|
a |
|
b/talk/GrahamGroup.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
# <nbformat>3.0</nbformat> |
|
|
3 |
|
|
|
4 |
# <headingcell level=1> |
|
|
5 |
|
|
|
6 |
# Robust Extraction of Quantitative Information from Histology Images |
|
|
7 |
|
|
|
8 |
# <headingcell level=4> |
|
|
9 |
|
|
|
10 |
# Quentin Caudron |
|
|
11 |
# <br /><br /> |
|
|
12 |
# |
|
|
13 |
# Romain Garnier |
|
|
14 |
# <br /><br /> |
|
|
15 |
# |
|
|
16 |
# *with Bryan Grenfell and Andrea Graham* |
|
|
17 |
|
|
|
18 |
# <headingcell level=3> |
|
|
19 |
|
|
|
20 |
# Outline |
|
|
21 |
|
|
|
22 |
# <markdowncell> |
|
|
23 |
|
|
|
24 |
# - Image processing |
|
|
25 |
# - Extracted measures |
|
|
26 |
# - Preliminary analysis |
|
|
27 |
# - Future directions |
|
|
28 |
|
|
|
29 |
# <markdowncell> |
|
|
30 |
|
|
|
31 |
# 4. Age as random effect <--- |
|
|
32 |
# |
|
|
33 |
# ["interface_hepatitis", "confluent_necrosis", "portal_inflammation", "ln_ap_ri"] |
|
|
34 |
|
|
|
35 |
# <codecell> |
|
|
36 |
|
|
|
37 |
def normalise(df, skip = []) : |
|
|
38 |
for i in df.columns : |
|
|
39 |
if i not in skip : |
|
|
40 |
df[i] -= df[i].mean() |
|
|
41 |
df[i] /= df[i].std() |
|
|
42 |
return df |
|
|
43 |
|
|
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
|
49 |
def rescale(df, skip = []) : |
|
|
50 |
for i in df.columns : |
|
|
51 |
if i not in skip : |
|
|
52 |
df[i] -= df[i].min() |
|
|
53 |
df[i] /= df[i].max() |
|
|
54 |
return df |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
|
|
|
58 |
# Remove a layer from a list |
|
|
59 |
def delayer(m) : |
|
|
60 |
out = [] |
|
|
61 |
for i in m : |
|
|
62 |
if isinstance(i, list) : |
|
|
63 |
for j in i : |
|
|
64 |
out.append(j) |
|
|
65 |
else : |
|
|
66 |
out.append(i) |
|
|
67 |
return out |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
|
73 |
|
|
|
74 |
|
|
|
75 |
# Remove all layers from a list |
|
|
76 |
def flatten(m) : |
|
|
77 |
out = m[:] |
|
|
78 |
|
|
|
79 |
while out != delayer(out) : |
|
|
80 |
out = delayer(out) |
|
|
81 |
|
|
|
82 |
return out |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
|
91 |
# Generate all combinations of objects in a list |
|
|
92 |
def combinatorial(l) : |
|
|
93 |
out = [] |
|
|
94 |
|
|
|
95 |
for numel in range(len(l)) : |
|
|
96 |
for i in itertools.combinations(l, numel+1) : |
|
|
97 |
out.append(list(i)) |
|
|
98 |
|
|
|
99 |
return out |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
|
|
|
109 |
|
|
|
110 |
def pcaplot(df) : |
|
|
111 |
|
|
|
112 |
# PCA |
|
|
113 |
pca = decomposition.PCA(whiten = True) |
|
|
114 |
pca.fit(df) |
|
|
115 |
p1 = pca.components_[0] / np.abs(pca.components_[0]).max() * np.sqrt(2)/2 |
|
|
116 |
p2 = pca.components_[1] / np.abs(pca.components_[1]).max() * np.sqrt(2)/2 |
|
|
117 |
|
|
|
118 |
# Normalise |
|
|
119 |
norms = np.max([np.sqrt((np.array(zip(p1, p2)[i])**2).sum()) for i in range(len(p1))]) |
|
|
120 |
c = plt.Circle( (0, 0), radius = 1, alpha = 0.2) |
|
|
121 |
plt.axes(aspect = 1) |
|
|
122 |
plt.gca().add_artist(c) |
|
|
123 |
|
|
|
124 |
plt.scatter(p1 / norms, p2 / norms) |
|
|
125 |
plt.xlim([-1, 1]) |
|
|
126 |
plt.ylim([-1, 1]) |
|
|
127 |
|
|
|
128 |
for i, text in enumerate(df.columns) : |
|
|
129 |
plt.annotate(text, xy = [p1[i], p2[i]]) |
|
|
130 |
|
|
|
131 |
plt.tight_layout() |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
|
|
|
135 |
|
|
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
def test_all_linear(df, y, x, return_significant = False, group = None) : |
|
|
144 |
|
|
|
145 |
# All possible combinations of independent variables |
|
|
146 |
independent = combinatorial(x) |
|
|
147 |
|
|
|
148 |
fits = {} |
|
|
149 |
pval = {} |
|
|
150 |
linmodels = {} |
|
|
151 |
qsum = {} |
|
|
152 |
aic = {} |
|
|
153 |
|
|
|
154 |
# For all dependent variables, one at a time |
|
|
155 |
for dependent in y : |
|
|
156 |
|
|
|
157 |
print "Fitting for %s." % dependent |
|
|
158 |
|
|
|
159 |
# For all combinations of independent variables |
|
|
160 |
for covariate in independent : |
|
|
161 |
|
|
|
162 |
# Standard mixed model |
|
|
163 |
if group is None : |
|
|
164 |
|
|
|
165 |
# Fit a linear model |
|
|
166 |
subset = delayer([covariate, dependent]) |
|
|
167 |
df2 = df[delayer(subset)].dropna() |
|
|
168 |
df2["Intercept"] = np.ones(len(df2)) |
|
|
169 |
|
|
|
170 |
ols = sm.GLS(endog = df2[dependent], exog = df2[delayer([covariate, "Intercept"])]).fit() |
|
|
171 |
|
|
|
172 |
# Save the results |
|
|
173 |
if (return_significant and ols.f_pvalue < 0.05) or (not return_significant) : |
|
|
174 |
linmodels.setdefault(dependent, []).append(ols) |
|
|
175 |
fits.setdefault(dependent, []).append(ols.rsquared) |
|
|
176 |
pval.setdefault(dependent, []).append(ols.f_pvalue) |
|
|
177 |
aic.setdefault(dependent, []).append(ols.aic) |
|
|
178 |
|
|
|
179 |
|
|
|
180 |
# Mixed effects model |
|
|
181 |
else : |
|
|
182 |
subset = delayer([covariate, dependent, group]) |
|
|
183 |
df2 = df[delayer(subset)].dropna() |
|
|
184 |
|
|
|
185 |
# Fit a mixed effects model |
|
|
186 |
ols = MixedLM(endog = df2[dependent], exog = df2[covariate], groups = df2[group]).fit() |
|
|
187 |
|
|
|
188 |
# Calculate AIC |
|
|
189 |
linmodels.setdefault(dependent, []).append(ols) |
|
|
190 |
fits.setdefault(dependent, []).append(2 * (ols.k_fe + 1) - 2 * ols.llf) |
|
|
191 |
pval.setdefault(dependent, []).append(ols.pvalues) |
|
|
192 |
|
|
|
193 |
if group is not None : |
|
|
194 |
for i in y : |
|
|
195 |
f = np.array(fits[i]) |
|
|
196 |
models = np.array(linmodels[i]) |
|
|
197 |
idx = np.where(f - f.min() <= 2)[0] |
|
|
198 |
bestmodelDoF = [j.k_fe for j in np.array(linmodels[i])[idx]] |
|
|
199 |
bestmodels = [idx[j] for j in np.where(bestmodelDoF == np.min(bestmodelDoF))[0]] |
|
|
200 |
qsum[i] = models[idx[np.where(f[bestmodels] == np.min(f[bestmodels]))]] |
|
|
201 |
|
|
|
202 |
|
|
|
203 |
return linmodels, fits, pval, qsum |
|
|
204 |
|
|
|
205 |
return linmodels, fits, pval, aic |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
|
|
|
209 |
|
|
|
210 |
|
|
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
|
222 |
|
|
|
223 |
|
|
|
224 |
def summary(models) : |
|
|
225 |
|
|
|
226 |
# Generate list of everything |
|
|
227 |
r2 = np.array([m.r2 for dependent in models.keys() for m in models[dependent]]) |
|
|
228 |
p = np.array([m.f_stat["p-value"] for dependent in models.keys() for m in models[dependent]]) |
|
|
229 |
mod = np.array([m for dependent in models.keys() for m in models[dependent]]) |
|
|
230 |
dependent = np.array([dependent for dependent in models.keys() for m in models[dependent]]) |
|
|
231 |
|
|
|
232 |
# Sort by R2 |
|
|
233 |
idx = np.argsort(r2)[::-1] |
|
|
234 |
|
|
|
235 |
# Output string |
|
|
236 |
s = "%d significant regressions.\n\n" % len(r2) |
|
|
237 |
s += "Ten most correlated :\n\n" |
|
|
238 |
|
|
|
239 |
# Print a summary of the top ten correlations |
|
|
240 |
for i in idx[:10] : |
|
|
241 |
s += ("%s ~ %s\n" % (dependent[i], " + ".join(mod[i].x.columns[:-1]))) |
|
|
242 |
s += ("R^2 = %f\tp = %f\n\n" % (r2[i], p[i])) |
|
|
243 |
|
|
|
244 |
print s |
|
|
245 |
|
|
|
246 |
|
|
|
247 |
|
|
|
248 |
|
|
|
249 |
|
|
|
250 |
|
|
|
251 |
|
|
|
252 |
def rstr(y, x) : |
|
|
253 |
formatstr = "%s ~ " % y |
|
|
254 |
for i in x[:-1] : |
|
|
255 |
formatstr += str(i) |
|
|
256 |
formatstr += " + " |
|
|
257 |
formatstr += str(x[-1]) |
|
|
258 |
return formatstr |
|
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
|
262 |
|
|
|
263 |
|
|
|
264 |
|
|
|
265 |
|
|
|
266 |
|
|
|
267 |
# <codecell> |
|
|
268 |
|
|
|
269 |
import numpy as np |
|
|
270 |
from sklearn.neighbors import KernelDensity |
|
|
271 |
from matplotlib import rcParams |
|
|
272 |
import matplotlib.pyplot as plt |
|
|
273 |
import seaborn |
|
|
274 |
import pandas as pd |
|
|
275 |
import itertools |
|
|
276 |
from sklearn import linear_model, ensemble, decomposition, cross_validation, preprocessing |
|
|
277 |
from statsmodels.regression.mixed_linear_model import MixedLM |
|
|
278 |
import statsmodels.api as sm |
|
|
279 |
from statsmodels.regression.linear_model import OLSResults |
|
|
280 |
from statsmodels.tools.tools import add_constant |
|
|
281 |
|
|
|
282 |
|
|
|
283 |
%matplotlib inline |
|
|
284 |
rcParams["figure.figsize"] = (14, 8) |
|
|
285 |
|
|
|
286 |
|
|
|
287 |
# RAW DATA |
|
|
288 |
|
|
|
289 |
raw_physical = pd.read_csv("../data/physical.csv") |
|
|
290 |
raw_histo = pd.read_csv("../data/tawfik.csv") |
|
|
291 |
ent = pd.read_csv("../4x/results/entropy.csv").drop(["Unnamed: 0"], 1) |
|
|
292 |
foci = pd.read_csv("../4x/results/foci.csv").drop(["Unnamed: 0"], 1) |
|
|
293 |
lac = pd.read_csv("../4x/results/normalised_lacunarity.csv").drop(["Unnamed: 0"], 1) |
|
|
294 |
gabor = pd.read_csv("../4x/results/gabor_filters.csv").drop(["Unnamed: 0"], 1) |
|
|
295 |
ts = pd.read_csv("../4x/results/tissue_sinusoid_ratio.csv").drop(["Unnamed: 0"], 1) |
|
|
296 |
|
|
|
297 |
raw_image = pd.merge(lac, ent, |
|
|
298 |
on=["Sheep", "Image"]).merge(foci, |
|
|
299 |
on=["Sheep", "Image"]).merge(gabor, |
|
|
300 |
on=["Sheep", "Image"]).merge(ts, |
|
|
301 |
on=["Sheep", "Image"]) |
|
|
302 |
raw_image.rename(columns = { "meanSize" : "FociSize", |
|
|
303 |
"TSRatio" : "TissueToSinusoid", |
|
|
304 |
"Count" : "FociCount" }, inplace=True) |
|
|
305 |
|
|
|
306 |
|
|
|
307 |
|
|
|
308 |
# CLEAN DATA |
|
|
309 |
|
|
|
310 |
physcols = ["Weight", "Sex", "AgeAtDeath", "Foreleg", "Hindleg"] |
|
|
311 |
imagecols = ["Entropy", "Lacunarity", "Inflammation", "Scale", "Directionality", "FociCount", "FociSize", "TissueToSinusoid"] |
|
|
312 |
histcols = ["Lobular_collapse", "Interface_hepatitis", "Confluent_necrosis", "Ln_ap_ri", "Portal_inflammation", "BD_hyperplasia", "Fibrosis", "TawfikTotal", "Mean_hep_size", "Min_hep_size", "Max_hep_size"] |
|
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
|
316 |
|
|
|
317 |
|
|
|
318 |
# IMAGE |
|
|
319 |
|
|
|
320 |
# Set FociSize to zero if FociCount is zero |
|
|
321 |
# Drop stdSize |
|
|
322 |
image = raw_image |
|
|
323 |
image = image.drop("stdSize", 1) |
|
|
324 |
image.FociSize[raw_image.FociCount == 0] = 0 |
|
|
325 |
|
|
|
326 |
|
|
|
327 |
|
|
|
328 |
# HISTO |
|
|
329 |
|
|
|
330 |
histo = raw_histo |
|
|
331 |
histo = histo.drop(["Vessels", "Vacuol", "Pigment", "Std_hep_size"], 1) |
|
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
|
335 |
# PHYSICAL |
|
|
336 |
|
|
|
337 |
physical = raw_physical |
|
|
338 |
physical = physical.drop(["CurrTag", "DeathDate", "Category"], 1) |
|
|
339 |
physical |
|
|
340 |
|
|
|
341 |
|
|
|
342 |
|
|
|
343 |
|
|
|
344 |
# COMPLETE DATASET |
|
|
345 |
|
|
|
346 |
raw_data = pd.merge(pd.merge(image, histo, on="Sheep", how="outer"), physical, on="Sheep", how="outer") |
|
|
347 |
raw_data.to_csv("../data/tentative_complete.csv") |
|
|
348 |
|
|
|
349 |
|
|
|
350 |
|
|
|
351 |
|
|
|
352 |
# AVERAGED BY SHEEP |
|
|
353 |
data = raw_data |
|
|
354 |
data["Inflammation"] = data.FociCount * data.FociSize |
|
|
355 |
|
|
|
356 |
sheep = rescale(data.groupby("Sheep").mean()) |
|
|
357 |
age = rescale(data.groupby("AgeAtDeath").mean()) |
|
|
358 |
|
|
|
359 |
|
|
|
360 |
|
|
|
361 |
|
|
|
362 |
|
|
|
363 |
|
|
|
364 |
|
|
|
365 |
# REGRESSIONS : fixed effects, grouped by sheep |
|
|
366 |
|
|
|
367 |
df = sheep[["Portal_inflammation", "FociSize"]].dropna() |
|
|
368 |
df["Intercept"] = np.ones(len(df)) |
|
|
369 |
portal_inflammation = sm.GLS(endog = df.Portal_inflammation, exog = df[["FociSize", "Intercept"]]).fit().summary() |
|
|
370 |
#portal_inflammation = portal_inflammation.summary() |
|
|
371 |
del portal_inflammation.tables[2] |
|
|
372 |
|
|
|
373 |
|
|
|
374 |
|
|
|
375 |
df = sheep[["BD_hyperplasia", "Scale", "Directionality", "FociSize"]].dropna() |
|
|
376 |
df["Intercept"] = np.ones(len(df)) |
|
|
377 |
hyperplasia = sm.GLS(endog = df.BD_hyperplasia, exog = df[["FociSize", "Scale", "Directionality", "Intercept"]]).fit().summary() |
|
|
378 |
#hyperplasia.summary() |
|
|
379 |
del hyperplasia.tables[2] |
|
|
380 |
|
|
|
381 |
|
|
|
382 |
|
|
|
383 |
|
|
|
384 |
|
|
|
385 |
|
|
|
386 |
# REGRESSIONS : fixed effects, grouped by age |
|
|
387 |
|
|
|
388 |
df = age[["Max_hep_size", "Entropy", "Directionality"]].dropna() |
|
|
389 |
df["Intercept"] = np.ones(len(df)) |
|
|
390 |
maxhepsize = sm.GLS(endog = df.Max_hep_size, exog = df[["Entropy", "Directionality", "Intercept"]]).fit().summary() |
|
|
391 |
del maxhepsize.tables[2] |
|
|
392 |
|
|
|
393 |
|
|
|
394 |
|
|
|
395 |
|
|
|
396 |
df = age[["Lobular_collapse", "FociSize"]].dropna() |
|
|
397 |
df["Intercept"] = np.ones(len(df)) |
|
|
398 |
lobular_collapse = sm.GLS(endog = df.Lobular_collapse, exog = df[["FociSize", "Intercept"]]).fit().summary() |
|
|
399 |
del lobular_collapse.tables[2] |
|
|
400 |
|
|
|
401 |
|
|
|
402 |
df = age[["Interface_hepatitis", "Lacunarity"]].dropna() |
|
|
403 |
df["Intercept"] = np.ones(len(df)) |
|
|
404 |
interface_hepatitis = sm.GLS(endog = df.Interface_hepatitis, exog = df[["Lacunarity", "Intercept"]]).fit().summary() |
|
|
405 |
del interface_hepatitis.tables[2] |
|
|
406 |
|
|
|
407 |
|
|
|
408 |
df = age[["Fibrosis", "Inflammation"]].dropna() |
|
|
409 |
df["Intercept"] = np.ones(len(df)) |
|
|
410 |
fibrosis = sm.GLS(endog = df.Fibrosis, exog = df[["Inflammation", "Intercept"]]).fit().summary() |
|
|
411 |
del fibrosis.tables[2] |
|
|
412 |
|
|
|
413 |
|
|
|
414 |
|
|
|
415 |
|
|
|
416 |
# PCA |
|
|
417 |
|
|
|
418 |
s = sheep.dropna(subset=delayer([imagecols, histcols])) |
|
|
419 |
pca = decomposition.PCA(n_components=1) |
|
|
420 |
pcax = pca.fit_transform(s[imagecols]) |
|
|
421 |
pcay = pca.fit_transform(s[histcols]) |
|
|
422 |
pca = sm.GLS(endog = pcay[:, 0][:, np.newaxis], exog = add_constant(pcax)).fit().summary() |
|
|
423 |
del pca.tables[2] |
|
|
424 |
|
|
|
425 |
|
|
|
426 |
|
|
|
427 |
|
|
|
428 |
|
|
|
429 |
# REGRESSIONS : mixed effects, intercept on age at death |
|
|
430 |
|
|
|
431 |
df = age[["Fibrosis", "Inflammation"]].dropna() |
|
|
432 |
df["Intercept"] = np.ones(len(df)) |
|
|
433 |
fibrosis = sm.GLS(endog = df.Fibrosis, exog = df[["Inflammation", "Intercept"]]).fit().summary() |
|
|
434 |
del fibrosis.tables[2] |
|
|
435 |
|
|
|
436 |
# <codecell> |
|
|
437 |
|
|
|
438 |
a = portal_inflammation.summary() |
|
|
439 |
del a.tables[2] |
|
|
440 |
a |
|
|
441 |
|
|
|
442 |
# <headingcell level=2> |
|
|
443 |
|
|
|
444 |
# Image Processing |
|
|
445 |
|
|
|
446 |
# <markdowncell> |
|
|
447 |
|
|
|
448 |
# <img src="figures/sheep.jpg"></img> |
|
|
449 |
|
|
|
450 |
# <markdowncell> |
|
|
451 |
|
|
|
452 |
# <img src="figures/processed.jpg"></img> |
|
|
453 |
|
|
|
454 |
# <headingcell level=3> |
|
|
455 |
|
|
|
456 |
# Extraction |
|
|
457 |
|
|
|
458 |
# <markdowncell> |
|
|
459 |
|
|
|
460 |
# - Automagical |
|
|
461 |
# - Reasonably quick |
|
|
462 |
|
|
|
463 |
# <headingcell level=3> |
|
|
464 |
|
|
|
465 |
# Robust |
|
|
466 |
|
|
|
467 |
# <markdowncell> |
|
|
468 |
|
|
|
469 |
# - Invariant to staining, slicing, field-related variation |
|
|
470 |
# - Capture intersample variation |
|
|
471 |
|
|
|
472 |
# <markdowncell> |
|
|
473 |
|
|
|
474 |
#  |
|
|
475 |
|
|
|
476 |
# <markdowncell> |
|
|
477 |
|
|
|
478 |
#  |
|
|
479 |
|
|
|
480 |
# <markdowncell> |
|
|
481 |
|
|
|
482 |
#  |
|
|
483 |
|
|
|
484 |
# <markdowncell> |
|
|
485 |
|
|
|
486 |
#  |
|
|
487 |
|
|
|
488 |
# <headingcell level=2> |
|
|
489 |
|
|
|
490 |
# Structural and Textural Measures |
|
|
491 |
|
|
|
492 |
# <markdowncell> |
|
|
493 |
|
|
|
494 |
# - characteristic **scale** of sinusoid widths |
|
|
495 |
# - **directional** amplitude of preferred sinusoid alignment |
|
|
496 |
# - **tissue to sinusoid** ratio |
|
|
497 |
# - **count** of inflammatory foci per image |
|
|
498 |
# - **mean size** of inflammatory foci per image |
|
|
499 |
# - information **entropy** of sinusoid distribution |
|
|
500 |
# - **lacunarity** ( clustering ) of sinusoids |
|
|
501 |
|
|
|
502 |
# <markdowncell> |
|
|
503 |
|
|
|
504 |
# <img src="figures/gif.gif"></img> |
|
|
505 |
|
|
|
506 |
# <markdowncell> |
|
|
507 |
|
|
|
508 |
#  |
|
|
509 |
|
|
|
510 |
# <markdowncell> |
|
|
511 |
|
|
|
512 |
#  |
|
|
513 |
|
|
|
514 |
# <headingcell level=2> |
|
|
515 |
|
|
|
516 |
# Exploratory Analysis |
|
|
517 |
|
|
|
518 |
# <headingcell level=3> |
|
|
519 |
|
|
|
520 |
# by individual |
|
|
521 |
|
|
|
522 |
# <codecell> |
|
|
523 |
|
|
|
524 |
portal_inflammation |
|
|
525 |
|
|
|
526 |
# <markdowncell> |
|
|
527 |
|
|
|
528 |
#  |
|
|
529 |
|
|
|
530 |
# <codecell> |
|
|
531 |
|
|
|
532 |
hyperplasia |
|
|
533 |
|
|
|
534 |
# <markdowncell> |
|
|
535 |
|
|
|
536 |
#  |
|
|
537 |
|
|
|
538 |
# <codecell> |
|
|
539 |
|
|
|
540 |
pca |
|
|
541 |
|
|
|
542 |
# <markdowncell> |
|
|
543 |
|
|
|
544 |
#  |
|
|
545 |
|
|
|
546 |
# <headingcell level=2> |
|
|
547 |
|
|
|
548 |
# Exploratory Analysis |
|
|
549 |
|
|
|
550 |
# <headingcell level=3> |
|
|
551 |
|
|
|
552 |
# by age class |
|
|
553 |
|
|
|
554 |
# <codecell> |
|
|
555 |
|
|
|
556 |
fibrosis |
|
|
557 |
|
|
|
558 |
# <markdowncell> |
|
|
559 |
|
|
|
560 |
#  |
|
|
561 |
|
|
|
562 |
# <codecell> |
|
|
563 |
|
|
|
564 |
lobular_collapse |
|
|
565 |
|
|
|
566 |
# <markdowncell> |
|
|
567 |
|
|
|
568 |
#  |
|
|
569 |
|
|
|
570 |
# <codecell> |
|
|
571 |
|
|
|
572 |
interface_hepatitis |
|
|
573 |
|
|
|
574 |
# <markdowncell> |
|
|
575 |
|
|
|
576 |
#  |
|
|
577 |
|
|
|
578 |
# <headingcell level=2> |
|
|
579 |
|
|
|
580 |
# Exploratory analysis |
|
|
581 |
|
|
|
582 |
# <headingcell level=3> |
|
|
583 |
|
|
|
584 |
# with a random effect on age at death |
|
|
585 |
|
|
|
586 |
# <markdowncell> |
|
|
587 |
|
|
|
588 |
# | Dependent variable | Models<br />AIC < 2 + AIC<sub>min</sub> | Primary explanatory variables | |
|
|
589 |
# |------------------------------------------|:----------------------------------:|---------------------------------------------------------------------| |
|
|
590 |
# | Ishak score | 7 | entropy, tissue-to-sinusoid, focus count, focus size | |
|
|
591 |
# | Lobular collapse | 5 | entropy, lacunarity, tissue-to-sinusoid, focus count | |
|
|
592 |
# | Confluent necrosis | 1 | entropy | |
|
|
593 |
# | Interface hepatitis | 2 | entropy, tissue-to-sinusoid | |
|
|
594 |
# | Portal inflammation | 4 | entropy, focus size, lacunarity, focus count, scale, directionality | |
|
|
595 |
# | Fibrosis | 2 | entropy, lacunarity, tissue-to-sinusoid | |
|
|
596 |
# | Biliary hyperplasia | 1 | focus size | |
|
|
597 |
# | Necrosis, apoptosis, random inflammation | <font color="white">This_is_bla</font>2<font color="white">This_is_bla</font> | entropy, lacunarity | |
|
|
598 |
|
|
|
599 |
# <markdowncell> |
|
|
600 |
|
|
|
601 |
# - entropy consistently explains histological measures when controlled for age |
|
|
602 |
# - also important : tissue to sinusoid ratio, focus count and size, lacunarity |
|
|
603 |
|
|
|
604 |
# <markdowncell> |
|
|
605 |
|
|
|
606 |
# - biological / historical reasoning for this potential cohort effect |
|
|
607 |
# - interpretation of these models |
|
|
608 |
# - quality of fit |
|
|
609 |
|
|
|
610 |
# <headingcell level=2> |
|
|
611 |
|
|
|
612 |
# Conclusions |
|
|
613 |
|
|
|
614 |
# <markdowncell> |
|
|
615 |
|
|
|
616 |
# - our **semi-educated guess** measures may capture relevant information |
|
|
617 |
# - underlying **structure** in the data needs thought |
|
|
618 |
# - still no **map** from image or histological measures to condition of individual |
|
|
619 |
|
|
|
620 |
# <headingcell level=2> |
|
|
621 |
|
|
|
622 |
# Future directions |
|
|
623 |
|
|
|
624 |
# <headingcell level=3> |
|
|
625 |
|
|
|
626 |
# Further exploration of the dataset |
|
|
627 |
|
|
|
628 |
# <markdowncell> |
|
|
629 |
|
|
|
630 |
# - 145 sheep ( 89 females ) |
|
|
631 |
# - 11 age classes |
|
|
632 |
# - potential redundancy in various measures |
|
|
633 |
|
|
|
634 |
# <markdowncell> |
|
|
635 |
|
|
|
636 |
# - 4460 entries across 27 variables |
|
|
637 |
# - 3330 with full image and histological information |
|
|
638 |
# - 1196 for which **complete** information is available |
|
|
639 |
|
|
|
640 |
# <headingcell level=3> |
|
|
641 |
|
|
|
642 |
# More data |
|
|
643 |
|
|
|
644 |
# <markdowncell> |
|
|
645 |
|
|
|
646 |
# - nutritional information |
|
|
647 |
# - immunity data |
|
|
648 |
|
|
|
649 |
# <headingcell level=3> |
|
|
650 |
|
|
|
651 |
# Narrow-field images |
|
|
652 |
|
|
|
653 |
# <markdowncell> |
|
|
654 |
|
|
|
655 |
# - 12536 images |
|
|
656 |
# - spatial distribution of nuclei |
|
|
657 |
|
|
|
658 |
# <markdowncell> |
|
|
659 |
|
|
|
660 |
#  |
|
|
661 |
|
|
|
662 |
# <markdowncell> |
|
|
663 |
|
|
|
664 |
#  |
|
|
665 |
|
|
|
666 |
# <markdowncell> |
|
|
667 |
|
|
|
668 |
#  |
|
|
669 |
|
|
|
670 |
# <markdowncell> |
|
|
671 |
|
|
|
672 |
# <img src="figures/10x.png" width=100%></src> |
|
|
673 |
|