|
a |
|
b/4x/reference/giftest.py |
|
|
1 |
import os |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
|
|
|
5 |
from scipy.ndimage import maximum_filter, minimum_filter, binary_fill_holes |
|
|
6 |
|
|
|
7 |
import skimage as ski |
|
|
8 |
from skimage import io, filter, color, exposure, morphology, feature, draw, measure, transform |
|
|
9 |
|
|
|
10 |
#figsize(16, 10) |
|
|
11 |
|
|
|
12 |
l = os.listdir("../data") |
|
|
13 |
for f in l : |
|
|
14 |
if not f.endswith(".jpg") : |
|
|
15 |
l.remove(f) |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
qstain = np.array([[.26451728, .5205347, .81183386], [.9199094, .29797825, .25489032], [.28947765, .80015373, .5253158]]) |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
|
23 |
for im in l : |
|
|
24 |
|
|
|
25 |
print im |
|
|
26 |
|
|
|
27 |
A = transform.rescale(io.imread("../data/" + im), 0.25) |
|
|
28 |
|
|
|
29 |
deconv = ski.img_as_float(color.separate_stains(A, np.linalg.inv(qstain))) |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
|
35 |
|
|
|
36 |
subveins1 = \ |
|
|
37 |
morphology.remove_small_objects( |
|
|
38 |
filter.threshold_adaptive( |
|
|
39 |
filter.gaussian_filter( |
|
|
40 |
deconv[:, :, 2] / deconv[:, :, 0], |
|
|
41 |
11), |
|
|
42 |
250, offset = -0.13), |
|
|
43 |
60) |
|
|
44 |
|
|
|
45 |
subveins2 = \ |
|
|
46 |
morphology.remove_small_objects( |
|
|
47 |
filter.threshold_adaptive( |
|
|
48 |
filter.gaussian_filter( |
|
|
49 |
maximum_filter( |
|
|
50 |
deconv[:, :, 2] / deconv[:, :, 0], |
|
|
51 |
5), |
|
|
52 |
11), |
|
|
53 |
250, offset = -0.13), |
|
|
54 |
60) |
|
|
55 |
|
|
|
56 |
veins = \ |
|
|
57 |
maximum_filter( |
|
|
58 |
morphology.remove_small_objects( |
|
|
59 |
binary_fill_holes( |
|
|
60 |
morphology.binary_closing( |
|
|
61 |
np.logical_or(subveins1, subveins2), |
|
|
62 |
morphology.disk(25)), |
|
|
63 |
), |
|
|
64 |
250), |
|
|
65 |
27) |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
|
69 |
|
|
|
70 |
|
|
|
71 |
|
|
|
72 |
inflammation = \ |
|
|
73 |
maximum_filter( |
|
|
74 |
morphology.remove_small_objects( |
|
|
75 |
filter.threshold_adaptive( |
|
|
76 |
exposure.adjust_sigmoid( |
|
|
77 |
filter.gaussian_filter( |
|
|
78 |
exposure.equalize_adapthist( |
|
|
79 |
exposure.rescale_intensity( |
|
|
80 |
deconv[:, :, 1], |
|
|
81 |
out_range = (0, 1)), |
|
|
82 |
ntiles_y = 1), |
|
|
83 |
5), |
|
|
84 |
cutoff = 0.6), |
|
|
85 |
75, offset = -0.12), |
|
|
86 |
250), |
|
|
87 |
29) |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
|
91 |
|
|
|
92 |
|
|
|
93 |
|
|
|
94 |
|
|
|
95 |
# Labelled |
|
|
96 |
total = np.zeros_like(A) |
|
|
97 |
#total[:, :, 0] = blood |
|
|
98 |
total[:, :, 1] = veins |
|
|
99 |
total[:, :, 2] = inflammation |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
|
|
|
103 |
|
|
|
104 |
|
|
|
105 |
|
|
|
106 |
|
|
|
107 |
io.imsave("__1.gif", A) |
|
|
108 |
io.imsave("__2.gif", total) |
|
|
109 |
|
|
|
110 |
os.system("gifsicle --delay=80 --loop __*.gif > %s.gif" % im) |
|
|
111 |
|
|
|
112 |
|