}{outer}\PY{l+s}{\PYZdq{}}\PY{p}{)} |
|
|
565 |
\PY{n}{raw\PYZus{}data}\PY{o}{.}\PY{n}{to\PYZus{}csv}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{../data/tentative\PYZus{}complete.csv}\PY{l+s}{\PYZdq{}}\PY{p}{)} |
|
|
566 |
|
|
|
567 |
|
|
|
568 |
|
|
|
569 |
|
|
|
570 |
\PY{c}{\PYZsh{} AVERAGED BY SHEEP} |
|
|
571 |
\PY{n}{data} \PY{o}{=} \PY{n}{raw\PYZus{}data} |
|
|
572 |
\PY{n}{data}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{data}\PY{o}{.}\PY{n}{FociCount} \PY{o}{*} \PY{n}{data}\PY{o}{.}\PY{n}{FociSize} |
|
|
573 |
|
|
|
574 |
\PY{n}{sheep} \PY{o}{=} \PY{n}{rescale}\PY{p}{(}\PY{n}{data}\PY{o}{.}\PY{n}{groupby}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{Sheep}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{o}{.}\PY{n}{mean}\PY{p}{(}\PY{p}{)}\PY{p}{)} |
|
|
575 |
\PY{n}{age} \PY{o}{=} \PY{n}{rescale}\PY{p}{(}\PY{n}{data}\PY{o}{.}\PY{n}{groupby}\PY{p}{(}\PY{l+s}{\PYZdq{}}\PY{l+s}{AgeAtDeath}\PY{l+s}{\PYZdq{}}\PY{p}{)}\PY{o}{.}\PY{n}{mean}\PY{p}{(}\PY{p}{)}\PY{p}{)} |
|
|
576 |
|
|
|
577 |
|
|
|
578 |
|
|
|
579 |
|
|
|
580 |
|
|
|
581 |
|
|
|
582 |
|
|
|
583 |
\PY{c}{\PYZsh{} REGRESSIONS : fixed effects, grouped by sheep} |
|
|
584 |
|
|
|
585 |
\PY{n}{df} \PY{o}{=} \PY{n}{sheep}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Portal\PYZus{}inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
586 |
\PY{n}{df}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} |
|
|
587 |
\PY{n}{portal\PYZus{}inflammation} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df}\PY{o}{.}\PY{n}{Portal\PYZus{}inflammation}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
588 |
\PY{c}{\PYZsh{}portal\PYZus{}inflammation = portal\PYZus{}inflammation.summary()} |
|
|
589 |
\PY{k}{del} \PY{n}{portal\PYZus{}inflammation}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
590 |
|
|
|
591 |
|
|
|
592 |
|
|
|
593 |
\PY{n}{df} \PY{o}{=} \PY{n}{sheep}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{BD\PYZus{}hyperplasia}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Scale}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Directionality}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
594 |
\PY{n}{df}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} |
|
|
595 |
\PY{n}{hyperplasia} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df}\PY{o}{.}\PY{n}{BD\PYZus{}hyperplasia}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Scale}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Directionality}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
596 |
\PY{c}{\PYZsh{}hyperplasia.summary()} |
|
|
597 |
\PY{k}{del} \PY{n}{hyperplasia}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
598 |
|
|
|
599 |
|
|
|
600 |
|
|
|
601 |
|
|
|
602 |
|
|
|
603 |
|
|
|
604 |
\PY{c}{\PYZsh{} REGRESSIONS : fixed effects, grouped by age} |
|
|
605 |
|
|
|
606 |
\PY{n}{df} \PY{o}{=} \PY{n}{age}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Max\PYZus{}hep\PYZus{}size}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Entropy}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Directionality}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
607 |
\PY{n}{df}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} |
|
|
608 |
\PY{n}{maxhepsize} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df}\PY{o}{.}\PY{n}{Max\PYZus{}hep\PYZus{}size}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Entropy}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Directionality}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
609 |
\PY{k}{del} \PY{n}{maxhepsize}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
610 |
|
|
|
611 |
|
|
|
612 |
|
|
|
613 |
|
|
|
614 |
\PY{n}{df} \PY{o}{=} \PY{n}{age}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Lobular\PYZus{}collapse}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
615 |
\PY{n}{df}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} |
|
|
616 |
\PY{n}{lobular\PYZus{}collapse} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df}\PY{o}{.}\PY{n}{Lobular\PYZus{}collapse}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{FociSize}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
617 |
\PY{k}{del} \PY{n}{lobular\PYZus{}collapse}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
618 |
|
|
|
619 |
|
|
|
620 |
\PY{n}{df} \PY{o}{=} \PY{n}{age}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Interface\PYZus{}hepatitis}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Lacunarity}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
621 |
\PY{n}{df}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} |
|
|
622 |
\PY{n}{interface\PYZus{}hepatitis} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df}\PY{o}{.}\PY{n}{Interface\PYZus{}hepatitis}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Lacunarity}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
623 |
\PY{k}{del} \PY{n}{interface\PYZus{}hepatitis}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
624 |
|
|
|
625 |
|
|
|
626 |
\PY{n}{df} \PY{o}{=} \PY{n}{age}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Fibrosis}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
627 |
\PY{n}{df}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} |
|
|
628 |
\PY{n}{fibrosis} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df}\PY{o}{.}\PY{n}{Fibrosis}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
629 |
\PY{k}{del} \PY{n}{fibrosis}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
630 |
|
|
|
631 |
|
|
|
632 |
|
|
|
633 |
|
|
|
634 |
\PY{c}{\PYZsh{} PCA} |
|
|
635 |
|
|
|
636 |
\PY{n}{s} \PY{o}{=} \PY{n}{sheep}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{n}{subset}\PY{o}{=}\PY{n}{delayer}\PY{p}{(}\PY{p}{[}\PY{n}{imagecols}\PY{p}{,} \PY{n}{histcols}\PY{p}{]}\PY{p}{)}\PY{p}{)} |
|
|
637 |
\PY{n}{pca} \PY{o}{=} \PY{n}{decomposition}\PY{o}{.}\PY{n}{PCA}\PY{p}{(}\PY{n}{n\PYZus{}components}\PY{o}{=}\PY{l+m+mi}{1}\PY{p}{)} |
|
|
638 |
\PY{n}{pcax} \PY{o}{=} \PY{n}{pca}\PY{o}{.}\PY{n}{fit\PYZus{}transform}\PY{p}{(}\PY{n}{s}\PY{p}{[}\PY{n}{imagecols}\PY{p}{]}\PY{p}{)} |
|
|
639 |
\PY{n}{pcay} \PY{o}{=} \PY{n}{pca}\PY{o}{.}\PY{n}{fit\PYZus{}transform}\PY{p}{(}\PY{n}{s}\PY{p}{[}\PY{n}{histcols}\PY{p}{]}\PY{p}{)} |
|
|
640 |
\PY{n}{pca} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{pcay}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{l+m+mi}{0}\PY{p}{]}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{n}{np}\PY{o}{.}\PY{n}{newaxis}\PY{p}{]}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{add\PYZus{}constant}\PY{p}{(}\PY{n}{pcax}\PY{p}{)}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
641 |
\PY{k}{del} \PY{n}{pca}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
642 |
|
|
|
643 |
|
|
|
644 |
|
|
|
645 |
|
|
|
646 |
|
|
|
647 |
\PY{c}{\PYZsh{} REGRESSIONS : mixed effects, intercept on age at death} |
|
|
648 |
|
|
|
649 |
\PY{n}{df} \PY{o}{=} \PY{n}{age}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Fibrosis}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{o}{.}\PY{n}{dropna}\PY{p}{(}\PY{p}{)} |
|
|
650 |
\PY{n}{df}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{ones}\PY{p}{(}\PY{n+nb}{len}\PY{p}{(}\PY{n}{df}\PY{p}{)}\PY{p}{)} |
|
|
651 |
\PY{n}{fibrosis} \PY{o}{=} \PY{n}{sm}\PY{o}{.}\PY{n}{GLS}\PY{p}{(}\PY{n}{endog} \PY{o}{=} \PY{n}{df}\PY{o}{.}\PY{n}{Fibrosis}\PY{p}{,} \PY{n}{exog} \PY{o}{=} \PY{n}{df}\PY{p}{[}\PY{p}{[}\PY{l+s}{\PYZdq{}}\PY{l+s}{Inflammation}\PY{l+s}{\PYZdq{}}\PY{p}{,} \PY{l+s}{\PYZdq{}}\PY{l+s}{Intercept}\PY{l+s}{\PYZdq{}}\PY{p}{]}\PY{p}{]}\PY{p}{)}\PY{o}{.}\PY{n}{fit}\PY{p}{(}\PY{p}{)}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
652 |
\PY{k}{del} \PY{n}{fibrosis}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
653 |
\end{Verbatim} |
|
|
654 |
|
|
|
655 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
656 |
{\color{incolor}In [{\color{incolor}19}]:} \PY{n}{a} \PY{o}{=} \PY{n}{portal\PYZus{}inflammation}\PY{o}{.}\PY{n}{summary}\PY{p}{(}\PY{p}{)} |
|
|
657 |
\PY{k}{del} \PY{n}{a}\PY{o}{.}\PY{n}{tables}\PY{p}{[}\PY{l+m+mi}{2}\PY{p}{]} |
|
|
658 |
\PY{n}{a} |
|
|
659 |
\end{Verbatim} |
|
|
660 |
|
|
|
661 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
662 |
{\color{outcolor}Out[{\color{outcolor}19}]:} <class 'statsmodels.iolib.summary.Summary'> |
|
|
663 |
""" |
|
|
664 |
GLS Regression Results |
|
|
665 |
=============================================================================== |
|
|
666 |
Dep. Variable: Portal\_inflammation R-squared: 0.280 |
|
|
667 |
Model: GLS Adj. R-squared: 0.273 |
|
|
668 |
Method: Least Squares F-statistic: 37.34 |
|
|
669 |
Date: Tue, 28 Oct 2014 Prob (F-statistic): 2.12e-08 |
|
|
670 |
Time: 23:35:30 Log-Likelihood: 14.996 |
|
|
671 |
No. Observations: 98 AIC: -25.99 |
|
|
672 |
Df Residuals: 96 BIC: -20.82 |
|
|
673 |
Df Model: 1 |
|
|
674 |
Covariance Type: nonrobust |
|
|
675 |
============================================================================== |
|
|
676 |
coef std err t P>|t| [95.0\% Conf. Int.] |
|
|
677 |
------------------------------------------------------------------------------ |
|
|
678 |
FociSize 0.5627 0.092 6.111 0.000 0.380 0.746 |
|
|
679 |
Intercept 0.3368 0.043 7.855 0.000 0.252 0.422 |
|
|
680 |
============================================================================== |
|
|
681 |
|
|
|
682 |
Warnings: |
|
|
683 |
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |
|
|
684 |
""" |
|
|
685 |
\end{Verbatim} |
|
|
686 |
|
|
|
687 |
|
|
|
688 |
\subsection{Image Processing} |
|
|
689 |
|
|
|
690 |
|
|
|
691 |
|
|
|
692 |
|
|
|
693 |
|
|
|
694 |
|
|
|
695 |
|
|
|
696 |
\subsubsection{Extraction} |
|
|
697 |
|
|
|
698 |
|
|
|
699 |
\begin{itemize} |
|
|
700 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
701 |
\item |
|
|
702 |
Automagical |
|
|
703 |
\item |
|
|
704 |
Reasonably quick |
|
|
705 |
\end{itemize} |
|
|
706 |
|
|
|
707 |
|
|
|
708 |
\subsubsection{Robust} |
|
|
709 |
|
|
|
710 |
|
|
|
711 |
\begin{itemize} |
|
|
712 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
713 |
\item |
|
|
714 |
Invariant to staining, slicing, field-related variation |
|
|
715 |
\item |
|
|
716 |
Capture intersample variation |
|
|
717 |
\end{itemize} |
|
|
718 |
|
|
|
719 |
\begin{figure}[htbp] |
|
|
720 |
\centering |
|
|
721 |
\includegraphics{figures/robust3.jpg} |
|
|
722 |
\caption{image} |
|
|
723 |
\end{figure} |
|
|
724 |
|
|
|
725 |
\begin{figure}[htbp] |
|
|
726 |
\centering |
|
|
727 |
\includegraphics{figures/robust4.jpg} |
|
|
728 |
\caption{image} |
|
|
729 |
\end{figure} |
|
|
730 |
|
|
|
731 |
\begin{figure}[htbp] |
|
|
732 |
\centering |
|
|
733 |
\includegraphics{figures/robust1.jpg} |
|
|
734 |
\caption{image} |
|
|
735 |
\end{figure} |
|
|
736 |
|
|
|
737 |
\begin{figure}[htbp] |
|
|
738 |
\centering |
|
|
739 |
\includegraphics{figures/robust2.jpg} |
|
|
740 |
\caption{image} |
|
|
741 |
\end{figure} |
|
|
742 |
|
|
|
743 |
|
|
|
744 |
\subsection{Structural and Textural Measures} |
|
|
745 |
|
|
|
746 |
|
|
|
747 |
\begin{itemize} |
|
|
748 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
749 |
\item |
|
|
750 |
characteristic \textbf{scale} of sinusoid widths |
|
|
751 |
\item |
|
|
752 |
\textbf{directional} amplitude of preferred sinusoid alignment |
|
|
753 |
\item |
|
|
754 |
\textbf{tissue to sinusoid} ratio |
|
|
755 |
\item |
|
|
756 |
\textbf{count} of inflammatory foci per image |
|
|
757 |
\item |
|
|
758 |
\textbf{mean size} of inflammatory foci per image |
|
|
759 |
\item |
|
|
760 |
information \textbf{entropy} of sinusoid distribution |
|
|
761 |
\item |
|
|
762 |
\textbf{lacunarity} ( clustering ) of sinusoids |
|
|
763 |
\end{itemize} |
|
|
764 |
|
|
|
765 |
|
|
|
766 |
|
|
|
767 |
\begin{figure}[htbp] |
|
|
768 |
\centering |
|
|
769 |
\includegraphics{figures/intra.png} |
|
|
770 |
\caption{image} |
|
|
771 |
\end{figure} |
|
|
772 |
|
|
|
773 |
\begin{figure}[htbp] |
|
|
774 |
\centering |
|
|
775 |
\includegraphics{figures/inter2.png} |
|
|
776 |
\caption{image} |
|
|
777 |
\end{figure} |
|
|
778 |
|
|
|
779 |
|
|
|
780 |
\subsection{Exploratory Analysis} |
|
|
781 |
|
|
|
782 |
|
|
|
783 |
|
|
|
784 |
\subsubsection{by individual} |
|
|
785 |
|
|
|
786 |
|
|
|
787 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
788 |
{\color{incolor}In [{\color{incolor}29}]:} \PY{n}{portal\PYZus{}inflammation} |
|
|
789 |
\end{Verbatim} |
|
|
790 |
|
|
|
791 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
792 |
{\color{outcolor}Out[{\color{outcolor}29}]:} <class 'statsmodels.iolib.summary.Summary'> |
|
|
793 |
""" |
|
|
794 |
GLS Regression Results |
|
|
795 |
=============================================================================== |
|
|
796 |
Dep. Variable: Portal\_inflammation R-squared: 0.280 |
|
|
797 |
Model: GLS Adj. R-squared: 0.273 |
|
|
798 |
Method: Least Squares F-statistic: 37.34 |
|
|
799 |
Date: Tue, 28 Oct 2014 Prob (F-statistic): 2.12e-08 |
|
|
800 |
Time: 23:40:10 Log-Likelihood: 14.996 |
|
|
801 |
No. Observations: 98 AIC: -25.99 |
|
|
802 |
Df Residuals: 96 BIC: -20.82 |
|
|
803 |
Df Model: 1 |
|
|
804 |
Covariance Type: nonrobust |
|
|
805 |
============================================================================== |
|
|
806 |
coef std err t P>|t| [95.0\% Conf. Int.] |
|
|
807 |
------------------------------------------------------------------------------ |
|
|
808 |
FociSize 0.5627 0.092 6.111 0.000 0.380 0.746 |
|
|
809 |
Intercept 0.3368 0.043 7.855 0.000 0.252 0.422 |
|
|
810 |
============================================================================== |
|
|
811 |
|
|
|
812 |
Warnings: |
|
|
813 |
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |
|
|
814 |
""" |
|
|
815 |
\end{Verbatim} |
|
|
816 |
|
|
|
817 |
\begin{figure}[htbp] |
|
|
818 |
\centering |
|
|
819 |
\includegraphics{figures/portal_inflammation.png} |
|
|
820 |
\caption{image} |
|
|
821 |
\end{figure} |
|
|
822 |
|
|
|
823 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
824 |
{\color{incolor}In [{\color{incolor}31}]:} \PY{n}{hyperplasia} |
|
|
825 |
\end{Verbatim} |
|
|
826 |
|
|
|
827 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
828 |
{\color{outcolor}Out[{\color{outcolor}31}]:} <class 'statsmodels.iolib.summary.Summary'> |
|
|
829 |
""" |
|
|
830 |
GLS Regression Results |
|
|
831 |
============================================================================== |
|
|
832 |
Dep. Variable: BD\_hyperplasia R-squared: 0.306 |
|
|
833 |
Model: GLS Adj. R-squared: 0.284 |
|
|
834 |
Method: Least Squares F-statistic: 13.83 |
|
|
835 |
Date: Tue, 28 Oct 2014 Prob (F-statistic): 1.52e-07 |
|
|
836 |
Time: 23:40:10 Log-Likelihood: -3.9632 |
|
|
837 |
No. Observations: 98 AIC: 15.93 |
|
|
838 |
Df Residuals: 94 BIC: 26.27 |
|
|
839 |
Df Model: 3 |
|
|
840 |
Covariance Type: nonrobust |
|
|
841 |
================================================================================== |
|
|
842 |
coef std err t P>|t| [95.0\% Conf. Int.] |
|
|
843 |
---------------------------------------------------------------------------------- |
|
|
844 |
FociSize 0.6698 0.113 5.902 0.000 0.444 0.895 |
|
|
845 |
Scale 0.5811 0.243 2.394 0.019 0.099 1.063 |
|
|
846 |
Directionality -0.4419 0.190 -2.330 0.022 -0.819 -0.065 |
|
|
847 |
Intercept -0.0504 0.079 -0.642 0.523 -0.206 0.105 |
|
|
848 |
================================================================================== |
|
|
849 |
|
|
|
850 |
Warnings: |
|
|
851 |
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |
|
|
852 |
""" |
|
|
853 |
\end{Verbatim} |
|
|
854 |
|
|
|
855 |
\begin{figure}[htbp] |
|
|
856 |
\centering |
|
|
857 |
\includegraphics{figures/hyperplasia.png} |
|
|
858 |
\caption{image} |
|
|
859 |
\end{figure} |
|
|
860 |
|
|
|
861 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
862 |
{\color{incolor}In [{\color{incolor}15}]:} \PY{n}{pca} |
|
|
863 |
\end{Verbatim} |
|
|
864 |
|
|
|
865 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
866 |
{\color{outcolor}Out[{\color{outcolor}15}]:} <class 'statsmodels.iolib.summary.Summary'> |
|
|
867 |
""" |
|
|
868 |
GLS Regression Results |
|
|
869 |
============================================================================== |
|
|
870 |
Dep. Variable: y R-squared: 0.075 |
|
|
871 |
Model: GLS Adj. R-squared: 0.065 |
|
|
872 |
Method: Least Squares F-statistic: 7.723 |
|
|
873 |
Date: Wed, 29 Oct 2014 Prob (F-statistic): 0.00657 |
|
|
874 |
Time: 14:38:47 Log-Likelihood: -70.082 |
|
|
875 |
No. Observations: 97 AIC: 144.2 |
|
|
876 |
Df Residuals: 95 BIC: 149.3 |
|
|
877 |
Df Model: 1 |
|
|
878 |
Covariance Type: nonrobust |
|
|
879 |
============================================================================== |
|
|
880 |
coef std err t P>|t| [95.0\% Conf. Int.] |
|
|
881 |
------------------------------------------------------------------------------ |
|
|
882 |
const -2.949e-17 0.051 -5.77e-16 1.000 -0.102 0.102 |
|
|
883 |
x1 0.3865 0.139 2.779 0.007 0.110 0.663 |
|
|
884 |
============================================================================== |
|
|
885 |
|
|
|
886 |
Warnings: |
|
|
887 |
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |
|
|
888 |
""" |
|
|
889 |
\end{Verbatim} |
|
|
890 |
|
|
|
891 |
\begin{figure}[htbp] |
|
|
892 |
\centering |
|
|
893 |
\includegraphics{figures/pca.png} |
|
|
894 |
\caption{image} |
|
|
895 |
\end{figure} |
|
|
896 |
|
|
|
897 |
|
|
|
898 |
\subsection{Exploratory Analysis} |
|
|
899 |
|
|
|
900 |
|
|
|
901 |
|
|
|
902 |
\subsubsection{by age class} |
|
|
903 |
|
|
|
904 |
|
|
|
905 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
906 |
{\color{incolor}In [{\color{incolor}6}]:} \PY{n}{fibrosis} |
|
|
907 |
\end{Verbatim} |
|
|
908 |
|
|
|
909 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
910 |
{\color{outcolor}Out[{\color{outcolor}6}]:} <class 'statsmodels.iolib.summary.Summary'> |
|
|
911 |
""" |
|
|
912 |
GLS Regression Results |
|
|
913 |
============================================================================== |
|
|
914 |
Dep. Variable: Fibrosis R-squared: 0.800 |
|
|
915 |
Model: GLS Adj. R-squared: 0.778 |
|
|
916 |
Method: Least Squares F-statistic: 36.07 |
|
|
917 |
Date: Wed, 29 Oct 2014 Prob (F-statistic): 0.000201 |
|
|
918 |
Time: 11:13:48 Log-Likelihood: 7.8003 |
|
|
919 |
No. Observations: 11 AIC: -11.60 |
|
|
920 |
Df Residuals: 9 BIC: -10.80 |
|
|
921 |
Df Model: 1 |
|
|
922 |
Covariance Type: nonrobust |
|
|
923 |
================================================================================ |
|
|
924 |
coef std err t P>|t| [95.0\% Conf. Int.] |
|
|
925 |
-------------------------------------------------------------------------------- |
|
|
926 |
Inflammation 1.0159 0.169 6.006 0.000 0.633 1.399 |
|
|
927 |
Intercept -0.0105 0.083 -0.126 0.902 -0.198 0.177 |
|
|
928 |
================================================================================ |
|
|
929 |
|
|
|
930 |
Warnings: |
|
|
931 |
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |
|
|
932 |
""" |
|
|
933 |
\end{Verbatim} |
|
|
934 |
|
|
|
935 |
\begin{figure}[htbp] |
|
|
936 |
\centering |
|
|
937 |
\includegraphics{figures/fibrosis.png} |
|
|
938 |
\caption{image} |
|
|
939 |
\end{figure} |
|
|
940 |
|
|
|
941 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
942 |
{\color{incolor}In [{\color{incolor}7}]:} \PY{n}{lobular\PYZus{}collapse} |
|
|
943 |
\end{Verbatim} |
|
|
944 |
|
|
|
945 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
946 |
{\color{outcolor}Out[{\color{outcolor}7}]:} <class 'statsmodels.iolib.summary.Summary'> |
|
|
947 |
""" |
|
|
948 |
GLS Regression Results |
|
|
949 |
============================================================================== |
|
|
950 |
Dep. Variable: Lobular\_collapse R-squared: 0.586 |
|
|
951 |
Model: GLS Adj. R-squared: 0.540 |
|
|
952 |
Method: Least Squares F-statistic: 12.73 |
|
|
953 |
Date: Wed, 29 Oct 2014 Prob (F-statistic): 0.00605 |
|
|
954 |
Time: 11:13:48 Log-Likelihood: 2.2626 |
|
|
955 |
No. Observations: 11 AIC: -0.5252 |
|
|
956 |
Df Residuals: 9 BIC: 0.2706 |
|
|
957 |
Df Model: 1 |
|
|
958 |
Covariance Type: nonrobust |
|
|
959 |
============================================================================== |
|
|
960 |
coef std err t P>|t| [95.0\% Conf. Int.] |
|
|
961 |
------------------------------------------------------------------------------ |
|
|
962 |
FociSize 1.1379 0.319 3.567 0.006 0.416 1.860 |
|
|
963 |
Intercept 0.0460 0.159 0.289 0.779 -0.314 0.406 |
|
|
964 |
============================================================================== |
|
|
965 |
|
|
|
966 |
Warnings: |
|
|
967 |
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |
|
|
968 |
""" |
|
|
969 |
\end{Verbatim} |
|
|
970 |
|
|
|
971 |
\begin{figure}[htbp] |
|
|
972 |
\centering |
|
|
973 |
\includegraphics{figures/lobular_collapse.png} |
|
|
974 |
\caption{image} |
|
|
975 |
\end{figure} |
|
|
976 |
|
|
|
977 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
978 |
{\color{incolor}In [{\color{incolor}8}]:} \PY{n}{interface\PYZus{}hepatitis} |
|
|
979 |
\end{Verbatim} |
|
|
980 |
|
|
|
981 |
\begin{Verbatim}[commandchars=\\\{\}] |
|
|
982 |
{\color{outcolor}Out[{\color{outcolor}8}]:} <class 'statsmodels.iolib.summary.Summary'> |
|
|
983 |
""" |
|
|
984 |
GLS Regression Results |
|
|
985 |
=============================================================================== |
|
|
986 |
Dep. Variable: Interface\_hepatitis R-squared: 0.659 |
|
|
987 |
Model: GLS Adj. R-squared: 0.621 |
|
|
988 |
Method: Least Squares F-statistic: 17.38 |
|
|
989 |
Date: Wed, 29 Oct 2014 Prob (F-statistic): 0.00242 |
|
|
990 |
Time: 11:13:48 Log-Likelihood: 2.3063 |
|
|
991 |
No. Observations: 11 AIC: -0.6126 |
|
|
992 |
Df Residuals: 9 BIC: 0.1832 |
|
|
993 |
Df Model: 1 |
|
|
994 |
Covariance Type: nonrobust |
|
|
995 |
============================================================================== |
|
|
996 |
coef std err t P>|t| [95.0\% Conf. Int.] |
|
|
997 |
------------------------------------------------------------------------------ |
|
|
998 |
Lacunarity -1.0224 0.245 -4.168 0.002 -1.577 -0.468 |
|
|
999 |
Intercept 0.9504 0.143 6.669 0.000 0.628 1.273 |
|
|
1000 |
============================================================================== |
|
|
1001 |
|
|
|
1002 |
Warnings: |
|
|
1003 |
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. |
|
|
1004 |
""" |
|
|
1005 |
\end{Verbatim} |
|
|
1006 |
|
|
|
1007 |
\begin{figure}[htbp] |
|
|
1008 |
\centering |
|
|
1009 |
\includegraphics{figures/interface_hepatitis.png} |
|
|
1010 |
\caption{image} |
|
|
1011 |
\end{figure} |
|
|
1012 |
|
|
|
1013 |
|
|
|
1014 |
\subsection{Exploratory analysis} |
|
|
1015 |
|
|
|
1016 |
|
|
|
1017 |
|
|
|
1018 |
\subsubsection{with a random effect on age at death} |
|
|
1019 |
|
|
|
1020 |
|
|
|
1021 |
\begin{longtable}[c]{@{}lcl@{}} |
|
|
1022 |
\toprule\addlinespace |
|
|
1023 |
Dependent variable & Models AIC \textless{} 2 + AICmin & Primary |
|
|
1024 |
explanatory variables ( ordered ) |
|
|
1025 |
\\\addlinespace |
|
|
1026 |
\midrule\endhead |
|
|
1027 |
Ishak score & 7 & entropy, tissue-to-sinusoid, focus count, focus size |
|
|
1028 |
\\\addlinespace |
|
|
1029 |
Lobular collapse & 5 & entropy, lacunarity, tissue-to-sinusoid, focus |
|
|
1030 |
count |
|
|
1031 |
\\\addlinespace |
|
|
1032 |
Confluent necrosis & 1 & entropy |
|
|
1033 |
\\\addlinespace |
|
|
1034 |
Interface hepatitis & 2 & entropy, tissue-to-sinusoid |
|
|
1035 |
\\\addlinespace |
|
|
1036 |
Portal inflammation & 4 & entropy, focus size, lacunarity, focus count, |
|
|
1037 |
scale, directionality |
|
|
1038 |
\\\addlinespace |
|
|
1039 |
Fibrosis & 2 & entropy, lacunarity, tissue-to-sinusoid |
|
|
1040 |
\\\addlinespace |
|
|
1041 |
Biliary hyperplasia & 1 & focus size |
|
|
1042 |
\\\addlinespace |
|
|
1043 |
Necrosis, apoptosis, random inflammation & 2 & entropy, lacunarity |
|
|
1044 |
\\\addlinespace |
|
|
1045 |
\bottomrule |
|
|
1046 |
\end{longtable} |
|
|
1047 |
|
|
|
1048 |
|
|
|
1049 |
\paragraph{Measures we like} |
|
|
1050 |
|
|
|
1051 |
|
|
|
1052 |
\begin{itemize} |
|
|
1053 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
1054 |
\item |
|
|
1055 |
entropy consistently explains histological measures when controlled |
|
|
1056 |
for age |
|
|
1057 |
\item |
|
|
1058 |
also important : tissue to sinusoid ratio, focus count and size, |
|
|
1059 |
lacunarity |
|
|
1060 |
\end{itemize} |
|
|
1061 |
|
|
|
1062 |
|
|
|
1063 |
\subsection{Future directions} |
|
|
1064 |
|
|
|
1065 |
|
|
|
1066 |
|
|
|
1067 |
\subsubsection{Further exploration of the dataset} |
|
|
1068 |
|
|
|
1069 |
|
|
|
1070 |
\begin{itemize} |
|
|
1071 |
\item |
|
|
1072 |
145 sheep ( 89 females ) |
|
|
1073 |
\item |
|
|
1074 |
11 age classes |
|
|
1075 |
\item |
|
|
1076 |
\end{itemize} |
|
|
1077 |
|
|
|
1078 |
\begin{itemize} |
|
|
1079 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
1080 |
\item |
|
|
1081 |
4460 entries across 27 variables |
|
|
1082 |
\item |
|
|
1083 |
3330 with full image and histological information |
|
|
1084 |
\item |
|
|
1085 |
1196 for which \textbf{complete} information is available |
|
|
1086 |
\end{itemize} |
|
|
1087 |
|
|
|
1088 |
|
|
|
1089 |
\subsubsection{Narrow-field images} |
|
|
1090 |
|
|
|
1091 |
|
|
|
1092 |
\begin{itemize} |
|
|
1093 |
\itemsep1pt\parskip0pt\parsep0pt |
|
|
1094 |
\item |
|
|
1095 |
12536 images |
|
|
1096 |
\item |
|
|
1097 |
spatial distribution of nuclei |
|
|
1098 |
\end{itemize} |
|
|
1099 |
|
|
|
1100 |
\begin{figure}[htbp] |
|
|
1101 |
\centering |
|
|
1102 |
\includegraphics{figures/10.jpg} |
|
|
1103 |
\caption{image} |
|
|
1104 |
\end{figure} |
|
|
1105 |
|
|
|
1106 |
\begin{figure}[htbp] |
|
|
1107 |
\centering |
|
|
1108 |
\includegraphics{figures/Processed2.jpg} |
|
|
1109 |
\caption{image} |
|
|
1110 |
\end{figure} |
|
|
1111 |
|
|
|
1112 |
\begin{figure}[htbp] |
|
|
1113 |
\centering |
|
|
1114 |
\includegraphics{figures/Segmented.jpg} |
|
|
1115 |
\caption{image} |
|
|
1116 |
\end{figure} |
|
|
1117 |
|
|
|
1118 |
|
|
|
1119 |
|
|
|
1120 |
|
|
|
1121 |
% Add a bibliography block to the postdoc |
|
|
1122 |
|
|
|
1123 |
|
|
|
1124 |
|
|
|
1125 |
\end{document} |