import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn
from matplotlib import rcParams
rcParams["figure.figsize"] = (14, 8)
rcParams["xtick.labelsize"] = 12
rcParams["ytick.labelsize"] = 12
rcParams["font.size"] = 14
rcParams["axes.titlesize"] = 16
#rcParams["text.usetex"] = False
rcParams["font.family"] = "Serif"
rcParams["figure.dpi"] = 600
a = pd.read_csv("../data/villagebay_population.csv")
b = pd.read_csv("../data/exposure.csv")
fig, (ax, ax2) = plt.subplots(2, 1, sharex=True)
#ax = plt.subplot(211)
ax.plot(a.Year, a.VillageBay, c=seaborn.color_palette("deep", 8)[0], lw=3)
ax.scatter(a.Year, a.VillageBay, c=seaborn.color_palette("deep", 8)[0], s=50)
ax.set_title("Village Bay Population")
ax.set_ylim([180, 700])
#ax2 = plt.subplot(212, sharex=ax)
ax2.plot(b.BirthYear, b.AvgOfLambWS, c=seaborn.color_palette("deep", 8)[2], lw=3)
ax2.scatter(b.BirthYear, b.AvgOfLambWS, c=seaborn.color_palette("deep", 8)[2], s=50)
ax2.set_title("Lamb Winter Survival")
ax2.set_xlim([1984.5, 2013.5])
ax2.set_ylim([0, 0.8])
plt.savefig("figures/population2.jpg", dpi=300, jpeg_quality=100)
In the field, winter of 2011 - 2012 :
In the lab :
Analysis :
Sweat-and-blood-collected in cold, cold Scotland.
Eight physical measurements :
Operator-driven visual analysis of 98 slides under microscopy.
Eleven discrete and continuous measures :
Automated analysis of 4430 images of slides representing 143 sheep.
Seven structural and textural measures with varying levels of biological interpretation :
Information extraction must be
Romain Garnier
Andrea Graham
Tawfik Aboellail (CSU)
Bryan Grenfell