[171cba]: / 4x / reference / entropy_lacunarity.ipynb

Download this file

2552 lines (2552 with data), 211.5 kB

{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import os\n",
      "import skimage as ski\n",
      "from skimage import io, filter, draw, morphology, exposure, color, feature\n",
      "import scipy.ndimage as nd\n",
      "import scipy.stats as st\n",
      "import scipy.signal as sg\n",
      "from sklearn.svm import SVC\n",
      "import pandas as pd\n",
      "from scipy.signal import *\n",
      "import lmfit as lm\n",
      "import numpy as np\n",
      "from prettyplotlib import plt\n",
      "import pickle\n",
      "#matplotlib.rcParams['savefig.dpi'] = 3. * matplotlib.rcParams['savefig.dpi']\n",
      "#figsize(14, 8)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 166
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Read filenames\n",
      "files = []\n",
      "dirq = \"4xtry/\"\n",
      "for i in os.listdir(dirq) :\n",
      "    if i.endswith(\".jpg\") :\n",
      "        if not i.endswith(\"processed.jpg\") :\n",
      "            files.append(dirq + i)\n",
      "            \n",
      "print len(files)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "403\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "base = {\"entropy\" : {}, \"lacunarity\" : {}}\n",
      "data = {\"soay\" : base, \"control\" : base}\n",
      "\n",
      "entropy = []\n",
      "entropyvar = []\n",
      "entropynum = []\n",
      "lacunarity = []\n",
      "lacunarityvar = []\n",
      "t = np.unique(np.round(np.exp(np.linspace(np.log(25), np.log(600), 20)))).astype(int)\n",
      "\n",
      "\n",
      "\n",
      "quick = files[::2]\n",
      "\n",
      "#files = [files[0]]\n",
      "\n",
      "for file in files[::3] :\n",
      "    if not os.path.exists(file + \"_processed.jpg\") :\n",
      "        A = io.imread(file)\n",
      "        B = exposure.adjust_sigmoid(ski.img_as_float(A), gain=12)\n",
      "        C = color.rgb2xyz(B)[:, :, 1]\n",
      "        D = filter.threshold_adaptive(C, 351)\n",
      "        E = morphology.remove_small_objects(~morphology.remove_small_objects(~D, 100), 100)\n",
      "        io.imsave(file + \"_processed.jpg\", ski.img_as_float(E))\n",
      "        print \"Created !\"\n",
      "\n",
      "    else :\n",
      "        E = ski.img_as_float(io.imread(file + \"_processed.jpg\"))\n",
      "        print \"Existed !\"\n",
      "    \n",
      "    \n",
      "    ent = []\n",
      "    entvar = []\n",
      "    lac = []\n",
      "    entnum = []\n",
      "    \n",
      "    for i in t :\n",
      "        circle = morphology.disk(i)\n",
      "        circlesize = np.sum(circle)\n",
      "        Y = fftconvolve(E, circle, \"same\")\n",
      "        px = np.reshape(Y[int(i) : int(E.shape[0]-i), int(i) : int(E.shape[1]-i)] / circlesize, (E.shape[0]-2*i)*(E.shape[1]-2*i),)\n",
      "        py = 1. - px\n",
      "        ind = np.logical_and(px > 1./circlesize, px < 1)\n",
      "        ent.append(-np.mean(px[ind] * np.log(px[ind]) + py[ind] * np.log(py[ind])))\n",
      "        entvar.append(np.var(px[ind] * np.log(px[ind]) + py[ind] * np.log(py[ind])))\n",
      "        entnum.append(len(ind))\n",
      "        lx = np.var(Y) / np.mean(Y)**2 + 1\n",
      "        ly = np.var(1-Y) / np.mean(1-Y)**2 + 1\n",
      "        lac.append(2 - (1./lx + 1./ly))\n",
      "\n",
      "    fid = file.split(dirq + \"Sheep\")[1].split(\"-4x\")[0]\n",
      "\n",
      "    if 95 < int(fid) < 100 :\n",
      "        if fid not in data[\"control\"][\"entropy\"] :\n",
      "            data[\"control\"][\"entropy\"][fid] = []\n",
      "            data[\"control\"][\"lacunarity\"][fid] = []\n",
      "            \n",
      "        data[\"control\"][\"entropy\"][fid].append(ent) \n",
      "        data[\"control\"][\"lacunarity\"][fid].append(lac)\n",
      "  \n",
      "    else :\n",
      "        if fid not in data[\"soay\"][\"entropy\"] :\n",
      "            data[\"soay\"][\"entropy\"][fid] = []\n",
      "            data[\"soay\"][\"lacunarity\"][fid] = []\n",
      "            \n",
      "        data[\"soay\"][\"entropy\"][fid].append(ent)\n",
      "        data[\"soay\"][\"lacunarity\"][fid].append(lac)\n",
      "        \n",
      "    entropy.append(ent)\n",
      "#    entropyvar.append(entvar)\n",
      "#    entropynum.append(entnum)\n",
      "    lacunarity.append(lac)\n",
      "    print fid"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Existed !\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "148"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "149"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "21"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "31"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "31"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "31"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "31"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "31"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "31"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "31"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "56"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "61"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "7"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "86"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "86"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "86"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "86"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "86"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "86"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "88"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "94"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "96"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Existed !"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "99"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "X = np.array([np.var(data[\"soay\"][\"lacunarity\"].values()[i], axis=0) for i in range(12)])\n",
      "X2.shape\n",
      "\n",
      "y = np.zeros((12,1))\n",
      "y[-2:-1] = 1"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 127
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "Z = t.reshape(20,1)\n",
      "for i in data[\"control\"][\"lacunarity\"].keys()[:-2] :\n",
      "    for j in data[\"control\"][\"lacunarity\"][i] :\n",
      "        #Z = np.concatenate((Z, np.array(j).reshape(len(j),1)), axis=1)\n",
      "\n",
      "        "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 249
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "d = {}\n",
      "d[\"Scale\"] = Z[:, 0]\n",
      "for i in data[\"control\"][\"entropy\"].keys()[:-2] :\n",
      "    for j in data[\"control\"][\"entropy\"][i] :\n",
      "        d[\"Sheep\" + i + \"_\" + str(randint(0, 1000))] = j"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 269
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "pd.DataFrame(d).to_csv(\"../datapackage/4. Raw Data/Ent_Soay.csv\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 270
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "indlacmean = []\n",
      "indlacvar = []\n",
      "indlacsize = []\n",
      "for i in data[\"control\"][\"lacunarity\"].keys() :\n",
      "    indlacmean.append(np.mean(np.array(data[\"control\"][\"lacunarity\"][i]), axis=0))\n",
      "    indlacvar.append(np.std(t[np.argmin(np.array(data[\"control\"][\"lacunarity\"][i]), axis=1)], axis=0))\n",
      "    indlacsize.append(np.mean(t[np.argmin(np.array(data[\"control\"][\"lacunarity\"][i]), axis=1)], axis=0))"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 200
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "plt.errorbar(range(10), np.array(indlacsize[:10]), np.array(indlacvar[:10]), linewidth=3, ecolor=\"k\", elinewidth=2)\n",
      "plt.errorbar(range(10,12), np.array(indlacsize[10:]), np.array(indlacvar[10:]), linewidth=3, ecolor=\"k\", elinewidth=2)\n",
      "legend([\"Soay\", \"Control\"])\n",
      "xlim([-0.5, 11.5])\n",
      "title(\"Global Minimum in Lacunarity\")\n",
      "xlabel(\"Individual\")\n",
      "ylabel(\"Scale (pixels)\")\n",
      "\n",
      "dd = {}\n",
      "dd[\"Scale\"] = t\n",
      "dd[\"Entropy_mean\"] = np.mean(np.array(data[\"control\"][\"entropy\"][\"96\"]), axis=0)\n",
      "dd[\"Entropy_std\"] = np.std(np.array(data[\"control\"][\"entropy\"][\"96\"]), axis=0)\n",
      "pd.DataFrame(dd).to_csv(\"../datapackage/3. Entropy/entropy_control.csv\")"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAACogAAAZeCAYAAAB5ojHeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAj4AAAI+ABZgElcgAAIABJREFUeJzs3XlclPX+///nsCMICiiK4r6g5Z6YbZaKrUexNEtzTU9l\nWh2zU5rHbPFoZVZqtphZamb2UaQ8Kmq2mJIL7gviFi6ouCCbLALz+8Of13cGBhiUAaTH/Xbr1vWe\neb/f1+sahplb9vR1mcxms1kAAAAAAAAAAAAAAAAAAACoNJzKuwAAAAAAAAAAAAAAAAAAAACULgKi\nAAAAAAAAAAAAAAAAAAAAlQwBUQAAAAAAAAAAAAAAAAAAgEqGgCgAAAAAAAAAAAAAAAAAAEAlQ0AU\nAAAAAAAAAAAAAAAAAACgkiEgCgAAAAAAAAAAAAAAAAAAUMkQEAUAAAAAAAAAAAAAAAAAAKhkCIgC\nAAAAAAAAAAAAAAAAAABUMgREAQAAAAAAAAAAAAAAAAAAKhkCogAAAAAAAAAAAAAAAAAAAJUMAVEA\nAAAAAAAAAAAAAAAAAIBKhoAoAAAAAAAAAAAAAAAAAABAJUNAFAAAAAAAAAAAAAAAAAAAoJIhIAoA\nAAAAAAAAAAAAAAAAAFDJEBAFAAAAAAAAAAAAAAAAAACoZAiIAgAAAAAAAAAAAAAAAAAAVDIERAEA\nAAAAAAAAAAAAAAAAACoZAqIAAAAAAAAAAAAAAAAAAACVDAFRAAAAAAAAAAAAAAAAAACASoaAKAAA\nAAAAAAAAAAAAAAAAQCVDQBQAAAAAAAAAAAAAAAAAAKCSISAKAAAAAAAAAAAAAAAAAABQybiUdwEA\nAAAAAACQLly4oAMHDujixYu6ePGiMjMz5e3tLW9vb9WrV0/NmzeXl5dXifbcvHmzBg8ebIznz5+v\n0NDQ0i7dLl27dlVCQoIkqXfv3poyZUq51HG9KtJr6Sivvfaali9fLkkKCgrS+vXry62WZcuWafz4\n8cZ4/fr1CgoKKrd64Dh/h98toLQMHDhQW7dulSR17NhRCxYsKOeKAAAAAABARUdAFAAAAAAAoJyc\nPXtWCxYs0IYNG3Tw4MEi55pMJjVu3FjdunXTAw88oBYtWpToXCaTSSaT6UbKxf/PEa+lZYD2mipV\nqmjTpk3y8PAo8X4PPvigjh07VuDx2NhYu9ZXpPdKRaoFjnUzfk7lDzOPGjVKo0aNKseK8Hdxs/2u\nAAAAAACA8kFAFAAAAAAAoIylpqZq5syZWrx4sbKzs+1aYzabdfjwYR0+fFiff/652rdvr9GjR6tz\n5852r0fpKKvX8vLly1qzZo169uxZonW7d++2GQ4tSZioIr1fKlItcCx+1kDpmTlzpnHcqVMnOvMC\nAAAAAPA3RUAUAAAAAACgDB0/flzPPPNMgQCfyWRSw4YN1bJlS1WvXl2+vr66dOmSzp8/bwRDLW3f\nvl1Dhw7V2rVrFRwcXJaXgDIUGRlZ4oBoRETEdZ3rWoC0InRxtKwFlRs/a6Bk7P1d+eSTT6zWEBAF\nAAAAAODviYAoAAAAAABAGYmNjdXgwYOVnJxsPObl5aXBgwerX79+CgwMLHTtqVOntG7dOn399dc6\nffq0JAJVlZWnp6cyMjIkSdHR0UpMTFTNmjXtWpudna2VK1fa3Ks4U6ZM0ZQpU0pesAP07t1bvXv3\nLu8yUAZCQ0MVGxtb3mUAN4UFCxaUdwkAAAAAAOAm41TeBQAAAAAAAPwdpKWl6cUXX7QKh7Zt21Zr\n167VCy+8UGQ4VJLq1KmjwYMHKyoqShMmTFDVqlUdXTLKSf369dW0aVNJUl5enn766Se71/7666/G\ne8zX11cdO3Z0SI0AAAAAAAAAgIqPgCgAAAAAAEAZePPNNxUfH2+MO3bsqG+++UZ+fn4l2sfNzU1P\nPfWUli5dqhYtWpR2maggLG8rHxkZafe65cuXG8cPP/ywXF1dS7UuAAAAAAAAAMDNg4AoAAAAAACA\ngx05csSqC6S3t7fee+89ubu7X/ee9erV0+LFi+2+9ThuHiaTST179pST09U/uouLi9OBAweKXXfx\n4kX9/vvvxh7h4eEym80OrRUAAAAAAAAAUHG5lHcBAAAAAAAAld3cuXOtxiNGjFDt2rVveF83N7cb\n3qMoGRkZiomJ0enTp5WUlCR3d3cFBASoVatWqlevXqmdJzMzU1u2bNGZM2d06dIl+fn5qUmTJmrb\ntu1173n58mUdOnRIx44dU1JSkjIzM+Xt7S1/f3+1atVKwcHBpVa/IwQGBur222/Xpk2bJF3tDFpc\nx9gVK1YoJydHktSgQQO1bt3a4XXakpWVpc2bNyshIUHJycmqVq2a8fN0dnYu01pyc3MVExOj48eP\n68KFC/L09FSLFi3UoUMHI4BrS3JysrZu3arjx4/rypUr8vf3V7t27dS4ceMyrP7GxMbGKi4uTmfP\nnpWTk5MaNmyo22+/XVWqVCl0TXZ2tmJiYnT48GGlpaWpWrVqatasmdq3by+TyVSG1V+f/fv369Ch\nQzp79qzc3d0VFBSk0NBQ+fr6lndpNyQ3N1eHDx/W0aNHlZiYqMuXL8vT09P4+YSEhBT5frZXTk6O\n9uzZo/j4eCUlJSkrK0ve3t4KDg5WixYtKvxfSLhw4YK2b9+u06dPKysrS/7+/mrTps0N/d6eOHFC\nR44c0alTp5SWliZnZ2f5+vqqXr16atOmjTw8PEqt/pycHO3YsUOnTp1SYmKiXF1d1alTJ7Vs2bLU\nzgEAAAAAAP5+CIgCAAAAAAA4UFZWllX3UBcXF/Xp06ccKyresWPH9PHHH2v9+vXKzs62Oad+/fr6\n5z//qUcfffS6g2MZGRmaPn26IiIilJaWVuD5wMBAjRo1Sn379rVrv5MnT2rlypVav3699u7da4Ql\nbalTp46GDBmifv36OTxoe7169eplBET/97//6dVXXy0yBGZ5e/levXqV+HyvvfaasUdQUJDWr19f\n6NyQkBDjeNSoURo1apQyMzP10UcfaenSpUpNTS2wxt/fX88//7z69+9fbC3Lli3T+PHjjfH69esV\nFBRkc+7AgQO1detWSVLHjh21YMECZWdn68svv9SiRYt0/vz5Amtq166t8ePHKywszOrxc+fO6YMP\nPrAK21pq37693nrrLTVp0qTI+jdv3qzBgwcb4/nz5ys0NLTINdfYem1tmTlzpj755BNjHBsbK0la\nuXKlPvvsM8XFxRVY4+npqREjRujZZ5+1ei9lZ2friy++0Pz585WSklJgXVBQkF5//XV169bNrmso\niZK8VoW9R6OiojRr1iwdOnSowBonJyf16tVLY8eOlb+/f6nX7ygpKSlau3at1qxZo61bt+ry5cuF\nzq1atar69Omj4cOHX9c1Hj16VJ999pnWrVtX5HmaNGmiRx55RP3795ePj0+B5+197+Zn63fYlsLe\nKwkJCZoyZYp++eUXm7+3zZs317hx43T77bcXW0tOTo7++OMPrVq1Sps2bdK5c+cKnevi4qLu3bvr\n2Weftbr2onTt2lUJCQmSpN69e2vKlCnKysrSzJkztXTpUiUlJVnNHzRokFVAtLjXyvJ3xNKsWbM0\na9YsmzVdq+Ps2bPq2rWrcnNzJUl9+/bV22+/bdd1XZP/c2nZsmUEXAEAAAAAKGfcYh4AAAAAAMCB\ndu3apStXrhjj0NDQCh1SWrRokR555BGtXr260HCoJMXHx+v111/Xk08+WSDQYo8zZ87o8ccf14IF\nC2yGQyXp7Nmz+s9//qORI0davYaFef755zV9+nTt3LmzyHCoJJ06dUqTJ0/WU089pcTExBLXXxbC\nwsKMbo/nz5/Xhg0bCp176NAh7d+/X9L/C8TdiJKGfk+ePKm+ffvq66+/thkOla5293vrrbc0ceJE\nh9ViMpmUnp6uIUOGaMaMGTbDoZJ0+vRpjR49WgsXLjQe27dvn3r16qXly5cX+v7Zvn27+vfvb7zW\n9tbk6O6b1/afPHmyxowZYzMcKl0NZc+YMUP/+te/jMcuXbqkAQMGaNasWTbDoZKUkJCgUaNG6f/+\n7/9Kv3gLJXmtrs1755139OKLL9oMh0pSXl6eIiIi9OSTT+r06dOlVqujzZw5U6+//rp+++23IkOb\nkpSamqp58+apV69e2r59u93nMJvNmjlzph555BH9+OOPxZ7n8OHD+uijj7Rlyxa7z1FSJfn5m0wm\nbdy4UeHh4Vq7dm2hv7cHDx7U008/bTM4md+vv/6qZ599VpGRkUWGQ6WrYdLVq1erT58+Wrx4sV11\n53fq1Ck99thj+vLLL21+lxb1epT250pgYKBVCHzFihWFfj/bkpubqx9++MEYt2rVinAoAAAAAAAV\nAB1EAQAAAAAAHCgmJsZq3KpVq3KqpHhff/21pk6davWYn5+f7rnnHtWuXVvp6enau3evduzYIbPZ\nLEnauXOn+vfvryVLlqhq1ap2nScnJ0cvvfSSEeiqW7eu7rjjDtWoUUNJSUnavHmzjhw5Ysxfv369\nxowZo5kzZ9q1v8lkUlBQkJo2barg4GB5e3vLyclJycnJOnjwoHbs2GEEiXbv3q2RI0fqu+++k6ur\nq137l5UqVaqoR48eRqgpMjJSXbp0sTnXMvh02223qXbt2mVSoySlp6frueee06FDh2QymdSiRQu1\nb99e1apV06VLlxQdHW3181yyZInatWun3r17l3otZrNZ//rXv7R9+3aZTCY1atRIoaGh8vPz06VL\nl/THH38oPj7emD9lyhS1b99ePj4+GjZsmJKTk+Xs7Kw2bdqoVatW8vb2VkJCgn755RddunRJ0tXO\nji+//LIiIyPt6j577XfFkcxms+bMmWN0EwwICNBdd92l2rVrKysrSzt37rQKDkZFRWn+/Pl64okn\n9Oyzz2rPnj0ymUxq2LChEWJPTk7Whg0bjNfLbDbrrbfeUocOHdSwYUOHXUdJ5s6YMcMI+QYEBOiO\nO+5QUFCQcnNzdfDgQW3atMn4XT9+/Lhee+01ffPNNw6p3VFMJpN8fX0VEhKiBg0ayNfXV25ubkpL\nS9Nff/2lrVu3GiG+8+fP65lnnlFERITq1q1b5L5ms1ljx47V//73P6vHq1atqk6dOik4OFheXl5K\nTU3VkSNHtGfPHiUnJ5dJ4NkeZrNZBw8e1AcffKCMjAy5urqqY8eOat68uapUqaKEhAT9/vvvunDh\ngqSr4cU33nhDrVu3VqNGjYrd32Qyyd3dXSEhIWrYsKH8/f3l6emprKwsnTp1yriVvXT1O23SpEkK\nCAhQ9+7d7b6GrKwsjR49WocPH5bJZFK9evXUqVMnBQQEKCUlRXFxcUV2jbbF2dlZzs7OMplMVoFZ\nk8kkZ2fnQtdcM2DAAK1Zs0bS1UB5ZGSkBgwYYNe5f/nlF6u/cPHEE0+UqHYAAAAAAOAYBEQBAAAA\nAAAc6ODBg1bjitpNa8+ePZo2bZoxdnJy0nPPPafnnntOLi7Wf4S0d+9ejR07Vn/99Zekq7ekf+ON\nNzR9+nS7zhUVFaXs7Gy5ublp/PjxNkMkUVFRev31143g09q1a7Vs2TI9+uijhe7btGlTPfbYY+rW\nrZvq1KlT6LyLFy/qgw8+0NKlS43r+frrrzVixAi76i9L1zpaStLPP/+stLQ0eXt7W83Jy8vTjz/+\naIzDw8PLtMaFCxfqypUrql+/vqZOnap27doVmPPNN99o6tSpRgBw5syZCg8PL/Wg2bXwr4+Pj/77\n3/8WCGvl5eXpww8/1Jw5cyRdDY3NmDFD6enpSk5OVrNmzfTee+8VuF10amqqXnzxRW3atEnS1fd8\nZGSk+vbtW6r134iPP/5YTk5OGj16tEaMGFHg93bt2rUaM2aM0Y33s88+09mzZ7Vz5075+Pho8uTJ\nCgsLs1qT//XKzs7W7Nmz9f7775fNRRUhMTFRn376qVxcXDRmzBgNGjSowDXHxcXpmWeeMYJ8mzdv\nVnR0tDp37lweJZdIjRo1NGLECD300ENq0aJFofOys7O1aNEiffDBB7py5YpSU1P15ptvGj+zwnzx\nxRdW4VAPDw+9+OKLGjBggM3gc25urv78808tXLiwxKFFR3n33Xd15coV3X333XrrrbcKBOMzMjI0\nceJE/fTTT5KuBjI//fTTIt+/Hh4eCg8PV69evdShQ4ciQ+C//PKLJk2apLNnz0qSJkyYoLvuukse\nHh521R8VFaXc3Fz5+vrq7bffVo8ePQrMsad7tqXJkydr8uTJkmT1Ofb8889r1KhRxa7v1KmTmjRp\nosOHD0uSvv/+e7sDopZdVH18fPTII4+UpHQAAAAAAOAgFeNPcgAAAAAAACqpa10HrwkICCinSor2\n7rvvWnUbe+WVVzR69OgCgStJuvXWWzV//nzVqlXLeGzlypXatm2bXefKzs6WyWTSu+++W2iHsfvv\nv1+ffvqpVWezadOmFXnb+2nTpmnQoEFFhkOlq11RJ0+erP79+xuPffvtt8rLy7Or/rJ0++23G6Gn\nrKwsrVq1qsCcTZs2GbdC9vT01AMPPFCmNV65ckW1a9fWd999ZzMcKkmDBw+2ClMmJCQ45DbVOTk5\ncnNz01dffWWzk5+Tk5Nefvllqzp//fVXbd26VcHBwfr2228LhEOlq10Vp02bZhXOtQzlVgQ5OTka\nN26czVC3JIWFhWnYsGHG+OLFi5o7d67xeuUPh0r/7/Vq27at8di6deuUmZnpmIsogWufV1OnTtWw\nYcNsXnOzZs0KBNcjIyPLpL4b9c9//lMvv/xykeFQSXJzc9OQIUOsQo9//PGHjh49WuiaEydOaMaM\nGcbY09NTX331lYYOHVpoINLZ2Vl33nmnPv30U913330lvBrHuHLlirp06aLPP//cZtdkT09PTZky\nRU2aNDEeW7NmTZHv37vuuktTp05V586di+0QfN9992nhwoXy8vKSdPX7viTvr9zcXLm5uWnevHk2\nw6GSyqWz9ZNPPmkcx8XFWXUfLsyJEye0ceNGY9yzZ0+5u7s7pD4AAAAAAFAyBEQBAAAAAAAcKDk5\n2Wps723Yy1JsbKxVuLNt27YaOnRokWtq1qypCRMmWD02f/58u8/ZvXt3Pfjgg0XO6dixo1VQ5eLF\ni4qKirL7HMV5/vnnjU54Z86c0YEDB0pt79JiMpn0j3/8wxjbCiVGREQYx926dVOVKlXKpDZL//nP\nf+Tn51fknMGDB1uNd+7c6ZBaBg0apFtvvbXIOf369Svw2MSJE4v8/fTz87MKUe7du7dMbh9vrzZt\n2mjgwIFFzrF13YMHDy7R65WRkaHY2NjrK7KUde/evdguhe3atVOrVq2M8Y4dOxxdVrl44IEH1LRp\nU0lXb7/+22+/FTp37ty5ys3NNcZjx45V+/btHV5jafPw8NB///vfIjuauri4WP1lgKysrFL9rA8O\nDrbq2vzLL7+UaP3QoUMrXGfx8PBwI/QqWXcGLcySJUuMz0OTyWT13Q0AAAAAAMoXAVEAAAAAAAAH\nSk9PN45NJpM8PT3tWnfo0CG1bNlSt9xyi1q2bFnoP4V1HSuJdevWWY2HDBli17ru3burfv36xvj3\n33+36kJalOKCbNcMGjTIarx27Vq71tnD39/fKtS4a9euUtu7NPXq1cs43rZtm06dOmWM09LSrH5+\nZX17eUkKCgpS165di53XuHFjVatWzRgX1eHweplMpkK70lpq3bq11bhOnTq6++67i13Xpk0b4zgz\nM1MnT54seZEOYiv8mV9QUJBVF2N7Xy/L65akI0eOlLxAB7AM/hXltttuM45PnDhhFY6sTK4FRKXC\nP8/MZrNVJ+LAwEC73gMVUY8ePeTv71/svI4dO1qNS/uzx/J13717t93rKmqQ0svLy+p7JyoqqkA3\ndEtXrlzR0qVLjXGHDh3UuHFjh9YIAAAAAADsV/C+OwAAAAAAACg1lt0czWazMjIy7FpnNpvtuuV5\naQSdLDs5uri4lOj2wd27d9fcuXMlXQ3MHThwwKpbny3e3t4KDQ21a/969eqpcePGRiDNnhBndna2\nfvvtN23YsEFxcXFKSEhQenq6MjMzC3R8tHyNz549a1dNZa1x48a69dZbjY6VkZGRGjlypCRp9erV\nysrKknS1q+udd95Z5vWVpPNgUFCQETRKSUkp9Vpq1qypunXrFjsvMDDQamzvNViuM5vNSk1NLVmB\nDmIymaxCkEWpWbOmzp8/bxzXqVOn2DX5X6+KcN0uLi7q0KGDXXMtr9FsNistLU2+vr6OKq3Ubd++\nXWvXrlVsbKzi4+OVlpamy5cvF/iOsPx8K+zz7ODBg1adrXv06CFnZ2fHFO5g+YOfhQkKCrIa2/v+\njY+P16pVq7Rnzx4dPnxYycnJSk9PL/J7NykpSTk5OXJxKf5/vQQHB6tWrVp21VLW+vfvr0WLFkm6\n2nU1IiKi0M7ia9eu1cWLF41xRQy9AgAAAADwd0ZAFAAAAAAAwIHyh5BKGqwymUwFHivt21ofO3bM\nOG7QoIHc3d3tXnvLLbcU2Ku4gGizZs1KVF9ISIgREE1MTFR6errV7W8tLV26VNOmTVNSUlKJziE5\nJrBYWsLDw7V3715JsgqILl++3JjzyCOP2Hy/OFr+8GBRLAPTly9fLrdaLOsoybr8HYAdcQ3X63qu\n/XpfL8vOyOXFx8dHbm5uds219XO7GQKi27dv16RJkxQXF1fitYV9nuXfq23bttdVW0VQs2ZNu+aV\n9P17+vRpTZ48uUB3bXulpKRYdacuTKNGja5r/7LQpEkTdezYUVu3bpUkff/994UGRC1vQe/n56f7\n77+/TGoEAAAAAAD2ISAKAAAAAADgQJa31Jakc+fO2bWuWbNmio2Ntflc165dlZCQcMO1XWMZJLK8\n/bQ98t/e156QZWmcw1ZAdMqUKfrmm29s7lFYcNIybHutE2dF9PDDD2vq1KnKyclRfHy8du3aJX9/\nf23btk3S1esrj9vLSwXDd0Wx/DmUdtBZkjw8PEpcx42sc8Q1XC97g92W13AzX/f1vu+kilF/caKi\nojRmzBib3Spv5PMs/63C7Q1ZVkT5g5+FKcnP/+jRoxo0aJDRZbeofQrbz97vkqpVq9o1r7wMGDDA\nCIj+9ddfio6OVufOna3mHDt2TFu2bDHGjz76qF3dUwEAAAAAQNnhv9QBAAAAAAAcqHnz5oqKijLG\n+/fv1wMPPFCOFRVk2U2tJKEr6fo6C5b0HPZ0bVy5cqVVONTFxUXdunXTvffeq5CQEAUGBsrLy6tA\niM4ybFuRQ2PVq1fXPffco/Xr10u62jnUMjgbEhJS4s6sACqmU6dO6d///rdVOLRdu3Z68MEH1apV\nKwUFBcnHx0ceHh5WocVx48YpIiJCUuGfZ/k/o+0NWf4d5Obm6sUXX7QKh9apU0e9e/dW+/btFRwc\nLD8/P7m7u1uFICMiIjRu3DhjbO93SUUPUoaFhalmzZpKTEyUdLVTaP6A6Pfff28cOzk5qV+/fmVa\nIwAAAAAAKF7F/hMIAAAAAACAm9xtt91mNd69e3c5VVI4Ly8vpaamSpIyMjJKtDZ/WLOwW79bKuk5\n8s+3FWiaNWuW1fNz585Vu3btit27Itwq217h4eFGQHTlypXy8fExnuvVq1d5lQWglM2ZM8eqC+Xr\nr7+ugQMHFrvOns8zb29vq7GtwP3fVVRUlA4dOmSMH3roIb333nvFBjlvpu+RknB2dtbjjz9ufL/+\n/PPPOn/+vNEFPCsrywgkS1Lnzp0VHBxcLrUCAAAAAIDCOZV3AQAAAAAAAJVZmzZt5ObmZoy3bdtm\n923my4pl0LCkteW/Da/lXvauKc6FCxeKPMfx48d19OhRYzx8+HC7wqHZ2dlGMPZmcN9998nX11eS\nlJycrBMnTki62oWuZ8+e5Vka8rneW5pX1qAZSuaXX34xjjt16mRXOFSy77O1WrVqVuMzZ86UrDgH\nqCjve8vX3dvbW5MnT7ary2dJv9NuJv369TNeg5ycHP3f//2f8dyqVauUnJxsjJ988skyrw8AAAAA\nABSPgCgAAAAAAIADubu76+GHHzbG+QMWFUGjRo2M4/j4eGVmZtq9dt++fYXuVZi4uDj7i5MUGxtr\nHF+7VbylY8eOWY3vvvtuu/Y9cOCA8vLySlRLeXJ1ddWDDz5Y4PE777xTfn5+5VARCuPp6Wk1trdr\n7rVbOePvKyMjQ2fPnjXG99xzj13rcnNzdeDAgWLnNW/e3Gq8a9eukhVYBMv3fUk6RVeU973ld0mH\nDh0K/B4XZu/evY4qqdzVqFFDYWFhxnjJkiXG8eLFi43jwMBAde3atUxrAwAAAAAA9iEgCgAAAAAA\n4GBPP/20VUfBL7/8UgkJCeVYkTXLbps5OTlWXdSK8/PPPxvHnp6eatmyZbFr0tLStGXLFrv2j4+P\n15EjR4xx69atC8xJSUkxjk0mk9FlszirVq2ya15FEh4ebjU2mUzcXr4Cyv8ePHXqlF3rtm3b5ohy\ncBOx/DyT7OvKLEm//fabXaHMZs2aqXr16sY4KipKOTk5JSuyEJbve3vf8/Hx8RWmA6dlR2l7X/eL\nFy9q8+bNjirphjg7OxvHN/KXIfr3728cJyQk6LffflNcXJx27txpPN63b185OfG/mwAAAAAAqIj4\nL3YAAAAAAAAHa9KkiR566CFjnJ6erldeeaVEnTodqVu3blbjb775xq51P//8s+Lj443xvffea3dA\nZMGCBdc1r0ePHgXmWHYUNZvNOnnyZLH7JiYmVrhOrvZo27atJk6cqPHjx2v8+PEaN26cunfvXt5l\nIZ86derIw8PDGG/durXYNWazWd99950jy8JNIH+HZHs+z/Ly8vT555/bfQ7Lrtbnzp2z6gR5Ixo3\nbmwcx8TEyGw2F7tm0aJFpXLu0mD52tvzukvS3LlzdeXKFUeVdEMsr8fyVvAl1bFjRzVt2tQYf/fd\nd1bvGRcXF/Xt2/e69wcAAAAAAI5FQBQAAAAAAKAMvPnmm6pXr54xjomJ0eDBg3XhwoVyrOqq5s2b\nq2PHjsZ4586d+uqrr4pck5iYqLffftsYm0wmDRo0yO5zrl27VlFRUUXO2bZtm1Vgzs/PT/fff3+B\neZbBFcnqI2OZAAAgAElEQVT6Fri2ZGdn69///rfS0tLsrrci6d+/vwYNGmT84+bmVt4lIR9nZ2er\nbrfr168vNnA2Z84c7d+/39GloYLz9vZW7dq1jfFPP/2krKysItd8/PHHJbpV/LBhw+Ti4mKMp02b\nppiYmJIXm49lN+pz585p5cqVRc7ftm2bFi5ceMPnLS2W3yW7du1SXFxckfM3bNigefPmObqs61a3\nbl3jeM+ePTe0l2UX0d9//13Lly83xl26dFFgYOAN7Q8AAAAAAByHgCgAAAAAAEAZ8Pb21owZM6xu\nwbtr1y6FhYVpxowZOnv2bJHrc3Nz9eeff+q5555zyO3pX331VavA0Pvvv69Zs2bZvPXwvn37NHjw\nYJ05c8Z47KGHHrIKBxXlWqDxlVdeKTTMuWbNGj377LPKzc01HnvllVfk6upaYG5wcLCaN29ujFev\nXq2PPvrIau01f/31l4YNG6Y///xTTk5Ocnd3t6tmoKTCw8ON46ysLI0aNcrqd+aa9PR0vf/++5o+\nfbrN9zf+fiy7AickJGj06NE2O0CmpqbqjTfeMLqHenp62rV/UFCQXnrpJWOcmZmpYcOGad68ecrO\nzra5Jjc3V5s2bdJzzz2n9evX25zTq1cvmUwmY/zmm29q27ZtBebl5eVp+fLlGjFihHJzcyvM+z4s\nLMw4zsvL06hRo3To0KEC83Jzc7Vw4UKNHDlSeXl5dr/uZa1t27bG8e7duzVr1iydO3fuuvbq1auX\nvL29JV19bS5fvmw898QTT9xYoQAAAAAAwKFcip8CAAAAAACA0hASEqIlS5bomWee0V9//SVJunz5\nsmbPnq3Zs2erUaNGatmypapVqyZfX19lZ2crNTVVf/31l/bv36+UlBSr/Uwmk0JDQ0ultltvvVVj\nx47V1KlTJV293fWsWbO0aNEi3XPPPapVq5YyMjK0Z88ebd++3Wpto0aN9Oabb9p9rvvvv18nTpzQ\nzp07NXHiRH3xxRe644475O/vr+TkZG3evFlHjhyxWtOjRw/17t270D1feOEFPf/888b4s88+U2Rk\npO666y7VqFFDaWlpOnDggGJiYpSXlyeTyaRnn31Wy5cvd0jgFvjHP/6hefPmGQGz2NhYPfDAA7rn\nnnvUsGFD5eXlKT4+XtHR0UpNTZXJZNJbb72lcePGlXPluBGffPKJZs+eXaI1JpNJX3/9tdHJefjw\n4Vq2bJnS09MlXe3Y2LVrV3Xp0kX16tXTlStXFB8fr40bNyojI0OSFBoaqtq1aysyMtKucw4fPlyx\nsbFasWKFpKsh5nfffVezZ89Wp06dVLduXXl5eRnfQbt27TJCqn369LG5Z3BwsPr06aMffvhBkpSS\nkqKBAweqY8eOat26tVxcXJSYmKg///zT+Nzt3bu3Tp48qa1bt5boNXOE7t2765ZbbtG+ffskSceP\nH1evXr3UuXNntWjRQs7Ozjp79qz++OMPnT9/XpIUEBCggQMH6sMPPyzP0m3q06ePFi9erLy8PEnS\nrFmzNGvWLLm4uFiFcnv27Fnsd3iVKlUUHh5eoONrcHCw7r777tIvHgAAAAAAlBoCogAAAAAAAGWo\nfv36WrJkiWbMmKElS5ZYdWs7evSojh49WuweJpNJbdq00dixY3XbbbeVWm1DhgyRu7u7Jk+ebHQO\nvXjxotWtZPNr27atPvvsM6OzmD1cXFz00Ucfafjw4Tp8+LBOnjxZ5G3hu3btqunTpxe5Z7du3TRy\n5EirYNbp06eNoJIlk8mkJ598Ui+88EKR11ZezGZzue/rqBquR0WqpSRcXV01ffp0DR061AiTZWZm\nas2aNQXmOjs766WXXlLv3r2vKyB6s75GN+J6r9nRr5XZbL7hcwQGBmr69Ol64YUXjNvLp6enF3rL\n9nbt2umTTz7R5MmTreoozrRp01SnTh3NmTPHCBGmpqZq3bp1ha6x7BBqy2uvvaZDhw5p586dRh1b\ntmzRli1bCszt0aOH3nzzTT399NPF1lpWZsyYoaeeekqnT5+WdLVb5saNG7Vx48YCc2vUqKE5c+Zo\n//79xmMV6XexZcuW+ve//6333nvP+PlKUk5OjlV38MK6xub35JNPFgiI9u3bt3SKBQAAAAAADsMt\n5gEAAAAAAMqYj4+PJkyYoLVr12r48OFq1qxZsWucnZ3VtGlTDR8+XCtWrNDixYuLDYdeC/KYTKZi\nQz3XPPnkk1qxYoUeeOAB41bwtvZt0KCB3nnnHX333XeqVq2aXXtb1lGrVi398MMPGjBggLy8vGzO\nr1Wrlt5++23Nnj1bLi7F/z3nF154QR9++KHq1atX6PnbtGmjjz/+WBMnTrRZV1G12zv3el3buzT3\nt9yztK/xemu92Wq5kbqaNm2q77//XmFhYTbnm0wmtWrVSl999ZVGjBhRorpu5D1ZVq+XvXvau/f1\nXrMjf3/z7329/+TXpUsXLV682Ogqauu8wcHBGjt2rBYsWKCqVate13X+61//UmRkpB544AF5eHgU\neZ0tWrTQK6+8ok6dOhU6z8vLS/PmzdOwYcPk7u5uc5+goCBNnDhRM2bMML5nyuJz2J51derU0dKl\nSxUeHl7o946vr6/69++vyMhIhYSElNnn1fWsHzJkiCIiIjR48GC1bt1a1atXl5ub23V93zRu3Fgt\nW7Y0xq6uroV2kwUAAAAAABWHyVyR/korAAAAAADA39SFCxe0f/9+JSUlKSkpSVlZWfLy8pKvr69q\n1aqlW265RZ6enmVaU2ZmprZt26bTp08rKSlJHh4e8vf316233qr69euX6nm2bNmiM2fO6NKlS6pe\nvbqaNGmidu3aXdd+ZrNZ+/bt0/79+3Xp0iVVqVJFNWvWVIsWLRQcHFxqdQMlceHCBW3evFmJiYnK\nzc1VYGCgWrRoocaNG5d3aajgTpw4oZiYGF24cEFOTk6qUaOGGjRooFtvvbVUz5Odna3t27crISFB\nSUlJys3NVdWqVRUcHKwWLVrI39+/RPtlZGRoy5YtOnnypNLT0xUQEKAGDRqoffv2pVq3oyQlJWnb\ntm1KSEhQdna2AgICVLt2bXXo0MHqFu1/F5cuXdI999xjdBx9+OGH9cEHH5RzVQAAAAAAoDgERAEA\nAAAAAAAAAFCor7/+WlOnTjXGCxYsKLTDLQAAAAAAqDiKvzcXrGRlZWn16tVav369YmNjde7cOeXl\n5cnf31+1a9dWu3btFBoaqrvuuqvY27NER0frxx9/VExMjM6dOycnJyfVqlVLt99+ux599FHdcsst\nJaotIyNDERERWrNmjY4ePaqLFy+qWrVqqlevnrp3767HHntMvr6+N3L5AAAAAAAAAADgbyQnJ0cL\nFy40xs2aNSMcCgAAAADATYIOoiXw888/a/LkyUpISCh27p9//qlq1arZfO7y5cuaMGGCVq5cWeh6\nJycnDRw4UK+++qqcnJyKPd/u3bv18ssv68SJE4XOCQgI0JQpU3T33XcXux8AAAAAAAAAAMCiRYv0\n1ltvGeN33nlHffr0KceKAAAAAACAvQiI2umbb77RlClTJEkmk0nBwcEKDQ1VrVq15OzsrHPnzunM\nmTOKiYlRSkqKoqOjbQZEr1y5omeffVYbN26UdDUIeuedd6p169bKycnRli1btGPHDmP+448/bvUH\nL7bExsbqqaeeUlpamiTJ19dXPXr0UJ06dZSYmKg1a9bo/PnzkiQ3NzfNmTNHnTp1KpXXBQAAAAAA\nAAAAVD6pqan63//+pylTpigrK0uSVK9ePa1atUrOzs7lXB0AAAAAALAHAVE7rFixQmPHjpV0tQvn\nW2+9pa5du9qcazabtWfPHoWEhMjNza3A81988YWmT58uSfLy8tKsWbPUuXNnqzk//vijxo0bp9zc\nXEnSzJkzFRYWZvN8ubm5Cg8P16FDhyRJHTp00OzZs61uJZ+VlaWXX35Z69atkyTVqFFDa9askaen\nZ0leBgAAAAAAAAAAUIn9+OOPeuONN2Q2m5WZmWn1nMlk0meffaYuXbqUU3UAAAAAAKCkir93+d9c\nYmKi0cGzWrVq+v777wsNh0pX/4CkdevWNsOhKSkp+vzzz43xa6+9ViAcKkk9e/bU8OHDjfG0adNU\nWI53+fLlRji0WrVqmjlzplU4VJLc3d01bdo01a9fX5J07tw5zZs3r9BrAAAAAAAAAAAAfz85OTnK\nyMiwGQ4dOXIk4VAAAAAAAG4yBESLMW/ePKWkpEiSXnnlFdWpU+e691q3bp3S09MlSUFBQerTp0+h\nc59++mmjw2d8fLxiYmJszlu+fLlx3K9fP/n5+dmc5+HhoWHDhhnjiIiIEtcPAAAAAAAAAAAqL5PJ\nZPzb2dlZ/v7+uu+++/Tll19q9OjR5VwdAAAAAAAoKQKiRcjKytKyZcskST4+PurZs+cN7bd27Vrj\nOCwszPiDFlt8fHx0++2321x7TVJSkrZt22aMH3zwwSLPf//99xvnPHHihGJjY+2uHQAAAAAAAAAA\nVG69e/dWbGysDhw4oH379mnjxo369NNPdeedd5Z3aQAAAAAA4Dq4lHcBFdmuXbuUnJwsSWrTpo1c\nXV119uxZLVq0SOvXr9fJkyclSTVr1lT79u3Vs2dPm7eMv2b//v3GcYcOHYo9/2233aZffvmlwNpr\nYmNjjVvPe3t7KyQkpMj9qlWrpsaNG+vw4cPGnsWtAQAAAAAAAAAAAAAAAAAANx8CokXYuXOncVy/\nfn2tXr1aEyZMUFpamtW8+Ph4xcfHKyIiQvfee6+mTZsmb29vqzmpqak6e/as1X7FqVevnnF86NCh\nAs9bPmY5t7g9rwVEbe0JAAAAAAAAAAAAAAAAAABufgREi3Ds2DHjeO/evfruu++Um5srf39/devW\nTXXr1lVycrKio6ONDp+//vqrhg4dqm+//VZubm7G+nPnzhnHJpNJtWrVKvb8lnOSk5OVm5srZ2dn\nm3sGBgbadU2We54/f96uNQAAAAAAAAAAAAAAAAAA4OZCQLQIKSkpxvG1bqJhYWGaOnWqvLy8rOb+\n8MMPmjRpknJzc7Vnzx7NmjVLY8aMMZ5PT0+3mu/p6Vns+fPPSU9Pl4+Pj809q1SpYscVSR4eHoXW\nBAAAAAAAAAAAAAAAAAAAKgen8i6gIssfoGzcuLE++OCDAuFQSerbt69GjBhhjBcuXGh1K/qsrCyr\n+ZbdRQvj7u5uNc7IyLAaZ2ZmGseurq7F7pd/T8v1AAAAAAAAAAAAAAAAAACg8iAgWgTLbpuSNHTo\n0CKDncOGDTOev3z5sjZv3mw8lz/smZ2dXez584dK83cUtazvypUrxe6Xf8/81wcAAAAAAAAAAAAA\nAAAAACoHbjFfBMtOoSaTSXfccUeR8318fNSyZUvjdvT79u1Tt27dCuwlXe0GWlwX0fwdQ/PvYTm+\nfPlykXtdY9k11FYnVHu1bt26xGsaNWp03ecDAAAAAAAAAAAAAAAAAKAiO3r0aInX7N692wGVXEUH\n0SLUrFnTalyrVq1i11jOuXTpknFco0YN49hsNuv06dPF7nX27Fnj2NfXV87OzlbPW+555syZYvfL\nPy8gIMCuNfmFh4fb1QEV5efo0aPX9WEDAIAj8L0EAKhI+F4CAFQkfC8BACoKvpMAABUJ30sA/k6y\ns7MVHh7usP3pIFqEpk2blniNyWSyeVy1alUFBgYaoc/4+HiFhIQUuVd8fHyRtVg+dvLkSZnNZqtz\n2nL8+PEi97RXSEiIli9fft3r4VjXPjT4GQEAKgK+lwAAFQnfSwCAioTvJQBARcF3EgCgIuF7CcDf\niSPDoRIdRIvUqlUrq7E9XT8t5/j5+Vk9d8sttxjH27dvL3avbdu2GcctW7Ys8HxISIicnK7+CFNT\nU3Xw4MEi97t06ZIOHz4s6Wp41daeAAAAAAAAAAAAAAAAAADg5kdAtAhNmzZVw4YNJV29LXx0dHSR\n81NSUrR//35j3KZNG6vnu3fvbhyvXbtWeXl5Re5leb6wsLACc6pXr64OHToY49WrVxdZ35o1a4zj\nunXrFtvBFAAAAAAAAAAAAAAAAAAA3JwIiBbj0UcfNY6/+uorZWdnFzp37ty5xvN+fn4KDQ21ej4s\nLExeXl6SpISEBC1btqzIvTIzMyVJ9evX12233WZznmWL2cWLF+vixYs252VmZmru3Lk21wEAAAAA\nAAAAAAAAAAAAgMqFgGgxBg8erDp16kiSjh49qjFjxig9Pb3AvB9++EFz5swxxv/85z/l5uZmNadq\n1ap65plnjPGUKVP0559/Ftjrp59+MvYymUx6+eWXC62vd+/eatKkiaSrt5AfPXq0kpOTreZkZmbq\nlVdeUXx8vCSpRo0aGjZsWJHXDQAAAAAAAAAAAAAAAAAAbl4u5V1ARefm5qYPP/xQQ4YM0eXLl7Vu\n3TqFhYWpe/fuCgoKUlpamjZu3KgDBw4Ya+677z4NGTLE5n5Dhw5VdHS0oqOjlZ6erqFDh+quu+5S\n69atlZOTo61bt2r79u3G/Mcee0w9evQotD4nJydNmzZNTz31lNLS0hQTE6MePXro/vvvV+3atXX+\n/HlFRUXp/PnzxvW899578vT0LJ0XCAAAAAAAAAAAAAAAAAAAVDgERO3QunVrzZ07V6+++qqOHz+u\nixcvasmSJQXmOTk5qV+/fnr99dcL3cvV1VWffPKJxo8fr9WrV8tsNmvDhg3asGFDgb0GDBig8ePH\nF1tfSEiIvvzyS40dO1YnT55UcnKyzfoCAgL03//+V507d7bjqgEAAAAAAAAAAAAAAAAAwM2KgKid\n2rVrpxUrVigyMlJRUVE6cuSILly4IA8PD9WqVUuhoaF6/PHH1axZs2L3qlKlij766CNFR0crMjJS\nO3bsUGJiopydnRUYGKhOnTrpscce0y233GJ3fW3bttVPP/2kiIgIrVmzRseOHVNSUpJ8fHxUr149\ndevWTX379pWPj8+NvAwAAAAAAAAAAAAAAAAAAOAmQEC0BNzc3NS3b1/17du3VPbr3LlzqXbz9PT0\nVP/+/dW/f/9S2xMAAAAAAAAAAAAAAAAAANx8nMq7AAAAAAAAAAAAAAAAAAAAAJQuAqIAAAAAAAAA\nAAAAAAAAAACVDAFRAAAAAAAAAAAAAAAAAACASsZkNpvN5V0Ebi7h4eGSpOXLl5dzJQAAAAAAAAAA\nAAAAAAAA3JwcncWjgygAAAAAAAAAAAAAAAAAAEAlQ0AUAAAAAAAAAAAAAAAAAACgkiEgCgAAAAAA\nAAAAAAAAAAAAUMkQEAUAAAAAAAAAAAAAAAAAAKhkXMq7AAAAAAAAAAAAAAAAAABwtNTUVB09erS8\nywBwk2vUqJGqVq1a3mXYhYAoAAAAAAAAAAAAAAAAgEotNTVVXbt2VUpKSnmXAuAm5+Pjo/Xr198U\nIVFuMQ8AAAAAAAAAAAAAAACgUjt69CjhUAClIiUl5abpRkwHUQAAAAAAAAAAAAAAAAB/G++8846a\nNWtW3mUAuMnExcVpwoQJ5V1GiRAQBQAAAAAAAAAAAAAAAPC30axZM7Vp06a8ywAAh+MW8wAAAAAA\nAAAAAAAAAAAAAJUMAVEAAAAAAAAAAAAAAAAAAIBKhoAoAAAAAAAAAAAAAAAAAABAJUNAFAAAAAAA\nAAAAAAAAAAAAoJIhIAoAAAAAAAAAAAAAAAAAAFDJEBAFAAAAAAAAAAAAAAAAAACoZAiIAgAAAAAA\nAAAAAAAAAAAAVDIu5V0AAADloV27dqW6344dO0p1PwAAAAAAAAAAAAAAAOBGEBAFAMBCenq6Dh06\nZPO5pk2bysvLq4wrAgAAAAAAAAAAAAAAAEqOgCgA4G+psI6fGzZs0D333GPzublz5+ruu+92ZFkA\nAAAAAAAAAAAAAABAqXAq7wIAAAAAAAAAAAAAAAAAAABQugiIAgAAAAAAAAAAAAAAAAAAVDIERAEA\nAAAAAAAAAAAAAAAAACoZl/IuAAAAAAAAAAAAAAAAAACAspKTk6O4uDjFxcUpOTlZ6enpcnd3V9Wq\nVVWnTh3Vq1dPdevWlclkKu9SgRtCQBQAAAAAAAAAAAAAAAAAUOkdOnRI8+fP14oVK5SRkVHk3KpV\nq+rWW29V586dde+996pZs2ZlVCVQegiIAgAAAAAAAAAAAAAAAAAqLbPZrNmzZ+vTTz9VTk6OXWtS\nU1MVHR2t6OhoRUVFaenSpQ6uEih9BEQBAAAAAAAAAAAAAAAAAJXWO++8o2+//dbqMQ8PD7Vv316N\nGzeWj4+PcnJylJSUpLi4OMXGxiozM9OYy63mcbMiIAoAAAAAAAAAAAAAAAAAqJRWrVplFQ51dXXV\nyJEjNXjwYFWpUsXmmitXrmjjxo1atWqVVq9eXValAqWOgCgAAAAAAAAAAAAAAAAAoFL68MMPjWOT\nyaQPP/xQ3bt3L3KNq6ur7r33Xt1777169dVXtWnTJkeXCTiEU3kXAAAAAAAAAAAAAAAAAABAaYuN\njdXx48eN8Z133llsODQ/Pz8/PfLII6VdGlAmCIgCAAAAAAAAAAAAAAAAACqdvXv3Wo3vvPPOcqoE\nKB/cYh4AAAAAAAAAAAAAAAAAUOlcvHjRauzt7V1m542JiVFiYqJSU1NVtWpVBQYGqkOHDqpevfp1\n75udna1Dhw7p6NGjunDhgi5fviwvLy9Vr15dLVu2VJMmTUrxKlAZEBAFAAAAAAAAAAAAAAAAAFQ6\nLi7W8TjL2807wqZNmzRz5kzt2LHD5vNOTk5q3769XnzxRXXs2NGuPc+fP6/Vq1dr7dq12rlzp7Ky\nsgqdGxAQoP79+2vQoEFFhmFXrlypMWPGGOP3339f//jHP+yq55qBAwdq69atkqTq1avr999/l6ur\na4n2gONxi3kAAAAAAAAAAAAAAAAAQKVTq1Ytq3FkZKTS0tJK/Tw5OTkaN26chg0bVmg4VJLy8vK0\nbds2DRw4UJMmTVJeXl6xe0+cOFHvvPOONm/eXGQ4VLoaJp0xY4Yee+wxHTlypNB5PXr0UEBAgDFe\nvHhxsXVYOnLkiBEOlaRHH32UcGgFRQdRAAAAAAAAAAAAAAAAALgB03f/rItZ6eVdRrnxc/fSmNbd\nyruMAkJDQ2UymWQ2myVJiYmJGjRokCZNmqTWrVuXyjnMZrNefPFF/fzzz1aPN2zYULfffrv8/Px0\n4cIFRUdHKz4+3nh+8eLFSklJ0fTp0+06j8lkUkBAgJo3b64GDRrI29tbLi4uSk1N1eHDh7Vt2zYj\nQBofH68RI0Zo+fLl8vHxKbCXi4uL+vXrp08++USSFBMTo8OHD9t9i3rLQKmTk5OeeOIJu9ah7BEQ\nBQAAAAAAAAAAAAAAAIAbcDErXecyS78zJW5MQECAwsLCtGbNGuOx/fv36/HHH1eLFi3UpUsXtW/f\nXm3btrUZpLTH/PnzrcKhPj4+evPNN/Xggw8WmLtixQpNnDhRly9flnT1Vu+hoaFFBizr1q2rl156\nSWFhYWrcuHGh89LT0/X5559rzpw5MpvNSkhI0PTp0zVp0iSb8x9//HF9/vnnysnJkXQ19DlhwoRi\nrzcrK0uRkZHGuHPnzgoODi52HcoHAVEAAAAAAAAAAAAAAAAAQKX0+uuva/v27Tp//rzV4wcOHNCB\nAwckXe3OWb9+fbVv316hoaG6++675e/vX+zeaWlp+uijj4yxq6urvvjiC7Vt29bm/EceeUQ1atTQ\nsGHDlJubK0n64IMP1LNnT1WpUsXmmvHjx9t1nV5eXhozZox8fX31/vvvS5IiIyM1ZswYm+HXwMBA\ndevWTVFRUcbcsWPHysPDo8jzrFy5UikpKcaY7qEVm1N5FwAAAAAAAAAAAAAAAAAAgCMEBgZq4cKF\natq0aaFzzGaz/vrrLy1btkyvvfaaunTpopEjR2rfvn1F7r106VJlZGQY46FDhxYaDr2mU6dO6t+/\nvzFOTU1VRESEnVdTvMGDBxuB0IyMDP3555+Fzh0wYIBVHStWrCh2f8vby9esWVPdunW7gWrhaARE\nAQAAAAAAAAAAAAAAAACVVoMGDRQREaH//Oc/ql+/frHzc3JytH79evXp00dTp05VXl6ezXmWt5Z3\ncXHRoEGD7Kpn2LBhcvr/2Lv3KK/qen/8r8/McB0YYByZII2YREkIFAgRxeoItlyaQN5FsbCOecJ0\nqZxKzTRLqi92Ucw8qSDHsxI7NppaXrtRYsolwQuKgiipA8OMXOYCzjC/P/y5Dx+YGWZgYGTzeKzl\ncr/3fr1f+/UZ1/Kv53rvnP+L7m3bZ3fl5eVF//79k/Vzzz3XZO3IkSPjkEMOSdbbhj8bs2zZsqx+\np512Wtbv4MPHJ+YBAAAAAAAAAABItby8vJg0aVJMmjQplixZEn//+99jwYIF8fzzz8eGDRuioaFh\nhz0NDQ0xe/bsKC8vjxkzZmQ9q6+vj6VLlybrwYMHR1FRUYtm6dOnTwwaNCjZv2TJkp3uqa+vj/nz\n58ef//znWLZsWaxevTo2bdoUNTU1O8y+baC1rKys2b5nn312XH/99RER8fzzz8eLL74Yhx9+eKO1\n2wZI8/Ly4swzz9zp3LQvAVEAAAAAAAAAAAD2G0OGDIkhQ4Yk6zfffDMWL14cf//73+OJJ56Iqqqq\nrPqHHnoojj766Dj11FOTe2VlZVmfl28qVNmUww8/PAmIVlVVRVlZWRQXFzda+6c//Sm+//3vx7/+\n9a9WvSMiYsOGDc0+nzBhQvzkJz9JfvOvf/3rJDC6raqqqnjwwQeT9XHHHdfkvHx4ON8VAAAAAAAA\nAACA/dbBBx8cp5xySvzoRz+Kv/zlL3HBBRdEJpPJqrn11luzTurcPnjZ0tNDG6tvaGiI9evXN1p3\n1113xUUXXdRoODSTyTT6z7Y2b97c7Bz5+fkxfvz4ZP3QQw/Fpk2bdqh76KGHsoKzZ511VrN9+XAQ\nEAUAAAAAAAAAAICI6NatW0ybNi2uuuqqrPurV6+Ol19+OVlvH6Ls2rVrq96zff32p5ZGRDz33HMx\nfYi6t5EAACAASURBVPr0ZJ3JZOLYY4+Na6+9Nn7zm9/EvHnzYvHixfHSSy9l/fPpT3862bP95+cb\nc8455yTXNTU18cADD+xQM3fu3OT6oIMOiuOOO26nfWl/PjEPAAAAAAAAAACwGwo75bf3CO0qjb//\n3HPPjbvvvjtef/315N7zzz8fAwcOjIj3g6Tbqq6ublX/7evz83f8G86cOTO5zs3NjZ///OcxduzY\nnfZuLGzanEMOOSRGjhwZzzzzTES8HwadNGlS8nzJkiXx4osvJuszzjijVf1pPwKiAAAAAAAAAAAA\nu+GyIce39wjsAaNGjcoKiL777rvJdUFBQVbt2rVrW9V72/pMJhM9evTIel5TUxNPP/10sp4wYUKL\nwqEREevWrWvVLBERkyZNSgKir7zySixatCiGDRsWERH33HNPUtehQ4c47bTTWt2f9uET8wAAAAAA\nAAAAALCd7UOgHTp0SK6Li4uzPhP/0ksvtar3tidy5ufnR3Fxcdbzf/3rX/Hee+8l6zFjxrSo79q1\na6OsrKxVs0REjB07Nnr37p2sPwiFbty4MX7/+99n1RUWFra6P+1DQBQAAAAAAAAAAAC2s2bNmqx1\nUVFRcp2bmxtDhgxJ1kuXLm3xKaJvv/12vPDCC8l66NChO9Rs2LAha739CaNNeeSRR1pUt73c3Nys\nT8c/+uij8e6778YDDzwQtbW1yf2zzz57l/rTPgREAQAAAAAAAAAASJ2amppd3ltbWxt//etfk3Um\nk8kKhEZEHH/88cl1fX19zJkzp0W9Z8+eHQ0NDcm6sU/H5+fnZ61Xr169077V1dUxe/bsFs3QmDPP\nPDPy8vIiImLz5s1RWloac+fOTZ6XlJTEyJEjd7k/e5+AKAAAAAAAAAAAAKnz0EMPxTnnnBPPPPNM\nq/Y1NDTEDTfcEBUVFcm9ww47LA4++OCsuokTJ2YFOWfNmhWLFy9utvczzzwTd999d7IuKCiIiRMn\n7lDXr1+/6NixY7L+3//936xQaWMzX3vttfGvf/2r2fc358ADD4xx48Yl61/84hexfPnyZH3mmWfu\ncm/ah4AoAAAAAAAAAAAAqbRo0aKYPHlyTJgwIebMmRNlZWXN1r/66qtx0UUXxb333pvcy2Qycdll\nl+1Q261bt7jkkkuSdV1dXVx44YVNfub94Ycfjq997WtRX1+f3Lv88sujc+fOO9R27tw5jj322GT9\n3HPPxZVXXhmbN2/eoXbNmjXxjW98I373u99FRESXLl2a/Y3NmTRpUnK9cePGrHm++MUv7nJf2kde\new8AAAAAAAAAAAAAe9KyZcvihhtuiBtuuCEOOuigGDx4cBQVFUWPHj1iy5YtsXbt2njhhReyTsz8\nwFe+8pU47rjjGu07efLk+Mc//hFPPvlkRERs2LAhLr300ujfv3+MGjUqevbsGZWVlfH000/H66+/\nnrX3pJNOavZUzq9//evx17/+Nerq6iIiorS0NP785z/HZz7zmejTp0/U1tbGq6++GvPnz09qxo8f\nH2+99VY8++yzu/JnihEjRsSAAQN2+DuceOKJ0b17913qSfsREAUAAAAAAAAAACB1evbsGXl5eUl4\n8gOrV6+O1atX73R/165d45JLLonzzz+/2bqbbroprr766igtLU3urVy5MlauXNlofSaTiTPOOCOu\nvfbaZvsOGjQovvvd78Z3v/vd2Lp1a0REVFZWxv33399o/dixY+P666+PCy64oNm+OzNp0qSs2TKZ\nTJx11lm71ZP24RPzAAAAAAAAAAAApM64cePiqaeeih/96EdxyimnRN++fSOTyTS7J5PJxEc/+tG4\n8MIL4w9/+MNOw6EREbm5uTF9+vS4884748gjj2zyHbm5uTFixIiYM2dOXHfddTudJSLi9NNPjzvu\nuCM++clPNjnvgAED4vrrr4+ZM2dGx44dk/st6d+Yk08+OWvvYYcdFkOHDt2lXrQvJ4gCAAAAAAAA\nAACQSgUFBTF+/PgYP358RERUVFTEihUrYvXq1bF+/fqoqamJTp06Rbdu3aJ3794xcODAKC4u3qV3\njR49OkaPHh0VFRWxYMGCKC8vj40bN0b37t2jd+/eMXz48OjVq1er+x599NFRWloay5cvjyVLlkRF\nRUV07NgxDjzwwDj00EPjkEMOyar/7//+712a/wMLFy6MhoaGZH322WfvVj/aj4AoAAAAAAAAAAAA\n+4XCwsIoLCyMESNG7NF3nHDCCW3ed8CAATFgwIA277u9e+65J7nOz8+PL3zhC3v8newZPjEPAAAA\nAAAAAAAAxKpVq+LPf/5zsp44cWJ07dq1/QZitwiIAgAAAAAAAAAAAPHTn/40+bx8bm5unHvuue08\nEbvDJ+YBAAAAAAAAAABgP1ZWVha33357PPLII8m9k08+OT7+8Y+331DsNgFRAAAAAAAAAAAA2M9c\nc8018eCDD0ZdXV289957Wc969OgRl112WTtNRlsREAUAAAAAAAAAAID9zJYtW6KmpmaH+506dYoZ\nM2ZEcXFxO0xFWxIQBQAAAAAAAAAAgP1MJpNJ/p2Xlxe9e/eOUaNGxQUXXBAlJSXtPB1tQUAUAAAA\nAAAAAAAA9jPTp0+P6dOnt/cY7EE57T0AAAAAAAAAAAAAAG1LQBQAAAAAAAAAAAAgZQREAQAAAAAA\nAAAAAFJGQBQAAAAAAAAAAAAgZQREAQAAAAAAAAAAAFJGQBQAAAAAAAAAAAAgZQREAQAAAAAAAAAA\nAFJGQBQAAAAAAAAAAAAgZQREAQAAAAAAAAAAAFJGQBQAAAAAAAAAAAAgZQREAQAAAAAAAAAAAFJG\nQBQAAAAAAAAAAAAgZQREAQAAAAAAAAAAAFJGQBQAAAAAAAAAAAAgZQREAQAAAAAAAAAAAFJGQBQA\nAAAAAAAAAAAgZQREAQAAAAAAAAAAAFJGQBQAAAAAAAAAAAAgZQREAQAAAAAAAAAAAFImr70HAAAA\nAAAAAAAAgPayevXqeO2112LdunVRUVERW7dujR49esQBBxwQgwYNij59+rT3iOyGgQMHJtdTp06N\nqVOntuM0e5eAKAAAAAAAAAAAAPuVN998M+bMmRPz5s2L119/vdnaoqKiOP7442P8+PExbNiwvTMg\ntAEBUQAAAAAAAAAAAPYL7777btx8880xd+7cqKura9Ge8vLymDt3bsydOzeGDRsW06ZNiyOPPHIP\nT7r33Xzzzcn1UUcdFSNHjmzHaWgLAqIAAAAAAAAAAACk3htvvBFf/epXY9WqVVn3c3JyYtCgQXHI\nIYdEYWFhdOzYMcrLy+Ott96KRYsWRU1NTVK7aNGiOPvss2PZsmV7e/w97pZbbkmuM5mMgGgKCIgC\nAAAAAAAAAACQaq+88kqcf/75UVlZmdzr1q1b/Pu//3ucdtppUVhY2Oi+zZs3x1NPPRV33nlnPPvs\nsxHxfngS9gUCogAAAAAAAAAAwB7X1p/kXrx4cZv2I72qq6vjkksuyQqHDhkyJH75y182GQz9QKdO\nneJzn/tcfO5zn4s//elPcd1110VZWdmeHhnahIAoAAAAAAAAAADQbqqqqmL58uWNPhswYEDk5+fv\n5YlIm+9///uxcuXKZD106NCYNWtWdO3atVV9Pve5z8WnPvWpmDp1aluPCHuEgCgAAAAAAAAAALDH\nNXXi57x58+K4445r9Nkdd9wRY8aM2ZNjkXIrV66M3/72t8m6S5cuMWPGjFaHQz9QVFQUc+bMaavx\nYI8SEAUAAAAAAAAAACCVZs2albWeMmVKHHzwwbvVs2PHji2q27p1ayxdujRWrFgR69ati4j3A6Yl\nJSXxqU99KjKZzG7Nsa0XX3wxli9fHmVlZdGpU6fo27dvjBw5Mnr06NFm79hVmzdvjgULFsTbb78d\n69ati86dO8dnPvOZ+PjHP97knoqKili4cGGsWbMmNm7cGN27d4/i4uIYPnx49OrVa+8Nv48TEAUA\nAAAAAAAAACB1tmzZEg888ECyzs3NjTPOOGOPv3fDhg3xy1/+Mu67775Yv359ozW9evWKM844I776\n1a9Gt27ddtrzW9/6Vtx///0REdG3b9/44x//GBERjz76aMycOTOWL1++w56cnJwYP358XHHFFXHA\nAQfstO+2Zs6cGTNnzmx0z8SJE2P69OlZ9wYOHJhcT506NaZOnRrr16+PG2+8MR5++OGoqqraoU9j\nAdGnnnoqbr755iZPHM7JyYlhw4bFJZdcEp/+9KcbreH/CIgCAAAAAAAAAADshvrf/L+IDRXtPUb7\nKSiM3NOntfcUO1iyZEls3rw5WQ8bNiyKi4v36DsXL14cF110Ubz77rvN1lVWVsZtt90W9913X9x2\n220xaNCgFr/jg5NHv//978fdd9/dZN3WrVujtLQ0Fi5cGHfddVf06dOnxe/YXS+99FJcdNFF8c47\n7zT6fPvTU+vq6uI73/lOlJaWNtt369atsWDBgjjvvPPirLPOimuuuSZycnLabO60ERAFAAAAAAAA\nAADYHRsqItavae8p2M6CBQuy1kOHDt2j71u4cGFccMEFUVtbm9zr3LlzHHPMMdG/f//IZDLx2muv\nxd/+9rfYsmVLRESUl5fHeeedF3fddVd86lOfatF7Ghoa4qabbkrCoUVFRTF69Ojo27dv1NfXx8sv\nvxxPPfVU1NXVRUTEG2+8Ed/61rfirrvu2qFXbm5u5ObmRiaTSeoj3g9w5ubmNvr+pu5/oLKyMv7j\nP/4j3nnnnchkMnHooYcmn4avrKyM559/Pisg2tDQEJdcckk8+eSTWX369+8fo0aNisLCwli3bl3M\nnz8/Vq1alTy/5557YsOGDfGTn/xkJ3+x/ZeAKAAAAAAAAAAAAKmzbNmyrHVrTulsrY0bN8a0adOy\nwqFjx46N733ve1FYWJhVW15eHldddVX85S9/iYiI6urquOKKK6K0tDS6du2603etWbMmbr311sjL\ny4vLLrssJk+eHHl52VHAV155JS688MJ4++23IyLiH//4R8yfPz+OPvrorLof/OAH8YMf/CAisj8T\n//Wvfz2mTp3air/A/7nnnnuivr4++vbtGz/84Q9j5MiRO9S89957yfWcOXOywqEFBQVx3XXXxYkn\nnrjDvoceeiiuueaaqK6ujoiI3//+9zFy5Mg466yzdmnWtHO2KgAAAAAAAAAAAKmz/Wfee/fuvcfe\nNWvWrHjrrbeS9fHHHx8333zzDuHQiPdP/LzlllvimGOOSe6tWrUqZs+e3aJ3fXDS5w9/+MOYMmXK\nDuHQiIhDDz10h5M1H3jggRb131319fXRs2fP+J//+Z9Gw6ERER06dIiIiE2bNsXPfvazrPv/9V//\n1Wg4NCLi5JNPjltvvTXrFNMbb7wxCYySTUAUAAAAAAAAAACA1Fm/fn3Wunv37nvkPVu2bIm5c+dm\nvef666/P+oz69vLy8uKGG26ILl26JPd+/etfZ33mvTljx46Nk08+udmaI488Muuz9YsXL25R77Zw\n+eWXR58+fXZad99990VNTU2y/vKXvxxHHHFEs3uOOuqoOOecc5L1xo0bo7S0dNeHTTEBUQAAAAAA\nAAAAAFKnqqoquc5kMllhzLb03HPPxbp165L1F77whUZPDt1ecXFxnHTSScl67dq1sWTJkha9c9uA\nZHNGjBiRXL/55ptRX1/fon27Iz8/P0455ZQW1W77afm8vLyYPHlyi/ZNmTIlcnL+L/64bR/+j4Ao\nAAAAAAAAAAAAqdO1a9fkuqGhIeukyra0/cmcxx9/fIv3jhs3rtlejcnLy4vhw4e3qP9HP/rR5Lqh\noSE2bdrU4tl21ZAhQ6JTp047rauvr4+lS5cm68GDB0dRUVGL3tGnT58YNGhQsm5psHZ/IyAKAAAA\nAAAAAABA6vTo0SNrvXHjxj3ynpUrVybXmUwmPvnJT7Z47+GHH95kr6YUFBREx44dW9R/+1NTq6ur\nWzzbriopKWlRXVlZWVZod/u/xc5sW19VVRVlZWWt2r8/EBAFAAAAAAAAAAAgdbb/zPuaNWv2yHs2\nbNiQXOfk5LTo8/IfOOCAA5rs1ZTtQ5/NyWQyWeuGhoYW791V3bt3b1Hd9r+1paeHNlbf0NAQ69ev\nb9X+/UFeew8AAAAAAAAAAACwTytoeSAwlT6kv/+www6LP/zhD8n6hRdeiBNPPLHN31NVVZVcd+7c\nuVV7c3JyokuXLslJmtv22lfl5bUslrj95+67du3aqvdsX5+Gv11bExAFAAAAAAAAAADYDbmnT2vv\nEWjEiBEjstbPPffcHnlPfn5+cl1bW9uqvVu3bs36zPq2vdKuW7duWevq6upW7d++fn/627WUT8wD\nAAAAAAAAAACQOkOGDMk60XPhwoVRVlbW5u8pKChIrrdu3RoVFRUt3rtu3bome6Xd9r917dq1rdq/\nbX0mk4kePXq0yVxpIiAKAAAAAAAAAABA6nTs2DFOOeWUZL1169a499572/w9JSUlyXVDQ0O8+OKL\nLd67fe22vdKuuLg46zPxL730Uqv2b/u3y8/Pj+Li4jabLS0ERAEAAAAAAAAAAEilL33pS5HJZJL1\nnXfeGW+++eZu9dyyZUvW+sgjj8xaP/nkky3u9fjjjzfba2/Kzc1Nrrdu3bpX3jdkyJBkvXTp0haf\nIvr222/HCy+8kKyHDh3a5vOlgYAoAAAAAAAAAAAAqVRSUhITJkxI1jU1NTFt2rSorq7epX5lZWVx\n3nnnZd0bOnRoFBUVJesHH3xwh0/HN9Xr4YcfTtbFxcVZgcm9LT8/P7lev379Xnnn8ccfn1zX19fH\nnDlzWrRv9uzZ0dDQkKzHjh3b5rOlgYAoAAAAAAAAAAAAqfWd73wn+vXrl6z/+c9/xpQpU6KioqJV\nfR5//PE47bTTYsmSJVn3O3ToEGeddVay3rRpU1xzzTXNnsJZV1cXV199ddTU1CT3zjnnnKxTPPe2\ngw46KLleunTpXnnnxIkTs4Kps2bNisWLFze755lnnom77747WRcUFMTEiRP32Iz7MgFRAAAAAAAA\nAAAAUqtr165x0003Rc+ePZN7//znP+Pzn/98/OpXv2o2KFpbWxtPPPFEnHXWWXHxxRc3+Qn0L33p\nS9G3b99k/eSTT8Y3vvGNRnuXl5fH1KlTY968ecm9fv36xeTJk3fl57WZI444IrlesmRJzJw5s8Wf\nfN9V3bp1i0suuSRZ19XVxYUXXhiPPPJIo/UPP/xwfO1rX4v6+vrk3uWXXx6dO3feo3Puq/LaewAA\nAAAAAAAAAADYkw477LCYO3dufPWrX4033ngjIiI2btwYN954Y/z0pz+NwYMHxyc+8Yno1atXdOjQ\nIcrLy+Ptt9+OhQsXxubNm7N65eTseC5jt27dYsaMGTFlypSora2NiIgnnngi/va3v8UxxxwT/fv3\nj4iIFStWxN/+9rfYsmVLsjc/Pz9uvPHG6NKly576+S1y2mmnxT333JOcfDpz5syYOXNm5OXlRYcO\nHZK6U045Ja677ro2e+/kyZPjH//4Rzz55JMREbFhw4a49NJLo3///jFq1Kjo2bNnVFZWxtNPPx2v\nv/561t6TTjopzjzzzDabJW0ERAEAAAAAAAAAAEi9fv36xb333hs///nP4ze/+U3U1dVFRMTWrVtj\nyZIlO3w6fnuZTCZGjx4d06ZNa/T5sGHDYvbs2XHRRRdFZWVlRLx/AukHwcfGFBUVxW233RaDBg1q\n8e9oaGhocW1r9h1++OHxn//5n/HjH/84CYlGvH+q5wd/q4jICre2lZtuuimuvvrqKC0tTe6tXLky\nVq5c2Wh9JpOJM844I6699to2nyVNfGIeAAAAAAAAAACA/ULPnj3ju9/9bvzhD3+I8847L/r169ds\nfSaTid69e8e5554b9913X9xxxx0xcODAJuuPOOKIePTRR+OCCy6IHj16NFlXWFgYF154YTz66KMt\nCodmMpnk3x9ct0Rr933pS1+K0tLSOP/882PIkCHRq1ev6NixY7K/uR6tnW1bubm5MX369Ljzzjvj\nyCOPbLJPbm5ujBgxIubMmRPXXXddi9+3O7Pty5wgCgAAAAAAAAAAwH7l4IMPjquuuiquuuqqWL16\ndbz66qtRWVkZFRUV0dDQEAUFBXHAAQfEoEGD4iMf+UirehcUFMS0adPiiiuuiCVLlsSKFSuSE0UL\nCwujpKQkhgwZ0qqe06dPj+nTp7dqT0TExIkTY+LEia3ac9hhh8W3v/3tVu1ZtmxZq+qbMnr06Bg9\nenRUVFTEggULory8PDZu3Bjdu3eP3r17x/Dhw6NXr17tMtu+SEAUAAAAAAAAAACA/dZBBx0UBx10\nUJv3zWQyMXTo0Bg6dGib9067wsLCOOGEE9p7jH2eT8wDAAAAAAAAAAAApIyAKAAAAAAAAAAAAEDK\nCIgCAAAAAAAAAAAApIyAKAAAAAAAAAAAAEDKCIgCAAAAAAAAAAAApIyAKAAAAAAAAAAAAEDKCIgC\nAAAAAAAAAAAApIyAKAAAAAAAAAAAAEDKCIgCAAAAAAAAAAAApIyAKAAAAAAAAAAAAEDKCIgCAAAA\nAAAAAAAApIyAKAAAAAAAAAAAAEDKCIgCAAAAAAAAAAAApIyAKAAAAAAAAAAAAEDKCIgCAAAAAAAA\nAAAApIyAKAAAAAAAAAAAAEDKCIgCAAAAAAAAAAAApIyAKAAAAAAAAAAAAEDK5LX3AAAAAAAAAAAA\nAHvLK6+80t4jAPugffH/HQKiAAAAAAAAAADAfuPqq69u7xEA9gqfmAcAAAAAAAAAAFKtpKQkCgoK\n2nsMIAUKCgqipKSkvcdoESeIAgAAAAAAAAAAqda9e/f44x//GCtWrGjvUYB9XElJSXTv3r29x2gR\nAVEAAAAAAAAAACD1unfvHkOHDm3vMQD2Gp+YBwAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAA\nAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAA\nAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAA\nAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZ\nAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEA\nAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAA\nAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAA\nAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACA\nlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQ\nBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAA\nAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAA\nAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAA\nAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZ\nAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEA\nAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAA\nAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAA\nAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEiZvPYeAAAAAAAAAIA9\n48gjj2zTfosXL27TfgAAwJ4jIAoAAAAAAACwn6mqqorly5c3+mzAgAGRn5+/lycCAADamoAoAAAA\nAAAAQEo1deLnvHnz4rjjjmv02R133BFjxozZk2MBAAB7QU57DwAAAAAAAAAAAABA2xIQBQAAAAAA\nAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAAAEgZAVEAAAAAAAAAAACAlBEQBQAAAAAAAAAA\nAEiZvPYe4MPu5ptvjltuuaXF9bm5ufHCCy+0qHb+/Pnxu9/9LhYuXBhr166NnJyc+MhHPhKjRo2K\nL37xizFo0KBWzVpTUxOlpaXx2GOPxYoVK6KioiJ69uwZH/vYx2Ls2LFx6qmnRo8ePVrVEwAAAAAA\nAAAAANj3CIi2sUwms9Oa6urquPrqq+P3v//9Ds9ee+21eO211+LXv/51nHfeefHNb34zcnJ2ftDr\nkiVL4vLLL48333wz6355eXmUl5fHokWL4s4774zp06fHmDFjWv6DAAAAAAAAAAAAgH2OgGgrnHTS\nSTF48OBma3YWEH3vvffi4osvjr///e8REZGTkxPHHHNMDBkyJOrq6uKZZ56JxYsXx9atW+Ouu+6K\nmpqa+N73vtdsz2XLlsWUKVNi06ZNERHRo0ePOOGEE+KjH/1orFmzJh577LEkKPr1r389fvWrX8VR\nRx3Vil8OAAAAAAAAAAAA7EsERFthzJgxMWHChN3qMWvWrCQcmp+fHzNnzoyjjz46q+Z3v/tdfPvb\n3476+vq49957Y8yYMTFu3LhG+9XX18e0adOScOjw4cPjF7/4Rdan5L/5zW/G5ZdfHk888URsqMTk\n5gAAIABJREFU2bIlrrjiinjssceiS5cuu/VbAAAAAAAAAAAAgA+nnX+7nDazYcOGuO2225L1t771\nrR3CoRERp5xySnzlK19J1jNmzIiGhoZGe95///2xfPnyiIjo2bNn3HzzzVnh0IiITp06xYwZM6Jf\nv34REbF27dqYNWvWbv8eAAAAAAAAAAAA4MNJQHQveuKJJ6KqqioiIvr27RunnXZak7UXXHBBcsLn\nqlWrYuHChY3W3X///cn1mWeeGYWFhY3Wde7cOaZMmZKsS0tLWz0/AAAAAAAAAAAAsG8QEG2Fpk7x\nbKnHH388uR43blxkMpkmawsKCmLUqFGN7v1AZWVlLFiwIFmfeOKJzb7/85//fPLON998M5YtW9bi\n2QEAAAAAAAAAAIB9h4BoK9x7773xhS98IYYNGxaDBw+OY489Ns4777yYOXNmvPPOOzvd/+KLLybX\nw4cP32n9iBEjGt37gWXLliWh1W7dusXAgQOb7dezZ8/4xCc+0WxPAAAAAAAAAAAAYN8nINoKixcv\njuXLl0d1dXXU1dVFeXl5PPvsszFz5swYO3ZszJgxI+rr6xvdu3HjxigrK0vW/fr12+n7PvaxjyXX\ny5cv3+H5tve2rd2dngAAAAAAAAAAAMC+L6+9B9hXFBUVxbBhw6J///7RrVu3qKqqipdffjnmz58f\ntbW1UVdXF7fffnssX748br311sjJyc7erl27NrnOZDLxkY98ZKfv3LZm/fr1UV9fH7m5uY32LC4u\nbtHv2LZneXl5i/YAAAAAAAAAAAAA+xYB0Z044ogjYs6cOTFy5MhGn1dUVMQNN9wQDz30UERE/OUv\nf4mbbropLr300qy6qqqqrHWXLl12+u7ta6qqqqKgoKDRnl27dt1pv4iIzp07NzkTAAAAAAAAAAAA\nkA4+Mb8TY8aMaTIcGhFRWFgYM2bMiPHjxyf3Zs+eHevWrcuq27x5c9a6Y8eOO313p06dstY1NTVZ\n69ra2uS6Q4cOO+23fc9t9wMAAAAAAAAAAADpISDaRq688srkFM/a2tr44x//mPV8+7Dnli1bdtpz\n+1Dp9ieKbnsa6HvvvdeiObftue1+AAAAAAAAAAAAID18Yr6N9OjRI0aPHh1PPPFEREQsXrw4Tj/9\n9OR5fn5+Vn1NTc1OTxHd/sTQ7Xtsu66urm7RnNueGrp9v9ZYsWJFTJgwoVV77r///l1+HwAAAAAA\nAAAAAHyYtTZTt2LFiigpKdlD0zhBtE0dfPDByXVFRUXWswMPPDC5bmhoiLfffnun/crKypLrHj16\nRG5ubpM933nnnRbNuG1dUVFRi/YAAAAAAAAAAAAA+xYniLahTCbT5LPu3btHcXFxEvpctWpVDBw4\nsNl+q1atSq4HDBiww/Nt761evToaGhqanSEi4o033mi2Z0uVlJQ4ERQAAAAAAAAAAAD+f63N1LX2\nxNHWcoJoG9o2fHnAAQfs8HzQoEHJ9aJFi3bab8GCBcn14YcfvsPzgQMHRk7O+/8JN27cGC+//HKz\n/d5999149dVXI+L9MGtjPQEAAAAAAAAAAIB9n4BoG1m/fn089dRTyXro0KE71IwdOza5fvzxx2Pr\n1q1N9tuwYUPMnz8/WY8bN26Hml69esXw4cOT9SOPPNLsjI899lhyfdBBB+30BFMAAAAAAAAAAABg\n3yQg2kZ++MMfRnV1dUREdOrUKf7t3/5th5px48ZFfn5+RES89dZb8dvf/rbJfnfccUfU1tZGRES/\nfv1ixIgRjdZte8TsPffcExUVFY3W1dbWxh133NHoPgAAAAAAAAAAACBdBESbcfvtt8ePfvSjeP31\n15usqaysjG9+85tRWlqa3Dv//POjqKhoh9ru3bvHhRdemKynT58eTz/99A51Dz74YPzqV7+KiPc/\nBX/55Zc3+f6JEyfGIYccEhHvf0L+4osvjvXr12fV1NbWxrRp02LVqlUREXHggQfGlClTmuwJAAAA\nAAAAAAAA7Nvy2nuAD7OampqYNWtWzJo1K0pKSmLw4MHRp0+fyM/Pj+rq6njllVfiqaeeSk76jIg4\n7rjj4tJLL22y55e//OWYP39+zJ8/P6qqquLLX/5yHHvssTFkyJCoq6uLZ599NhYtWpTUn3rqqXHC\nCSc02S8nJydmzJgR5557bmzatCkWLlwYJ5xwQnz+85+PPn36RHl5eTz66KNRXl4eEREdO3aMH//4\nx9GlS5c2+AsBAAAAAAAAAAAAH0YCos3IZDLJ9YoVK2LFihVN1nbs2DGmTJkSF198ceTkNH0wa4cO\nHeKWW26JK6+8Mh555JFoaGiIefPmxbx587LqcnJyYtKkSXHllVfudM6BAwfG7bffHldccUWsXr06\n1q9fH/fee+8OdUVFRXHDDTfE0UcfvdOeAAAAAAAAAAAAwL5LQLQZkydPjsGDB8dzzz0XS5cujbKy\nsqisrIz169dHx44do0ePHnHooYfGyJEjY8KECVFYWNiivl27do2f/exnMX/+/HjggQdi8eLFsWbN\nmsjNzY3i4uI46qij4tRTT41Bgwa1eNYjjjgiHnzwwSgtLY3HHnssVq5cGZWVlVFQUBAf+9jH4vjj\nj4/TTz89CgoKdvXPAQAAAAAAAAAAAOwjBESbUVBQEJ/97Gfjs5/97B7pf/TRR7fpaZ5dunSJc845\nJ84555w26wkAAAAAAAAAAADse5r+FjoAAAAAAAAAAAAA+yQBUQAAAAAAAAAAAICUERAFAAAAAAAA\nAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAA\nSBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkB\nUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAA\nAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAA\nAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAA\nAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICU\nERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAFAAAAAAAAAAAASBkBUQAAAAAAAAAAAICUERAF\nAAAAAAAAAAAASBkBUQAAAAAAAAAA/j/27jxMr4K8G/99ntkz2QlJCFv2BEQkrAFM3EDEBRAoWMUN\nxVqXtkL7avvaq718W5e+Lq/Vn61iRBAXkCVCRQURNOwQQliTTFayr5NJMjOZ7Tm/P8KSxEDOE+Zk\nZp75fP5pJnPfZ75IL2OS75wbACgzCqIAAAAAAAAAAAAAZUZBFAAAAAAAAAAAAKDMKIgCAAAAAAAA\nAAAAlBkFUQAAAAAAAAAAAIAyoyAKAAAAAAAAAAAAUGYURAEAAAAAAAAAAADKjIIoAAAAAAAAAAAA\nQJlREAUAAAAAAAAAAAAoMwqiAAAAAAAAAAAAAGVGQRQAAAAAAAAAAACgzCiIAgAAAAAAAAAAAJQZ\nBVEAAAAAAAAAAACAMqMgCgAAAAAAAAAAAFBmFEQBAAAAAAAAAAAAyoyCKAAAAAAAAAAAAECZURAF\nAAAAAAAAAAAAKDMKogAAAAAAAAAAAABlRkEUAAAAAAAAAAAAoMwoiAIAAAAAAAAAAACUGQVRAAAA\nAAAAAAAAgDKjIAoAAAAAAAAAAABQZhREAQAAAAAAAAAAAMqMgigAAAAAAAAAAABAmVEQBQAAAAAA\nAAAAACgzCqIAAAAAAAAAAAAAZUZBFAAAAAAAAAAAAKDMKIgCAAAAAAAAAAAAlBkFUQAAAAAAAAAA\nAIAyoyAKAAAAAAAAAAAAUGYURAEAAAAAAAAAAADKjIIoAAAAAAAAAAAAQJlREAUAAAAAAAAAAAAo\nMwqiAAAAAAAAAAAAAGVGQRQAAAAAAAAAAACgzCiIAgAAAAAAAAAAAJQZBVEAAAAAAAAAAACAMqMg\nCgAAAAAAAAAAAFBmKns6AAAAAAAAAABAbzZt2rRufd68efO69XkAAPuiIAoAAAAAAAAAcACam5uj\noaFhn5+bNGlS1NfXH+REAAAvUxAFAAAAAAAAAHgVr/TGzzlz5sTMmTP3+blZs2bFjBkz8owFAPCq\nCj0dAAAAAAAAAAAAAIDupSAKAAAAAAAAAAAAUGYURAEAAAAAAAAAAADKjIIoAAAAAAAAAAAAQJlR\nEAUAAAAAAAAAAAAoM5U9HQAAAAAAAAD2Zdq0ad36vHnz5nXr8wAAAKA3UxAFAAAAAACgT2lubo6G\nhoZ9fm7SpElRX19/kBMBAABA76MgCgAAAAAAQK/0Sm/8nDNnTsycOXOfn5s1a1bMmDEjz1gAAADQ\nJxR6OgAAAAAAAAAAAAAA3UtBFAAAAAAAAAAAAKDMKIgCAAAAAAAAAAAAlBkFUQAAAAAAAAAAAIAy\noyAKAAAAAAAAAAAAUGYURAEAAAAAAAAAAADKjIIoAAAAAAAAAAAAQJlREAUAAAAAAAAAAAAoMwqi\nAAAAAAAAAAAAAGVGQRQAAAAAAAAAAACgzCiIAgAAAAAAAAAAAJQZBVEAAAAAAAAAAACAMqMgCgAA\nAAAAAAAAAFBmFEQBAAAAAAAAAAAAyoyCKAAAAAAAAAAAAECZURAFAAAAAAAAAAAAKDMKogAAAAAA\nAAAAAABlRkEUAAAAAAAAAAAAoMwoiAIAAAAAAAAAAACUGQVRAAAAAAAAAAAAgDKjIAoAAAAAAAAA\nAABQZhREAQAAAAAAAAAAAMqMgigAAAAAAAAAAABAmVEQBQAAAAAAAAAAACgzCqIAAAAAAAAAAAAA\nZUZBFAAAAAAAAAAAAKDMKIgCAAAAAAAAAAAAlBkFUQAAAAAAAAAAAIAyoyAKAAAAAAAAAAAAUGYU\nRAEAAAAAAAAAAADKjIIoAAAAAAAAAAAAQJlREAUAAAAAAAAAAAAoMwqiAAAAAAAAAAAAAGVGQRQA\nAAAAAAAAAACgzCiIAgAAAAAAAAAAvcKA6sr42rtPiQHVlT0dBaDP89+kAAAAAAAAAABAjxtaVx23\nf/zsOH3sqDh+zPA4f9ZdPR0JoE9TEAUAAAAAAAAAAHrUqEF1cccnzok3jBkeERFnTzk8fvKBN0Wk\nxR5OBtB3OTEPAAAAAAAAAAD0mJq2HXHvp9/5Ujn0RRe9YVxMWP5ApEqiAAdEQRQAAAAAAAAAAOgR\n6eY1cdxzd8SkQ4fs8/OjNi2O9I83RpqmBzkZQN+nIAoAAAAAAAAAABx06foVUbzxa1HT0fLqc4/f\nFelDtx+kVADlo7KnAwBAbzNs/JFx3EXnxMhjxkehsjLWPvFcPPuru3s6FgAAAAAAAEDZSNcsieIt\n34pob802/+CvolhTF4UTz845GUD5UBAFgN08Hy1x0Q//PQqVFS/93LCxh8eUd74pVkRLzOjBbAAA\nAAAAAABlY8iIiLpBmQuiERHpvb+IYs2AKLzuzByDAZQPJ+YB4AVLtm2MObF5j3Loiyqqq+K+2BwL\nt67vgWQAAAAAAAAA5SWpHxKFi6+KGDispL30zmsibXg8p1QA5UVBFAAior2rM3686KFIX2UmjYhZ\nCx+I7e07D1YsAAAAAAAAgLKVDBkRhYuujI7KmuxLaRrFO74f6Ypn8wsGUCYURAEgImavmB8bWrfv\nd66pvTWuWfRgFNNXq5ICAAAAAAAAkEVyyJh4dvLZsW1ne/alrs4o3vbdSNcszi8YQBlQEAWg31vc\ntCH+sHph5vlnGtfGXaueyzERAAAAAAAAQP/RXD8iLpj1+2jt6My+1NEWxVu/HenGlfkFA+jjFEQB\n6Nfauzrj2v2clt+X2cvnx5JtG3PJBAAAAAAAANDf/Gnpurj02j9ER1cx+1JbSxRv/makjevzCwbQ\nhymIAtCv3bp8fmzYuaPkvWKk8cMF90dzR1sOqQAAAAAAAAD6nzueWxUf/tkfo1gs4RU/LduiePM3\nIt2+Jb9gAH2UgigA/daipg1xz5rsp+X3tqWtJa5teDjStNT3jwIAAAAAAACwLzc+sSw+ffMDpS1t\n27zrTaIt2/MJBdBHKYgC0C+1HeBp+b3N37wq7lmzqFsyAQAAAAAAABBx9UML4x//59HSlrasjeIt\n34q0rSWfUAB9kIIoAP3SrcufiE0HcFp+X25aNi+Wb9/cLc8CAAAAAAAAIOL/3vNUfO3u+aUtbVgR\nxdnfibSjPZ9QAH2MgigA/c7Creu79a2fXWkxrl5wf7R2+k0GAAAAAAAAQHf533fMjXWHTiltafWi\nKP7P9yLt6swnFEAfoiAKQL+ys6sjrmt4qNufu2nnjvhJwyORpq/1aD0AAAAAAAAAL1p69PRIppxW\n2tKypyL97axIi8V8QgH0EQqiAPQrty57IjbtbM4029nWHmvnL8j87Lmbno8565YcaDQAAAAAAAAA\n9pYkkbzj8ohxx5e0li58JNI/XO8lP0C/piAKQL+xYOu6uHdtQ+b5R3/4y7jzi9+KHRu2ZN65cenc\nWNXceCDxAAAAAAAAANiHpKIyCu/+64gjSjs3nz75x0jvuzmnVAC9n4IoAP3Czs6OuG7Rw5nn1z21\nKJ7+5W+irWlH/OFL341iV7bTAx3Frrj6uftjZ1fHgUYFAAAAAAAAYC9JVXUUzv9sxKijS9pLH/1N\nFB+5I6dUAL2bgigA/cLNy+bF5rbsp+X/+JXvR1rcdWpg3ZMLY+6Pbsr8tda1botfLH7sgHICAAAA\nAAAAsG9JTV0ULvxcxPDDStpL77s5ivPvzScUQC+mIApA2XuucV38ad3izPOP/uCGaFq1bo+fe+Kn\nt8XoqMn8jAc3LIsH1y/NPA8AAAAAAADA/iV1g6Jw0VURg0eUtJfefX0UF2S/OglQDhREAShrrZ0d\ncV3DQ5nnD43qePrm3/3Zz6fFNM6MQ2JwVW3mZ/1s8aOxrqUp8zwAAAAAAAAA+5cMGhaFi66MqB9S\nwlYa6W9nRbp0fm65AHobBVEAytrNy+bFlraWTLNVhYo4I4a/dFp+b3VREZdPOSOSjF+7vdgVP3ju\n/mjv6sy4AQAAAAAAAEAWybBRUbjwyoiaAdmXil1RvP2/Il25IL9gAL2IgigAZevZxrUxp4TT8u8d\n+4YYFFWvOnPMsNFx7pGvy/zM1S1b45dLH888DwAAAAAAAEA2yaFHROG9fxdRVZN9qasjirP/M9J1\ny3PLBdBbKIgCUJZaO9vjuoaHM89PHHxovGXMlEyz7z769TFx8KGZn/2ndYvj0Y0rMs8DAAAAAAAA\nkE0yZkIUzv9MREVl9qWOtije8q1IN6/JLxhAL6AgCkBZumnZvGjMeFq+ulARH5k8PQpJtuPxFUkh\nPj71zKivzP5daNc3PBwbW7dnngcAAAAAAAAgm+SoY6Pwrr+KSEqoQu3cEcWbvhFp08b8ggH0MAVR\nAMrOM41r4r51SzLPXzjuhDi0blBJX2NYzYD46JTpmed3dnXGDxbcHx3FrpK+DgAAAAAAAAD7l0w8\nMZJzPlraUvPWKN70zUh3bM0nFEAPUxAFoKy0drbHTxY9knl+8pCR8abDJh/Q13r98MPj7MOPyTz/\n/I4tccuyJw7oawEAAAAAAADw6grHnhHJW95f2lLThije/M1IW3fkEwqgBymIAlBWfrn08Whsz3Za\nvqZQGR+alP20/L5cMPb4GDfokMzzf1izMJ7YtPKAvx4AAAAAAAAAr6ww7W2RnHFBaUubV0fx1m9H\n2r4zn1AAPURBFICy8dSW1XH/+qWZ53edlh/4mr5mZaEiPj71zKirqMq8c23DQ7F5Z/Nr+roAAAAA\nAAAA7Fty2rsjOentpS2tWxrF274baWdHPqEAeoCCKABlobmjPa5vyH5afsqQUTHzsEnd8rVH1A6M\nD02ennm+pbMjfrjg/ugqFrvl6wMAAAAAAADwsiRJIpl5SSSve2Npi88/F8Vffz/SYlc+wQAOMgVR\nAMrCL5fOja3trZlmayoq40OTT3tNp+X3duKII+PNh03OPL90+6b41Yonu+3rAwAAAAAAAPCyJEki\nOfvDEZNOKm1xybxI7/xxpKkX/gB9n4IoAH3eU1tWx4MblmWev2jctBhR+9pOy+/LxeOnxZH1wzLP\n/27Vs/H0ljXdngMAAAAAAACAiKRQiMK5V0QcfVxJe+mzD0R6zy8iTdOckgEcHAqiAPRpzR3t8ZMS\nTstPHToqZo6emEuWqkJFXHHMmVFTUZl555qFD8bWtpZc8gAAAAAAAAD0d0llVRTO+1TEmNL+njh9\n4u5IH/hVTqkADo7sDRYA6IVuXPpYNJVyWn7S9Ei68bT83kbVDY7LJp4asxY+kGl+R2dbzFr4QHzu\n9W+NQuL7NgAAAKBcTJs2rVufN2/evG59HgAAQH+SVNVE4YK/jeIv/yNi48rMe+nDt0exti4KJ52T\nYzqA/CiIAtBnzd+8Kh7asDzz/MXjToxDauvzC/SCU0eOjYVN6+O+dUsyzS9q2hC/fv6ZeM/Rr885\nGQAAANDTmpubo6GhYZ+fmzRpUtTX5/9nFwAAAP1RUjsgChd+Loo3fC1i6/rMe+kfb4xizYAoHDcj\nx3QA+VAQBaBPau5oi+tLOC1/zNDRMWP0hBwT7enS8SfF0m2bYk1LU6b5Xz//VEweMjKmDB2VczIA\nAADgYHilN37OmTMnZs6cuc/PzZo1K2bM8BeOAAAAeUnqh0Th4quieMNXI7ZvybyX3nVtpNV1kUw+\nOcd0AN3PLVsA+qRfLJkb2zp2ZpqtraiMD006LdfT8nurrqiMK6a+MaoKFZnm04iYtfCB2Nae7Z8J\nAAAAAAAAgNIlgw+JwkVXRdQNyr6UplG84weRLn86v2AAOVAQBaDPeWLTynhk4/LM838x/sQYfhBO\ny+9tTP2Q+MsJ2b+DrKm9Na5Z9GAU0zTHVAAAAAAAAAD9WzJ8dBQu+lxEdV32pWJXFG/7/yJd3ZBf\nMIBupiAKQJ+yo6Mtfrr40czzxw47LM4cdfBOy+/tjFHj47SRYzPPP9u4Nu5c9Vx+gQAAAAAAAACI\nZOTRUXjv30ZUVmdf6myP4uxvR7rh+fyCAXQjBVEA+pRfLHmshNPyVQf9tPzekiSJ9084JUaVcJ7g\nV8vnx5JtG3NMBQAAAAAAAEBy+KQovOdTEYWK7EttrVG8+ZuRNq7LLxhAN1EQBaDPeHzTynh044rM\n85eMPzGG1QzIMVE2tZVVccXUN0Zlku2X3WKkcfWC+6O5oy3nZAAAAAAAAAD9WzLu9VF45xURpbx4\nqHV7FG/6RqTbNucXDKAbKIgC0Cfs6NgZPyvhtPxxw8bEGaPG55ioNEcOHBaXjD8p83xjW0tcu+ih\nSNM0x1QAAAAAAAAAJJNPieSsD5e2tH1LFG/+RqQt2/IJBdANFEQB6BN+vvix2J7xtHxdRVVcNunU\nHj0tvy8zD5sYJ444MvP8/C2r4w9rFuaYCAAAAAAAAICIiMLrZ0Qy85LSlhrX7zo3v7Mln1AAr5GC\nKAC93tyNz8djm57PPH/phJN6xWn5vSVJEh+cdFqMqK3PvHPzsidi+XZnCQAAAAAAAADyVjj5nEhO\ne3dpSxtXRnH2tyPtaMsnFMBroCAKQK+2rb200/KvHz4mpo8cl2Oi12ZAZXVcMfWNUZFk+yW4Ky3G\n1Qvuj9bO9pyTAQAAAAAAAJCccUEkJ7y1tKU1i6N4+/ci7erMJxTAAVIQBaBX+/mSR2NHZ7bvtBpQ\nWRWXTex9p+X3NnbQIXHhuBMyz2/auSN+0vBIpGmaYyoAAAAAAAAAkiSJ5C1/Gckx00tbXP50pL+5\nOtJiMZ9gAAdAQRSAXuuxjSvi8U0rM89fOv7kGNoLT8vvy9vGTInXDx+TeX7upudjzrrFOSYCAAAA\nAAAAICIiSQqRnHN5xITsL/6JiEgXPRbp76/z8h+g11AQBaBX2tbeGj9b/Fjm+eOHHx6njRybX6Bu\nliRJfGTy6TGsOnuh9YYlc2NVc2OOqQAAAAAAAACIiEgKFVF41ycjjpxa0l769JxI/3SjkijQK1T2\ndAAA2FuapvGzxY9Fc+bT8tVx2aTef1p+bwOrauLjU8+Ibzx5dxRj/7856EyL8YPn7o9/mnZO1FZU\nHYSEAAAAAAAAAP1XUlkVhfM/E8WbvhGxblnmvXTunRG19ZGc9u4c09GfTZs2rVufN2/evG59Hr2H\ngigAvc5jG1fEvM3ZT8u/b8JJMaS6LsdE+Zk4ZGScN/b4mL18fqb59a3b4ueLH4uPTjk952QAAAAA\nAAAAJNV1UXjv30Xxxq9FbF6TeS+9/9YoVtdFYdrbckwHe2pubo6GhoZ9fm7SpElRX19/kBPR0xRE\nAehVmtpb4+dLsp+WP+GQI+LUQ8fmF+ggOOeIY2Ph1vXx3NZ1meYf2rAspg4dFaePGp9zMgAAAAAA\nAACSuoFRuOjKKN7wtYimjZn30nt+FsWaAVE41guA6F6v9MbPOXPmxMyZM/f5uVmzZsWMGTPyjEUv\nVOjpAADwol2n5R+N5s72TPP1ldXx/omn9LnT8nsrJElcPuX0GFxVm3nnZ4sfjbUtTTmmAgAAAAAA\nAOBFycBhUbj4qoj6oSXtpb/7UaSLne8GeoaCKAC9xqMbV8QTm1dlnn/fhJP77Gn5vQ2urouPTT0j\nslZd24td8YPn7ov2rs5ccwEAAAAAAACwSzLk0ChcdGVEbQlnutNiFH/935E+/1x+wQBegYIoAL1C\nqaflpx1yZJxy6NE5Jjr4pg4dHe886rjM82tamuLGpY/nmAgAAAAAAACA3SUjDo/ChZ+LqKrJvtTV\nGcVffSfStUvzCwawDwqiAPS4NE3j+oZHoiXzafmaeP/Ek/v8afl9efdRx8XkISMzz89yrxJhAAAg\nAElEQVRZtzge3bA8v0AAAAAAAAAA7CEZPS4KF/xNREVl9qWOtije8q1IN2W/qgnwWimIAtDjHt6w\nPJ7csjrz/PsnnhyDy+S0/N4KSSEun3JGDKzM/t1m1y9+JDa0bs8xFQAAAAAAAAC7S46cGoV3/3VE\nUkL9qq0lijd/M9KtG/ILBrCbEmrsQG8wbdq0bn3evHnzuvV5UKqtbS1xw9Lsp+VPHHFknFxmp+X3\nNqxmQHx0yunxnWfuzTS/s6szrl5wX/yvN7w9qgoV+YYDAAAAAAAAICIikgknRPKOj0X6mx9GRJpt\nqbkpijd/IwqXfCGSQcNyzQegIAplorm5ORoaGvb5uUmTJkV9ff1BTgT7l6ZpXL/4kWjp7Mg0P7Cy\nJv5ywik5p+odjhs+Jt5+xDFx56rnMs0/v6Mxblk2Ly6dcHLOyQAAAAAAAAB4UeGY6VFsb4307uuz\nLzVtiuIt34zCJZ+PpG5gfuGAfk9BFPqYV3rj55w5c2LmzJn7/NysWbNixowZecaCA/LQhmXx1JY1\nmeffP/GUGFxdm2Oi3uWCo98QDU0bYtn2zZnm/7BmUUwZMipOGHFkzskAAAAAAAAAeFHhDW+JYltL\npPfdkn1p85oo3vKtKFz895HU1OUXDujXCj0dAID+qbGtJW5YMjfz/EkjjoqTDj0qx0S9T0WhEFdM\nfWMMqKzKvHNtw0OxeWdzjqkAAAAAAAAA2FtyyjsjOfkdpS2tXx7FX30n0o72fEIB/Z6CKAAHXZqm\ncX3Dw9Hale20/KCq2nj/xP55Ov2Q2vr48KTpmedbOjvi6gX3RVexmGMqAAAAAAAAAHaXJEkkMy6O\n5PX7vv76ilYtjOKv/zvSrs58ggH9moIoAAfdA+uXxtONazPPv3/iKTGwqv+clt/bCSOOjLeOmZx5\nftn2zTF7xfwcEwEAAAAAAACwtyRJInnbByOZckppi0vnR/q7H0WaehEQ0L0URAE4qBrbWuLGpY9n\nnj/l0KPjxBFH5piob7hw3LQ4auCwzPN3rnount6yJsdEAAAAAAAAAOwtKRQiecfHI8a+vqS9dMHD\nkf7hp5GmaU7JgP5IQRSAgyZN07iu4eHYmfG0/OCq2njfhP55Wn5vVYWKuGLqG6O2ojLzzjULH4zG\ntpYcUwEAAAAAAACwt6SiMgrv+euIwyeVtJfOvzfS+2/NKRXQHymIAnDQ3L9+aTxbwmn5D0w8JQZW\n1eSYqG8ZWTcoLpt4aub5HZ1tMWvBA9HlDAEAAAAAAADAQZVU1UThgr+JGHl0SXvpI7+O4qO/zSkV\n0N8oiAJwUGzZ2Ry/XDo38/yph46NE5yW/zOnjBwbM0ZPzDzfsG1D/Pr5p3NMBAAAAAAAAMC+JDUD\nonDh5yKGH1bSXjrnl1F88o85pQL6EwVRAHL38mn5zkzzu07Ln5Rzqr7rkvEnxpgBQzLP3/H807Fg\n67ocEwEAAAAAAACwL8mAQVG46MqIwYeUtJf+/idRXPhITqmA/kJBFIDczVm3JJ4roaB42aRTo95p\n+VdUXVEZnzjmjVFdqMg0n0bErAUPxLb21nyDAQAAAAAAAPBnkkHDo3DRVREDBpewlUb6mx9GuvTJ\n3HIB5U9BFIBcbd7ZHDctezzz/PSRY+MNhxyRY6LycNiAIfH+iadknt/WsTN+tPDBKKZpjqkAAAAA\nAAAA2Jdk2KhdbxKtGZB9qdgVxdu/F+mqhfkFA8qagigAudl1Wv6haMt4Wn5IdV1cMv7knFOVj9NH\njY/pI8dlnn9u67r43apnc0wEAAAAAAAAwCtJDj0yCu/924jK6uxLXR1RnP2dSNevyC8YULYURAHI\nzZ/WLY4FW9dnnr9s4qlRX1XC/xAm/nLiyTGqLvsZgtuWPxmLmzbkmAgAAAAAAACAV5KMmRiF8z8T\nUVGZfam9NYq3fDPSLWvzCwaUJQVRAHKxaeeOuHnpvMzzp48cF8cfcniOicpTbUVVfOKYM6MyyfZL\nejHS+OGCB2JHR1vOyQAAAAAAAADYl+To10XhnZ+ISJLsS607onjTNyJt2pRfMKDsKIgC0O2KaRrX\nLXo42orZTssPra6LSyaclHOq8nVE/bC4tIT//BrbW+LHix6MNE1zTAUAAAAAAADAK0kmnRTJ2z9S\n2tKOxije/I1Im5tyyQSUHwVRALrdn9Y2xMKm7KflPzjptBhQ6bT8azFj9MQ4acRRmeef2rIm7l6z\nMMdEAAAAAAAAALyawuveGMmb31fa0tYNUbz5m5HubM4nFFBWFEQB6FYbW3fELcueyDx/xqjxcdzw\nMTkm6h+SJIkPTjo1RtQOzLxzy7InYtl25wcAAAAAAAAAekrhxLMjmX5eaUubVkXx1m9H2tGWTyig\nbCiIAtBtimka1zU8lPm0/LDqAfEX40/MOVX/UVdZHVdMPTMqkmy/vHelxfjhgvujpbM952QAAAAA\nAAAAvJLk9PMimXZWaUtrl0Txtu9G2tmRTyigLCiIAtBt/rh2USxq2pB5/oOTT3VavpuNHXRIXDTu\nhMzzm3Y2x08aHo40TXNMBQAAAAAAAMArSZIkkjdfGsnrzixtccWzUbzjB5EWu/IJBvR5CqIAdIuN\nrdtLOi3/xtET4nXDnJbPw1vHTIk3DD888/zjm1bGn9YuzjERAAAAAAAAAK8mSQqRnP3hiIklXuFc\n/Hikd10baVrMJxjQpymIAvCaFdM0rl30cLRn/K6kYTUD4uJxTsvnJUmS+PDk6TGsZkDmnRuXzo2V\nOxpzTAUAAAAAAADAq0kKFVF45ycijj62pL30mfsjvfcGlyOBP6MgCsBrdu+aRdGwLftp+Q9NOi3q\nKqtyTER9VU18fMqZUYgk03xnWoyrF9wXOzs7ck4GAAAAAAAAwCtJKqui8J5PRxw2vqS9dN7vI33o\ntpxSAX2VgigAr8n61m1xy/Lsp+VnjJ4Yxw47LMdEvGjikEPj/LHHZ55f37o9frr4Ud9VBgAAAAAA\nANCDkuraKLz37yJGHFHSXvrgbVF8/K6cUgF9kYIoAAesmBbj2kUPR0fG0/LDawbEReOm5ZyK3b39\niGPj2KGjM88/snF5PLB+aY6JAAAAAAAAANifpLY+ChddGTF0ZEl76b2/iOIz9+WUCuhrFEQBOGB/\nWLMolmzbmHn+Q5OmOy1/kBWSJD465YwYXFWbeefnSx6LNc1NOaYCAAAAAAAAYH+S+iFRuPiqiIHD\nStpL7/xxpA1zc0oF9CUKogAckPUt22L28vmZ52eOnhjHDMv+Jku6z+Dq2vj41DMjyTjfUeyKqxfc\nF+1dnbnmAgAAAAAAAODVJYNH7HqTaN3A7EtpGsU7fhDpimfyCwb0CQqiAJSsmBbj2oaHMp+WP6Sm\n3mn5HjZl6Kh411HHZZ5f09IUNyz1HWUAAAAAAAAAPS05ZEwULvxcRHX2y5HR1RnFX3030jWL8wsG\n9HoKogCU7O7VC2PJtk2Z5z80+bSodVq+x73rqONi8pCRmefvW7ckHtmwPL9AAAAAAAAAAGSSjBob\nhQv+JqKihL9772yP4q3fjnTjyvyCAb2agigAJVnX0hS/WvFk5vk3HTYppg51Wr43KCSF+NiUM2Jg\nZU3mnesXPxLrW7flmAoAAAAAAACALJIjpkThPZ+KKFRkX2prieLN34y0cX1+wYBeS0EUgMyKaTF+\nvCj7afkRtfVx4bgTck5FKYbWDIiPTjk983xbV2dc/dz9mf+dAwAAAAAAAJCfZPzxkZz78YhIsi+1\nbIviTV+PdPuW3HIBvZOCKACZ3bV6QSzbvjnz/IcmTY/aUl5vz0Fx3PAxcc4Rx2aeX9ncGDctnZdj\nIgAAAAAAAACyKkw5NZKzPlja0vYtu94k2rI9n1BAr1TZ0wEA6BvWtjTFbcuzn5Z/82GTY8rQUTkm\n4rU4/+jjo6FpQyzdvinT/L1rF8WUoaPixBFH5pyMvmbatGnd+rx585SRAQAAAAAAYH8Kx78pim0t\nkc65KfvSlrVRvOVbUfiLv4+kZkB+4YBeQ0EUgP3qeuG0fGdazDQ/onag0/K9XEWhEB+femb827zf\nREtne6ad6xY9FEcNHBYjagfmnI5y0NzcHA0NDfv83KRJk6K+vv4gJwIAAAAAAIDyUjjl3F0l0Ufu\nyL60YUUUZ/9nFC78XCRVNfmFA3oFBVEA9uuuVQtieQmn5T88eXrUVPglprc7pLY+Pjx5evzXs3/K\nNN/a1RFXL7g//uH4s6KyUJFzOvqKV3rj55w5c2LmzJn7/NysWbNixowZecYCAAAAAACAfiE588KI\ntpZI59+bfWl1QxRv/68onP+ZSPzdPpS1Qk8HAKB3W9O8NW5fkf20/FvHTInJQ0bmmIjudMIhR8Rb\nx0zJPL98++aYvTz7/z8AAAAAAAAAkJ8kSSJ56wcimXpaaYvLn4r0tz+MtJjtkijQNymIAvCKSj0t\nP7J2YLx37BtyTkV3u3DcCXHUwOGZ5+9a/Vw8tWV1jokAAAAAAAAAyCpJCpGcc3nE+NL+vj5d+Gik\nd18faZrmlAzoaQqiALyiO1c9Fyt2bMk0m8Su0/LVXj/f51QVKuITU8+M2hL+3V2z8KFobGvJMRUA\nAAAAAAAAWSUVlVF41ycjjsh+QTIiIn3qj5HOuSmnVEBPUxAFYJ9WN2+N21c8lXn+rYdPiYlOy/dZ\nh9YNig9Oyn5yoLmzLX644P7oyvh2WQAAAAAAAADylVRVR+H8z0aMGlvSXvrYb6P4yB35hAJ6lIIo\nAH+mq7jrtHzW8t/IukFxwdFOy/d1Jx96dMwcPTHz/OJtG+N/SigRAwAAAADQ+1RUV8Xgw0fFkCNG\nR/XAAT0dBwB4jZKauihc+HcRh4wpaS+97+Yozr8np1RAT3EH+DVqbm6O8847L1avXv3Sz33lK1+J\n9773vZn2H3zwwbjtttti7ty5sXHjxigUCjF69OiYPn16XHjhhfG6172upDytra1x6623xp133hlL\nly6NLVu2xNChQ+Ooo46Ks846Ky666KIYMmRISc8E+p/frno2ni/htPxHnJYvG38x/sRYsm1TrG7Z\nmmn+NyuficlDRsUxw0bnnAwAAAAAgFJ1pcVoam+NxraW2NLW8sL/bY7GtpZ4PtbHZbO/FwOGv/x3\nh2mxGMvvmxuN0d6DqQGA1yqpGxSFC6+M4g1fjdi2KfNeevdPo1hdF4VjpueYDjiYtHleo//4j//Y\noxwaEZEkyX73Wlpa4otf/GLcccefv555yZIlsWTJkvj5z38eH/zgB+Pzn/98FAr7f9nrk08+GVdd\ndVWsXLlyj5/ftGlTbNq0KR5//PH40Y9+FF/5yldixowZ+30e0D+tam6MXz//dOb5sw6fGhMGH5pj\nIg6m6orK+MQxZ8a/z/tttBe79jufRsSPFj4QXzzx3BhSXZd/QAAAAAAAIiIiTdPY0dEWje0tsWVn\n864CaPvLJdAtbS3R1NYaxUhf8Rm7l0MjIpJCIcbNPCV+E+ujeuWz8fYjpkYhcZQSAPqiZNCwKFx8\n1a6SaHNTxq000t/OirS6NpIJJ+SaDzg4FERfgwcffDBuuOGGiIioqqqKjo6OTHsdHR3x2c9+Nu6/\n//6IiCgUCnHmmWfG8ccfH52dnfHII4/EvHnzolgsxrXXXhutra3xpS996VWfuWDBgrj88stjx44d\nERExZMiQePvb3x6HH354bNiwIe68886XiqKf/vSn4+qrr47TTjvtNfzTA+Woq1iMHy/Mflp+VN3g\nOO/o43NOxcE2esCQeP/EU+LHix7KNL+tY2f8aOED8bfHvcUfFAIAAAAAdJPWzo5ofKHouevtn827\nvQm0ORrbW6Mjwzf6H4hiRNy6/Il4asvq+OiU02NE7cBcvg4AkK9k6MgoXHRlFG/4WkRbS7altBjF\n//mvKFz4uUiOnJpvQCB3CqIHaMeOHfFP//RPERFx5plnRnt7ezz66KOZdq+55pqXyqH19fXx3e9+\nN04//fQ9Zm677bb4x3/8x+jq6oobb7wxZsyYEWefffY+n9fV1RX/8A//8FI59KSTTorvfe97e5yS\n//znPx9XXXVV/P73v4/29vb4+7//+7jzzjujrs7b3oCX/WblM7GyuTHTbBKJ0/Jl7PRR42Ph1vXx\n4IZlmeYXbF0fv135bLzzqONyTgYAAAAA0Pd1FLuisW3Pt302vlD8fLEQurMr28tp8rR428b4P4/f\nEe+bcHJMHzku0yVFAKB3SUYcEYULPxfFm74e0dGWbamrM4qz/zMKf/EPkYwel29AIFdaPQfoq1/9\naqxduzYGDBgQX/rSl+ILX/hCpr1t27bF97///Zc+/sIXvvBn5dCIiPPOOy+WLFny0uzXv/71OOus\ns/b5m67Zs2dHQ0NDREQMHTo0vvOd7+xRDo2IqKmpia9//etx/vnnx4oVK2Ljxo1xzTXXxKc+9anM\n/8xAeVu5ozF+vTL7afmzj5ga4wePyDERPe19E0+OZds3x7rWbZnmb1vxVEwaMjImDRmZczIAAAAA\ngN6rKy1GU3vrbm/73FUC3f3j7R07ezpmZju7OuPHix6KJ7esjg9MPDUGVtX0dCQAoETJYeOjcP5n\no3jr/4vo6sy21NEWxVu+FYVLPh/JiMPzDQjkRkH0AMyZMyduuummiIi48sor4/DDs/+X4O9///to\nbm6OiIgxY8bExRdf/IqzH/vYx+K6666L1tbWWLFiRcydOzdOPvnkP5ubPXv2Sz++9NJLY/jw4ft8\nXm1tbVx++eXxL//yLxERceuttyqIAhER0Vnsih8vejCKaZppfrTT8v1CbUVVXHHMmfHVJ+7MdKYo\njTR+uOD++OcTz42BVbUHISEAAAAAwMGVpmns6GiLxvaW2LLzhTd/tu/5JtCmttYoRrY/b+9LHt+0\nMpZs2xQfmTw9jh12WE/HAQBKlBx1TBTe9cko3v69iLSYbWlncxRv/mYU3veFSIYcmm9AIBcKoiXa\nvn17fPGLX4yIXafcL7vsspL277rrrpd+fPbZZ7/qGYbBgwfH9OnT45577nlpd++CaGNjYzz22GMv\nfXzuuee+6tc/55xz4l//9V8jTdNYuXJlLFiwIKZOnVrSPwNQfn6z8plY1bw102wSSXxkyvSoKlTk\nnIre4Ij6YXHJ+JPip4sfyTS/tb01frzoofjUsW+KglNDAAAAAEAf09rZsceZ98Y93vzZHI3trZm+\nob5cNbW3xrefvifeMmZyXDj2hKiu8NfNANCXJBOnRXLORyP97azsS81bo3jTN6Jw6RciGTg0v3BA\nLvwv9hJ9+ctfjvXr10dtbW38+7//e8n7zz777Es/Pumkk/Y7f/LJJ79UEN1990ULFiyI9IU3/g0c\nOHC/Zc+hQ4fGhAkTYvHixS89U0EU+rfnd2yJO1Y+k3n+7UccE+MGOS3fn8wYPSEWbl0Xj216PtP8\nU1vWxN2rF8TZRxyTczIAAAAAgOw6il3R2Lbn2z4bXyh+vlgI3dnV0dMx+4R71iyKBY3r4vKpZ8RR\nA/d93RAA6J0Kx54RxbbWSO/5Wfalpo273iR6yf+KpG5gfuGAbqcgWoJ77703br311oiI+MxnPhNj\nx44taX/79u2xfv36lz4++uij97tz1FFHvfTjhoaGP/v87j+3++z+nvliQXRfzwT6j85iV1y76KHM\np+UPGzAk3nP063NORW+TJElcNum0WLFjS2zcuSPTzi3Ln4iJgw+NcYOViQEAAACA/HWlxWhqb93t\nbZ+7SqC7f7y9Y2dPxywra1u3xVee+F2cd/Txcc4Rx0QhKfR0JAAgo8K0t0WxrSXSB2ZnX9q8Ooq3\n/r8oXHxVJNV1+YUDupWCaEZNTU3xz//8zxERcdxxx8XHPvaxkp+xcePGl36cJEmMHj16vzu7zzQ1\nNUVXV1dUVLx81nn3Z44aNSpTjt2fuWnTpkw7QHm64/nsp+ULkcRHJjst31/VVVbFFVPfGF+bf2d0\npcX9zhfTNK5ecH/872nnRn1V9UFICAAAAACUqzRNY0dHWzS2t8SWnS+8+bN9zzeBNrW1RjGyvQyB\nXZKI2LZ2Y+zYsDnqRw6PwYeNLPkZxTSN2cvnx9Nb1sRHp5weI2q9UQwA+orktHdHtLVEOvfO7Evr\nlkXxV9+Nwnv/LpLKqvzCAd1GQTSjf/u3f4uNGzdGVVVVfPnLX44kSUp+RnNz8x4f19Xtv02/90xz\nc3MMHjx4n88cMGBAphy1tbWvmAnoP1Zs3xK/KeG0/DlHHhtjBx2SYyJ6u6MHDY+Lx02LG5bOzTS/\nua05ftLwcPzVMW88oF83AQAAAID+obWzY48z7417vPmzORrbW6Oj2NXTMfucwVW1MbxmQAyrqY9h\nNQNieM2AGP7Cj4fVDIgnH3ks3nzpByIiorKuJk7/9AfimPPedkBfa/G2jfF/Hr8jLp1wcpw+cpw/\nEwaAPiBJkoiZl0S0tUb69JzsiysXRPHX/x2F93wqEi+Ygl5PQTSDu+++O26//faIiPirv/qrmDx5\n8gE9p62tbY+Pq6v3/0a1mpqaPT5ubW3doyC6c+fLpzCqqrI183d/5u77QP/RUeyKHy96MPN3U48Z\nMCTeddRxOaeiL3jLmMmxoGl9zN+8KtP8vM0r4961DfGWMQf2aycAAAAA0Ld1FLuisW3Pt302vlD8\nfLEQurOro6dj9jkDKqtiWHV9DK8dEMOqd5VAh79QAh1WUx9Da+r2exGsEC+XODtb22LO138UKx6Y\nF2/6/BVRN2xIyZl2dnXGtYseivmbV8UHJ50aA6tq978EAPSoJEkizvpQRHtrpIsey7645IlIf3dN\nxDsujyQp5BcQeM0URPdj69at8S//8i8RETF58uT45Cc/ecDP2rvs2d7evt+S6N6l0r3fKLr720A7\nOrL95nn3Z+6+D/Qfv37+6VjT0pRpdtdp+dOdlicidv0G4cOTTot/27EltrS1ZNq5aenjMWHwiDhq\n4PCc0wEAAAAAB1NXWoym9tbd3va5qwS6+8fbO7yspFRVhYoXip57Fz9ffgNobUU+J12ff2Be/PLD\nX4h/vO2aWB0H9u/uic2rYum2TfHhydPjuOFjujkhANDdkkIh4twrIm3bGbHi6cx76XMPRtTURbzl\n/d4eDr2Yguh+fOlLX4pNmzZFZWVlfPnLX47KygP/j6y+vn6Pj1tbW/dbEG1tbX3VZ+z+cUtLtqLO\n7m8N3ft5WS1dujQuuOCCknZmz559QF8L6F7Lt2+O3618NvP8O448No4epNjHy+qrauLjU8+Mr8//\nfaa30Hamxbj6ufvif087N2or8/lDSwAAAACge6VpGjs62qKxvSW27HzhzZ/te74JtKmtNfOlKnYp\nRPLSifdhu5U+Xy6ADoj6ypoeLVns3Lot3hwjIpk4Jm5cOjfai10lP2Nbx874zjP3xpsOmxQXj5sW\n1RX+WhoAerOkojIK530qijd/M2LN4sx7/z979x2fZX3vf/x9XXfu7E1CAoEAIYsNYQ9HRURRcaFt\nHTha255z6mmrdtnanjo67NG255y2v1OLo7Y9ap2ggOKogxkIUyALCARCSMje47p+f1CpOK/75rrI\nej3/Qvl8P7zpA5tw3Z/r+7G3vSGFRcqYe4WH6YC+JdCZun379ikjI8OjNAyIfqr169dr5cqVkqQb\nb7xR48c7W69s2x//F+Hk5ORTaioqKhQX9+nrGSorK0/+OC4uTj7fqTf4fbDn0aNHHeX7YF1SUpKj\nMwD6hxOr5Tc4fmCXFhnPanl8rNGxybp85CQ9d2Cbo/pjbU36c8kmfSlnDm+PAQAAAAAAAL1Aa1fn\nKWvea0+5+bNZtR2t6gxiMHCgi/WHn1zz/v7A5/u3fiaERSouNFxmH1jDasjQWUMylR0/WI8Wrtf+\nxuNB9Xmrolh76yp1S85sjYwZ5HJKAADgJsMfJvPyb8j62wNS1SHH5+yNL8kKi5Q5baGH6QAEiwHR\nT1FRUXHyx8uWLdOyZcscnfv+97+v73//+5Kk3NzckzdnxsTEKCUl5eTQZ1lZmXJzcz+1V1lZ2ckf\nZ2VlfeTnP/jvysvLZdv2Zw7eHDx48FN7OpGRkcGNoEAf9FLZTlU4XS1vGLopZ5ZCWC2PT7Bg2BgV\n1lfqvdqKzy6WlF9Vptz4VM1LHe1xMgAAAAAAAGBg67S6Vdt+6m2ftf8Y/Hx/ILStu7OnY/Y5kSF+\nJYRGKTE8UgmhH17/HqX4sAj5+9kz9ZSIWH170gKtOvieXj64K6gbYytbG/SL7a/qkvQJunD4WPn6\nwIAsAAADlREeKfOq22U99XOptvKzD/yD/fbTJ4ZEJ5zlYTqgbwh0pi7QG0cDxYCoxz48rDlu3LiT\nA6IFBQVauPDTp+c3b9588sdjx479yM/n5ubKNE1ZlqXGxkYVFhZ+6tBpXV2dSkpKTmb7uJ4A+qf9\njdV6pXyP4/qLho9TejSr5fHJTMPQzdmzdd/WVarraHV05snSzRoVM0hpUfEepwMAAAAAAAD6p27b\nUn1H6wdu+zwxBPrBf27sbOvpmH2O3/SdXPN+6uDnP28ADff5ezpmj/AZpi4ZMUHjEofokcL1Otba\nGHAPy7a1vGyHdtUc0S05s5UcEeNBUgAA4AYjMlbmVXecGBJtrHF8zn7tcdlh4TKyp3uYDkCgGBD9\nFCNGjNAVV1zhqPadd95RdXW1JGnq1KlKT0+XJA0dOvSUuvPPP19vvPGGJGnNmjX67ne/K9P8+Lfk\nGhoatH79+pP/vGDBgo/UJCQkaOrUqcrPz5ckrV69+lMHRF999dWTPx42bNhn3mAKoH/otLr1WOEG\n2Q7f7B0WFa9Fw8d5nAr9QUxouL6UM0cP7XzD0Z+vTqtbD+9dq+9PXqgwH9+GAAAAAAAAAB9k27aa\nOttV29GimrZ/3PzZcepNoPXtrUHd4jiQmTJOrnhP+MDQ5z8HQCMVFRL2mVv6BrpRMUn64ZSL9My+\nAr19tCSoHvsaq3Xv1lW6JmOq5qZk8L85AAC9lBE7SOaSO2Q9+XPJ6cshti1r5U3myCAAACAASURB\nVMMy/eEyRk3wNiAAx5jM+BRTp07V1KlTHdXecMMNJwdEr7766k+8+nXBggW6//771dzcrCNHjui5\n557TkiVLPrZ22bJlams78YbniBEjNG3atI+tu/zyy08OiD755JNaunSpEhM/eutfW1ubli1bdso5\nAAPD8rIdOtra4KjWNAzdlD2b1fJwLDs+RZekj9eKgzsd1Ve01Oup0s1amj3L42QAAAAAAABA79La\n1XnKmvfaU27+bFZtR6s6re6ejtnnxPrDT655f3/g8/1bPxPCIhUXGi6TteauCPOF6LqsGZo4KE2P\nF20M6rba9u4uPVG8UTtrDuv6zBmKCQ33ICkAADhdRkKqzKu+Jetvv5TanW2UlNUta8XvZF51u4y0\nLG8DAnCEAdEzLCYmRl/96lf10EMPSZJ+9rOfadiwYZo169QhmRUrVujhhx+WdGIV/B133PGJPa+4\n4go9+uijKikpUV1dnW677Tb97ne/U1xc3MmatrY2ffvb31ZZWZkkKTk5Wbfccovbvz0AvdC+hmqt\nKd/ruH7R8PEaHp3gYSL0R4vSx6mo/pgK6ysd1a+t3Kfs+BTNGjzK42QAAAAAAADAmdFpdau2/dTb\nPmv/Mfj5/kBoW3dnT8fscyJD/EoIjVJieKQSQj+8/j1K8WER8nPhwRk3ITFNP85bpCdKNmn78fKg\nemw7Xq59DdVamj1TExLTXE4IAADcYAweIfPyb8h69iGpq8PZoa4OWc//RuY135YxeIS3AQF8JgZE\ne8DNN9+s9evXa/369WpubtbNN9+sefPmaeLEierq6lJ+fr4KCgpO1l911VW64IILPrGfaZr6z//8\nT11//fVqamrSli1bdMEFF2jhwoUaMmSIqqur9corr5y84TQ0NFQPPPCAIiIiPP+9AuhZHd1deqzI\n+Wr54VEJrJZHUEzD1Jdy5+jegpVq7Gx3dOavxfkaFT1IKZGxHqcDAAAAAAAATk+3bam+o/UDt32e\nGAL94D8Hc5PiQOc3fSfXvJ86+PnPG0DDff6ejolPEBMarn8Zc5bWVu7T06Vb1G51BdyjobNN//Pe\nWzo7NVNLMvIU5uPjawAAehsjLUvm4n+T9cJ/SU5vu+9olfXsr2R+/nsyElO9DQjgU/Eddg/w+/36\n7W9/q7vuukurV6+Wbdt655139M4775xSZ5qmrrvuOt11112f2TM3N1d//OMfdeedd6q8vFz19fV6\n+umnP1KXlJSkn/70p5o9e7Zrvx8Avdfysp2qdLha3meYuilnlnwma3YQnLjQCN2SM0e/2fWmo/p2\nq0t/2Puuvjd5IW/4AwAAAAAAoMfYtq2mznbVdrSopu0fN392nHoTaH17qyyHL+LjBFPGyRXvCR8Y\n+vznAGikokLCZBhGT0fFaTAMQ/NSRysnbrAeKVyvfY3VQfV5+2iJ9tZX6pac2RoVk+RySgAAcLqM\nkeNlLrpV1sv/K9kOvy9ubZT17IMnhkRjB3maD8AnY0DUZU7/EhsZGalf//rXWr9+vV588UVt3bpV\nx44dk8/nU0pKimbOnKmrrrpK48Y5v8lv8uTJWrFihZ5//nm9+uqr2r9/v2praxUbG6v09HTNnz9f\nV199tWJjuakNGAhKG6r02uE9jusvTh+nYVGslsfpGZswRBcOH6vVh3Y7qi9vrtMz+wr0xczpHicD\nAAAAAADAQNXa1XnKmvfaU27+bFZtR6s6nd6EhJNi/eEn17y/P/D5/q2fCWGRigsNl2lwIcFAkRwR\nozsnna/Vh3brpYM7ZTkdHPmAY62NemDbGl2cPl4XpY+Tjz8/AAD0Kkb2dBntbbLXPOb8UGPNiSHR\na74rIyrOs2wAPhkDoi554okngjo3e/ZsV2/zjIiI0LXXXqtrr73WtZ4A+p6O7i49XrTB8fvs6dEJ\nunAYq+XhjsUjJqq4vkqlDVWO6v9eUayc+BTlJaV7nAwAAAAAAAD9jWEaihkyWFGDByl6cKKiU5K0\nQTXatuvNkwOhbd2dPR2zz4kM8SshNEqJ4ZFKCP3w+vcoxYdFsBUIH+EzTF2cPl7jEobokcL1jjec\nfZAlWysO7tSu2iO6OWe2UiK4+AYAgN7EnHCWrI4W2W99dKvxJ6qtlPXcr2Re/R0Z4ZHehQPwsRgQ\nBYB+6MWyHapsbXRU6zNM3ZQ9m9XycI3PMPXl3Dm6r2CVmrs6HJ35U9FGpUcnKik82uN0AAAAAAAA\n6A/q1KlzvvcVjZiTp/D4mFN+rkTNUm1zDyXr/fym7+Sa91MHP/95A2i4z9/TMdGHjYwZpB9OuVDP\n7t+qv1cUB9Vjf+Nx3VewSldnTNVZqaMdb3EEAADeM6culNXWKnvjCueHqg7JeuE3Mq+6XYY/zLtw\nAD6CAVEA6GdK6o/p9cN7Hddfkj5BaVHxHibCQJQYFqUbs2fpd7vfdlTf2t2ph/eu1bcnnq8Qbh4A\nAAAAAADAJ6hsadBLB3dqk44qZ9E5PR2n1zFlnFzxnvCBoc9/DoBGKiokjGE7eC7UF6IvZk7XhMQ0\nPV60QQ2dbQH36LC69ZeSTdpZc1g3ZM1UbGi4B0kBAEAwjDmXSe0tsre97vzQkRJZy38n8/LbZPgY\nWQPOFP5rA4B+JNDV8iOiE7Vw+BhPM2HgmjRomOan5ej1w4WO6g80HtcLB7ZrSUaex8kAAAAAAADQ\n11S1Nunlgzu14dgB2Y6fgPY/sf7wk2ve3x/4fP/Wz4SwSMWFhss02BaF3mN84lD9eOoi/bk4X1uP\nHwqqx46aw7qn4GXdkDVTkwYNczkhAAAIhmEY0ue+cGJIdM965wfLdsla+QeZF39NBltOgTOCAVEA\n6EeeP7Bdx9qaHNWGGKZuyp4lHw8L4aErR05WSX2VyppqHNWvObxX2XEpmjgozeNkAAAAAAAA6AuO\ntzVr5aFdWle5T5bdvwdDI0P8SgiNUmJ4pBJCP7z+PUrxYRHys30HfVC0P1xfHTNP64/t15Olm9Xe\n3RVwj8bOdv1u99s6KzVTSzKmKNzn9yApAAAIhGGY0sKbZXe0SqXbnB8s3iJ7zePSBTdxsz1wBjAg\nCgD9RHH9Mb15xNlNjZJ06YgJGspqeXgsxPTp1tx5um/rKrV1dzo681jRet2dt0gJYZEepwMAAAAA\nAEBvVdveolWH3tO7R0vVbVs9Hee0+U3fyTXvpw5+/vMGUAbe0J8ZhqE5KRnKih2sR4vWq7ShKqg+\n7xwtUWHdUd2cM0cZsUkupwQAAIEyTJ/Mi78m6/lfS4f2Oj5nv/euFB4pnX0NQ6KAxxgQBYB+oD3A\n1fIjYwZpwTBWy+PMSI6I1tKsmfrD3ncd1Td3deiPe9fq9onzueEWAAAAAABggKnvaNUrh3brrYpi\ndfWRwVBTxskV7wkfGPr85wBopKJCwvjgG9CJ58V3TpyvV8r3aHnZjqBuBj7W1qRfbl+ji9LH6eLh\n4+VjPS0AAD3KCPHLvOzrsp55SDq6z/E5e8urUlikjFmXepgOAAOiANAPPH9gm6oCWC1/Yxar5XFm\nTU1O1zn1WXqrothRfUlDlVaU7dTlIyd5nAwAAAAAAAC9QVNnm14p36M3jxSp0+ru6TiniPWHn1zz\n/v7A5/u3fiaERSouNFwmz1sBx0zD1EXDx2lcwhA9snedKlobAu5hydbLB3fpvZojuiVnjlIiYz1I\nCgAAnDJCI2Re8Q1ZTz8gHT/s+Jy97gVZYZEyp8z3MB0wsDEgCgB9XFFdpd48UuS4fvGIiRoaFedh\nIuDjXZ2Rp9KGKpU31zmqX33oPWXHDdbYhCEeJwMAAAAAAEBPae7s0JrDe/TGkUK1d3ed8V8/MsSv\nhNAoJYZHKiH0w+vfoxQfFiG/6TvjuYCBID06UXdNuVDPHdgW0OccH3SgqUb3bV2lJRl5Ojs1k5t6\nAQDoQUZEtMyrbpf11M+l+irH5+w3/yorLELm2DkepgMGLgZEAaAPa+vu1OPFGxzXj4oZpAXDcj1M\nBHwyv+nTrbnz9NOtq9VuffbDflvSI4XrdXfeRYoLjfA+IAAAAAAAAM6Y1q4OvXa4UK8d3qu27k5P\nfg2/6Tu55v3Uwc9/3gAa7vN78msDcCbUF6IvjJ6mCYlD9XjRRtV3tAbco8Pq1l9L8rWz5rCWZs1U\nLM+TAQDoMUZ0vMwld8h68ueSw4uDJMl+5VHZoeEyMvM8TAcMTAyIAkAf9vz+bapua3ZUG2KYuil7\nFquO0KNSI2N1bdZ0PVq43lF9Y2eblu1dp29O+Bx/dgEAAAAAAPqBtu5OvXmkSK+W71FLV4drfQ9t\n2qGytQVqPnZcv/nZA5o/a66iQsK4TRDoI8YlDNWP8hbpLyWbVFB9KKgeO2uO6CdbVuqG7JmaPGiY\nywkBAIBTRlzyiSHRp34htTU5O2Rbsl7+X5lXfENG+lhvAwIDDAOiANBHFdZV6u8VxY7rLxs5SamR\nrJZHz5s1eJQK6yq1rnKfo/rC+kqtOrRbF6eP9zgZAAAAAAAAvNLR3aW3Kor1SvluNXa2u9b38JZd\n2rzsWVXu+ud66kSFKtof7tqvAeDMiPaH6Su587Th2H49WbpZbd2fvYnqw5q62vX73W9rbspoXZOR\np/AQbgkGAKAnGIOGyrzyW7Ke+aXU0ebsUHeXrBf/R+aSO2UMyfA2IDCAcBUXAPRBbd2derzI+Wr5\njJgknZ+W42EiIDBfGD1NQyJiHdevKNupovpjHiYCAAAAAACAFzqtbr1xuFA/yF+uZ/ZvdW04NFmh\nWvHv9+nlb/3slOFQAH2bYRianZKhu/MWKTM2Oeg+aytLde/WVSptqHIxHQAACISROlLmZbdJvgDu\nL+xsl/Xcr2RXlXsXDBhgGBAFgD7ouf3bdLzd2Wp5v+ljtTx6nTBfiG4dM09+0+eo3patZXvXqtHp\n22UAAAAAAADoUV1Wt96qKNbd+Sv01L4tauh057nOyJhB+sb4z+kCDVbFtj2u9ATQ+ySFR+uOifN1\nxcjJ8gX5+UZ1W5N+uf01vXhgu7oty+WEAADACWN4rsxL/1Vy+LmwJKm9RdZzD8mu4wIhwA1MCwFA\nH7On9qjeCmS1/IiJSol0flMjcKakRcXrC6OnOq6v62jVY0XrZdm2h6kAAAAAAABwOrotS+8eLdWP\nNr+kv5bkq7ajxZW+w6MS9G9jz9H3Jl2gsQlDZMhwpS+A3ss0TF04fKy+N/kCDYmMC6qHLVsrD72n\nX2x/VUdbGlxOCAAAnDAyJslYeIsUyPfwzfWynnlQdmOtZ7mAgYIBUQDoQ9q6OvVE8UbH9aNjkzWf\n1fLoxeamjNb05BGO63fVVui1w3s9TAQAAAAAAIBgWLalDZX79eMtL+mJ4o2ONyB9lqGRcframLP0\ngykXauKgNBkGg6HAQJMenai7Ji/U/KHBf95R1lSj+7au0ptHimRzCQEAAGecOWaWjPnXBXaooVrW\nsw/Kbm30JhQwQIT0dAAAgHPP7t8a0Gr5G7NnsloevZphGLouc4bKGo/rWFuTozPPH9imzNhkZcQm\neZwOAAAAAAAAn8WybW2pKtOKg7tU2ere7XypEbG6dMQE5SWly2QoFBjwQn0humb0VE1ITNNjRetV\n19EacI9Oq1tPlm7WzprDujF7luJCIzxICgAAPok56XOy2ltlv/us80M1FbKe+7XMJXfKCONrNxAM\npoYAoI/YXVuht4+WOK6/YuQkpUSwWh69X0SIX7eOmacQh8PMlm3rj3vXqrmzw+NkAAAAAAAA+CS2\nbaug+pDuLVipPxauc204dHB4tG7Oma0fT12kackjGA4FcIoxCan6Ud4iTU1KD7rHe7UV+smWldpa\nfcjFZAAAwAlzxiIZ0y4M7FDlAVkv/rdsPh8GgsKAKAD0Aa1dnfpTAKvlM2OT9bnTWLUCnGnp0Yla\nkjHFcf3x9mb9qXgDq4AAAAAAAADOMNu2tf14ue7fulr/u+cdHWmpd6XvoLAoLc2aqf+YdolmDR7F\nZiQAnyjKH6Zbc+fq5pzZCvf5g+rR3NWu/7fnHT1etEFtXZ0uJwQAAJ/GOGuJjAnnBHaovFDWy/9P\ndneXN6GAfowV8wDQBzyzv0C17S2Oak+slp/Fm/Xoc84dkq29dZXadrzcUf224+X6e0URw9AAAAAA\nAABngG3b2l1XoeVlO3Wg8bhrfRNCI7UofZzmpGQoxPS51hdA/2YYhmYNHqWs2MF6rGi9iuqPBdVn\nXeU+FdVX6ubs2cqMG+xySgAA8HEMw5DmXy91tMguzHd+cN922asfkS76sgyTF8oApxgQBYBe7r3a\nI3r3aKnj+itHTtbgiBgPEwHeMAxDS7Nm6VDTKh1vb3Z05pl9WzU6Nlnp0YkepwMAAAAAABi4Cusq\n9WLZDpU2VLnWM9YfrouGj9NZQzLlZzAUQJAGhUfpWxPO02uHC/Xige3qsq2Ae1S3Nes/d7yuhcPH\n6NL0CQyrAwBwBhimKV34ZdkdbdL+nY7P2YUbpbAIaf71JwZNAXwmxqkBoBdr7erQE0WbHNdnxw3W\nuUOzPUwEeCvKH6ov5851fANul23p4T3vqpUVQAAAAAAAAK4rqT+mh3a8rod2vu7acGiMP0xLRk3R\n/dMX67y0HIZDAZw20zB1wbAx+v6UhRoaGRdUD1u2Vh/arV9sf1UVLfUuJwQAAB/H8IXIvORfpLTA\nZhzsHX+XvfY5j1IB/Q8DogDQi/1tX4FqO5ytlg8zQ7Q0i9Xy6PsyYpN0xcjJjuuPtTXpLyWbZNu2\nh6kAAAAAAAAGjv2N1frNzjf0yx2vqbC+0pWeUSGhumLkJN03fbEWDBujUB9L7gC4a1hUgu6acqHO\nT8sNusfBplrdv3W13jhcyDNnAADOAMMfJvPyf5cGjwjonL1ppaz8VR6lAvoX/vYNAL3UrpojWlu5\nz3H9FaMmKzki2sNEwJlzflquCusqtav2iKP6/Koy5canaF5qpsfJAAAAAAAA+q+DTTVaXrZDO2uc\nPZNxIsLn1/lpuZqflquIEL9rfQHg4/hNn67OyNOExKF6rHCD40s4PqjT6tZT+7ZoZ81h3Zg9S/Fh\nkR4kBQAA7zPCImRe+S1ZT/9CqqlwfM5+5xlZYZEyJ57jYTqg7+MGUQDohVq6OvRE8UbH9dlxg3XO\nkCwPEwFnlmkYujlnluJDIxyfebJ0iw4313mYCgAAAAAAoH863Fyn3+9+W/dvXe3acGiYL0SLho/T\n/dMv0yUjJjAcCuCMyo1P1d15izQ9ObDbyD5od91R3VOwUluqDrqYDAAAfBwjMkbmVbdLsYMCOme/\n9oSsvc5nK4CBiAFRAOiFnt5XoLqOVke1YWaIbsxmtTz6n2h/uL6UO1eGnP3Z7rS69fCed9Xe3eVx\nMgAAAAAAgP6hoqVef9jzru4pWKltx8td6Rlq+rRw2Fj9dPpiXTZykqL8oa70BYBARflD9eXcufpS\nzhxF+IIbUm/u6tAf9r6rRwvXq7Wrw+WEAADgg4yYRJlX3SFFxgZwypa9epnsfds9ywX0dQyIAkAv\ns7PmsNYHsFr+qlFTlBTOann0T9lxg3XpiAmO6ytaG/Rk6WYPEwEAAAAAAPR9x1ob9UjhOv1ky0pt\nqXbnZjy/6dP8tBzdP32xrhw1WdH+cFf6AsDpmjF4pH40dZFy4lKC7rHh2H7dW7BKxfXHXEwGAAA+\nzEhIOXGTaFik80NWt6wVv5ddXuhdMKAPY0AUAHqR5s4OPVG8yXF9bnyKzhqS6WEioOddNHyscuOd\nP7hbV7lPGyr3e5gIAAAAAACgb6pua9Kfijbox5tf0sZjB2TLPu2eIYapc4dk6b5pl+qajKmKDY1w\nISkAuCsxLErfnHCeloyaohAjuI/Ij7c368Edr+m5/dvUZXW7nBAAALzPSB4u84pvSCEBbCPo7pT1\nwn/JrjzgWS6gr2JAFAB6kaf3bVG909XyvhAtzWK1PPo/0zB1S84cxQRw68RfS/J1tKXBw1QAAAAA\nAAB9R017s/5SvEl3b16htZX7ZLkwGGoahs5KzdS90y7VFzOnKz6QG34AoAeYhqEFw8borikXKi0y\nPqgetqRXynfr59te1ZHmOncDAgCAk4yhmTIv+7rkC3F+qKNN1nO/kn38iHfBgD6IAVEA6CW2Hy/X\nhmPObz1cMmqKBoVHeZgI6D3iQiP0pZw5cjoO3W516eG976qju8vTXAAAAAAAAL1ZfUernizdrLvz\nV+jtoyWy7NMfDDVkaHZKhu6Zeqmuz5qhRJ5RAuhj0qLi9f0pC7UgbYzjZ84fdqi5VvdvXa3XD+91\n5f9bAQDARxkjxslc9BUpkEuzWptkPfuQ7Ppq74IBfQwDogDQCzR3tuvPAayWHxOfqrNSWS2PgWVM\nQqouHD7OcX15c52e2b/Vw0QAAAAAAAC9U0NHm57ZV6Af5C/Xm0eK1GVbp93TkDQjeaR+MvVi3ZQ9\nS8kR0acfFAB6iN/0aUnGFH1rwnwlBHkDcpdt6el9BfqvXW+qtr3F5YQAAECSjKypMi64KbBDTbWy\nnnlQdnO9J5mAvoYBUQDoBZ4s3aKGzjZHteG+EC3NmimD1fIYgC4dMUGZscmO69+qKNaWqoMeJgIA\nAAAAAOg9mjrb9fz+bfph/nKtObxXnVa3K32nJqXrR3kX60u5c5QSGetKTwDoDXLiU/SjvEWakTwy\n6B576o7qnoKV2lxV5l4wAABwkjlunoxzvxDYofpjJ24SbWv2JhTQhzAgCgA9bNvxcm2qOuC4/uqM\nPNY2YcDyGaa+nDtXUSFhjs/8qXijqlqbPEwFAAAAAADQs1q6OrS8bId+kP+iVpfvVrvV5UrfSYOG\n6YdTLtJXxszT0Kg4V3oCQG8TGRKqL+XO0Zdz5yoyxB9Uj5auDj28d60eKVyn1q4OlxMCAAAzb4GM\n2YsDO1RdLuv5X8vucHZZF9BfMSAKAD2oqbNdfwlgtfzYhCGamzLaw0RA75cQFqmbc2Y5rm/r7tTD\ne99Vl0s3ZgAAAAAAAPQWbV2devngLv0g/0W9fHCX2rrdGQwdnzBUd02+UP869mwNj05wpScA9HbT\nk0foR3kXKzc+JegeG48d0D0FK1VUV+liMgAAIEnGrMUy8hYEdqhin6zlv5Xd1elNKKAPYEAUAHrQ\nk6WbA1gt79cNWTNYLQ9ImpCYpgVpuY7ry5pq9NyBbR4mAgAAAAAAOHPau7v0yqHduit/uZaX7VCL\nSx92jolP1XcmLdBt48/ViJhEV3oCQF+SEBapb4w/T9dk5CnECO6j9Jr2Fj2083U9s2+rOrm4AAAA\n1xiGIeOca2SMmxvYwYO7Za38g2y+LmOACunpAAAwUBVUH1J+VZnj+msy8pQYxmp54H2Xj5yk4oYq\nHWg87qj+9cOFyolL0aRBwzxOBgAAAAAA4I2O7i69fbREqw/tVqPDF8+dyI4brEtHTFR23GDXegJA\nX2Uahuan5WpMfKoeKVyvQ821AfewJa05vEd76ip0S84cpUXFux8UAIAByDBMacGNsttbpZIC5wdL\nCmS/+pi08OYTPYABhD/xANADmjrb9NeSfMf14xOGaE5KhoeJgL4nxPTp1ty5ivD5HZ95rGiDatqa\nPUwFAAAAAADgvk6rW28eKdLdm1fob/sKXBsOzYhJ0jfHn6fbJ8xnOBQAPmRoVLy+O/kCLRw2VsHu\nditvrtNPt67WmvI9smzb1XwAAAxUhumTuegr0oixAZ2zd6+T/fcnZfM1GQMMA6IA0AP+r2Sz44e4\nET6/rs+ayWp54GMkhUdrafZMx/UtXR36Y+FadVuWh6kAAAAAAADc0W1ZeruiRHdvXqEnSzerrqPV\nlb4johN127hz9Z1JCzQmIZVnjwDwCfymT1eOmqzbJ56vQUFueeuyLT2zf6t+vfMN1bRzgQEAAG4w\nQvwyF39dGjI6oHP21tdlr1/uUSqgd2LFPACcYVuqDmpz9UHH9deMnqqEsEgPEwF9W15Sus4dkqW/\nVxQ7qi9tqNbygzt0xcjJHicDAAAA+qYpU6a42m/r1q2u9gOAgaDbtrTx2AG9fHCnql3chjIsKl6L\nR0zUxMQ0hkIBIADZcYN1d95FerJ0szYcOxBUj8L6St1bsFJfHD1dMwaPdDUfAAADkeEPk3nFN2Q9\n/YBUXe74nL1huazwSJl5CzxMB/QeDIgCwBnU2NGm/yt1vlp+QuJQzR48ysNEQP+wJCNPpQ3VOtRc\n66h+9aHdyo4brHEJQz1OBgAAAPQfzc3NKi7++BezsrKyFBUV3I1KAIB/smxLm6sO6qWDO1XZ2uha\n3yGRcbo0fYKmJA2XyWAoAAQlIiRUN+fM0cTEYfpLySY1d3UE3KOlq1PLCtdpR81hfXH0dEX5Qz1I\nCgDAwGGER8m86nZZT/1cqjvm+Jz99ydlhUbIHD/Pw3RA78CAKACcQf9XulmNne2OaiND/LoucwZv\n8gMO+E2fbs2dq/u3rla71eXozKOF63V33iLFhUZ4nA4AAADoWz7pxs933nlHZ5999sf+3LJly3TW\nWWd5GQsA+jXLtrW1+pBWHNypipZ61/qmRMTokvQJmpacLtMwXesLAAPZ1OR0jY5N0uNFG7S77mhQ\nPfKrylRSX6WbcmYpNz7V5YQAAAwsRlSczCV3yHry51KTswuFJMle85js0HAZ2dM8TAf0PJ4GAMAZ\nsrmqTFsCWS2fwWp5IBApkbG6Lmu64/rGznYt27tOlm15mAoAAAAAAOCT2batbcfLdf/WVfrD3ndd\nGw5NCo/WTdmz9OOpF2vG4JEMhwKAy+LDInXb+M/p8xlT5Td9QfWo7WjRr3a+ob/tK1Cn1e1yQgAA\nBhYjNknmkjukiGjnh2xb1so/yD6wy7tgQC/AEwEAOAMaOtr0fyWbHddPTEzTLFbLAwGbOXiU5qZk\nOK4vrK/UyoPveZgIAAAAAADgo2zb1q6aI/rZtlf0+91vq7y5zpW+iWGRuiFrhu6Zeolmp2TIx2Ao\nAHjGNAydl5ajuyZfqOFRCUH3ee3wXv1s6ysqb3Z+4xkAAPgoI3GIzCtvJuGMFgAAIABJREFUlwLZ\nIGl1y1r+W9lHSrwLBvQwngwAgMds29b/leSrqcvpavlQXZ/FankgWJ8fPU1DIuMc1790cJcK6yo9\nTAQAAAAAAHCCbdvaU3tUD2xfo/9+7+8qa6pxpW98aIS+OHqa7pl2qealZspn8vEPAJwpQ6Pi9L3J\nF+jC4WMV7Cc7h1vq9LOtr+jV8j2ybNvVfAAADCRGygiZl/+75PM7P9TVIev538iuOuRdMKAH8YQA\nADy2uapMBcedfyPx+dFTFRfIGy0AThHmC9FXcuc6Xutjy9aywnVq7GjzOBkAAAAAABjIiuoq9eCO\n1/XrXW9oX2O1Kz1j/eG6JiNP901frHOHZge95hgAcHpCTJ+uGDlZd048X4PCooLq0WVbenb/Vv1q\n5+uqaWt2OSEAAAOHMSxb5qX/KgXy96P2FlnPPiS7louF0P8wIAoAHqrvaNX/lTpfLT9p0DDNTB7p\nXSBggBgaFa8vjJ7muL6+o1WPFq3nzWwAAAAAAOC60oYq/Wrn63pw5+sqbjjmSs+okDBdOWqy7pu+\nWPPTchkMBYBeIjNusO7OW6TZKRlB9yiqP6Z7ClZq47H9snlmDQBAUIyMiTIu+rIUyP3eLQ2ynvlP\n2Y3ubHoAegsGRAHAI7Zt668l+Wru6nBUHxUSqusyp7NaHnDJ3JQMzUge4bj+vdoKrSnf42EiAAAA\nAAAwkBxoPK7/3vWmHti+Rnvr3LmFJjLEr8tGTNRPpy/WwmFjFeYLcaUvAMA9ESF+3ZQ9S18dc5ai\nQsKC6tHa3alHCtfrj3vXqrmz3eWEAAAMDGbODBnn3xDYocYaWc88KLul0ZtQQA/gyQEAeCS/qkzb\njpc7rv/C6GmslgdcZBiGrsucoQONx3WsrcnRmRcObFdmXLJGxyZ7nA4AAAAAAPRXh5pqtaJsh7bX\nHHatZ7jPr/PTcnR+Wq4iQkJd6wsA8E5e0nCNjk3S40Ub9F5tRVA9NlcfVElDlW7Knq0xCakuJwQA\noP8zJ54jq71V9jt/c36o9qis5x6SefW3ZYRFehcOOEO4QRQAPBDoavnJg4ZpegA3HQJwJjzEr1vH\nzFOI4exbHks2b2QDAAAAAICgHGmu0//ueUf3bV3l2nBomBmiC4eP1U+nL9alIyYyHAoAfUxcaIRu\nG3euvjB6mvymL6gedR2t+vWuN/RU6RZ1dHe5nBAAgP7PnH6hjBkXB3bo2EFZL/yXbD43Rj/AgCgA\nuMy2bf2leJNaHK+WD2O1POCh9OhELcnIc1xf096ix4s3yrZtD1MBAAAAAID+orKlQcv2rtU9BStV\nUH3IlZ5+06cFaWN0//TFumLkZEX5g1tRDADoeYZh6HNDs/XDKRcqPTox6D5vHCnUT7e9okNNtS6m\nAwBgYDDmXiFj0ucCO3S4WNaK38vmBQ30cQyIAoDLNlYdCOiGgC9mTlMsq+UBT507JEtTBg13XL/9\neLnePFLkYSIAAAAAANDXVbU26bHC9frxlpe1qapMbrxqGmKYOm9otu6fvlhLMqYoJjTcha4AgN4g\nNTJO35t0gRYNHydDwV0aUtFSr59te0WvHNoty7ZcTggAQP9lGIaM866VkTszsIMHdspe9UfZFl93\n0XeF9HQAAOhP6tpb9FQAq+XzBg3XtKR0DxMBkE58w780e6YOFtToeHuzozPP7N+qjNgkjYwZ5HE6\nAAAAAADQl9S0NevlQ7u0rnKfLJc2kPgMU/NSR+ui4eOUEBbpSk8AQO/jM01dNnKSxicO1SOF61Xd\n1hRwj27b0nMHtmlnzRHdlDNLSeHRHiQFAKD/MQxTWniL7I42ad92x+fsonwpLEI6fymbYdEncYMo\nALjEtm39uWSTWro6HdVHh4Tpi6yWB86YyJBQ3Zo7V6bD/+a6bUsP712r1q4Oj5MBAAAAAIC+oLa9\nRX8tydcPN6/Qu0dLXRkONWVobspo3TPtEl2bOZ3hUAAYIEbHJuvuKRdpbkpG0D2KG47p3oKVWl+5\nT7ZLLywAANDfGb4QmZf8izQsJ6Bz9s63Zb/zDF9z0ScxIAoALtlwbL921hxxXH9t5nTFsiIKOKNG\nxSbpypGTHddXtzXpieJNfKMPAAAAAMAAVt/RqqdLt+iH+cv1VkWxul1Y6WvI0KzBo/STaZdoafZM\nbn8DgAEoPMSvpdmz9C9jzlJ0SFhQPdq6u/RY0Qb9Ye+7aupsdzkhAAD9kxHil3n5bVLKqIDO2ZtX\ny85f6VEqwDusmAcAF9S2t+ip0i2O66cmpWtqMqvlgZ4wPy1XhfWVjge6t1QfVO7RVJ09JNPjZAAA\nAAAAoDdp6mzTK+V79OaRInVa3a70NCRNSx6hS9LHKzUyzpWeAIC+bXLScI2KTdKfijZqV63zi0g+\nqKD6kEobqnVT9iyNTRjickIAAPofIzRC5pXflPX0L6Tjzr/+2u8+Jys0Qubk8zxMB7iLG0QB4DTZ\ntq0/F29Sa7ez1fIx/jB9cfQ0j1MB+CSmYeim7FmKD41wfObpfVtU3lzrYSoAAAAAANBbNHd26IUD\n23VX/nK9Wr7HteHQKYOG6+68Rfpy7lyGQwEAp4gLjdDXx52jazOny2/6gupR39Gq3+x6U0+WblZH\nd5fLCQEA6H+MiGiZV94uxSUFdM5+4y+y9mzwKBXgPgZEAeA0ravcF9AbnddmTlcMq+WBHhXtD9eX\nc+fKkOGovtPq1sN71qrN4SA4AAAAAADoe1q7OrSibKfuyn9Rqw69p3aXhmsmJqbpB1Mu1NfGnqW0\nqHhXegIA+h/DMHTOkCzdPeUijYxODLrPm0eK9NOtq3WwqcbFdAAA9E9GTILMq+6UogJ7ic9evUx2\n6TaPUgHuYkAUAE5DbXuLnt5X4Lh+evII5SWxWh7oDbLiBmvxiAmO64+2NujJks0eJgIAAAAAAD2h\nrbtTqw69p7vyl+ulgztde0F0bMIQfW/yBfq3ceco/TQGfQAAA0tKZKy+M+kCXZw+3vElBx9W0dqg\nn217RasOvSfLtlxOCABA/2LEJ8u86nYpLNL5IduS9dLvZR/c610wwCUMiAJAkGzb1p+KNzp+YBzj\nD9cXRk/1OBWAQFw4fKzGxKc6rl9/bL/WV+7zMBEAAAAAADhTOrq7tKZ8j36Yv1wvHNiulq4OV/rm\nxKXo2xMX6BvjP6dRMYGtKgQAQJJ8pqnFIybqO5MWKDk8Oqgelm3rhQPb9eCO11Xd1uRyQgAA+hcj\naZjMK78l+cOcH+rukvXif8k+ut+7YIALGBAFgCCtrdyn3bUVjuuvy5yuaD+r5YHexDRM3ZwzW7EB\n/Lf515J8HW2p9zAVAAAAAADwUqfVrTcOF+oH+cv1zP6tauxsd6VvZmyybp8wX7dPnK/MuGRXegIA\nBraM2CT9MO8izUsdHXSPkoYq3VuwUusq98m2bRfTAQDQvxhDMmRedpvkC3F+qLNd1nO/kl192Ltg\nwGliQBQAglDT1qy/BbBafkbyCE1JGu5hIgDBiguN0C05cxwv6umwuvWHPWvV0d3laS4AAAAAAOCu\nLqtbb1UU6+78FXpq3xY1dLa50ndUzCB9Y/zndOfE85UTn+JKTwAA3hfu8+uGrJn617FnKyaQW80+\noK27S48XbdD/7nlXTS59/QMAoD8y0sfIvPhrkhHASF1bs6xnH5RdV+VdMOA0MCAKAAEKdLV8rD9c\nnx89zeNUAE7HmIRUXTR8nOP6wy11AQ2JAwAAAACAntNtWXr3aKl+tPkl/bUkX7UdLa70TY9O0NfH\nnaPvTrpAYxOGyDCcvn4KAEDgJg0aph/lLdKExKFB99h6/JB+smWldtUccTEZAAD9i5E5RcbCWwI7\n1Fx/Yki0qdabUMBpYEAUAAL07tFS7ak76rj+uqwZig7yjU4AZ84lIyYoM9b5+re3j5Yov6rMw0QA\nAAAAAOB0WLalDZX79eMtL+mJ4o063t7sSt+0yHh9bcxZumvyhZqQmMZgKADgjIkNjdC/jT1H12XO\nUKjpC6pHQ2eb/vu9v+uvJflsygIA4BOYY2fLOO+6wA7VV8l69iHZrU3ehAKCFNLTAQCgLzne1qy/\n7Xd+a+DMwSM1edAwDxMBcIvPMPXl3Lm6t2CVmrvaHZ35c/FGjYxOVHJEjMfpAAAAAACAU5Zta0tV\nmVYc3KXK1gbX+qZGxOrSEROUl5Quk6FQAEAPMQxDZw/JVE78YD1auF77G48H1eetimLtravUl3Lm\naERMosspAQDo+8zJ58lqb5G99nnnh44fkfX8r2UuuUNGaIR34YAAcIMoADhk27aeKN6ododvU8aF\nRujzGVM9TgXATQlhkbo5Z5bj+rbuLv1h71p1Wt0epgIAAAAAAE7Ytq2C6kO6t2Cl/li4zrXh0MHh\n0bo5Z7Z+PHWRpiWPYDgUANArpETE6tuTFuiS9AkyFdzXpsrWBv18+ytaeXCXum3L5YQAAPR9xoyL\nZUy9ILBDR/fLevF/ZHd1ehMKCBADogDg0DtHSwJaLX995gxFsVoe6HMmJKZpQdoYx/UHm2r03P5t\nHiYCAAAAAACfxrZtbT9ervu3rtb/7nlHR1rqXek7KCxKS7Nm6j+mXaJZg0fJNPhIBQDQu/gMU5eO\nmKDvTFqgwUFuurJsWy+W7dCDO15TVWujywkBAOjbDMOQcfY1MsafFdjBQ3tlvfz/ZDu8gAzwEk8z\nAMCB6rYmPbN/q+P6WYNHaeKgNA8TAfDS5SMnalTMIMf1bxwp1LbqQx4mAgAAAAAAH2bbtt6rPaKf\nb39Vv9v9tg4117rSNyE0UtdlTtc90y7R3NTR8jEYCgDo5UbFJumHUy7S2amZQfcobajWvVtX6d2j\npbJt28V0AAD0bYZhyDh/qYzsaYEdLN0m+9VHZXNLN3pYSE8HAIDezrJt/anI+Wr5+NAIXcNqeaBP\nCzF9+nLuXN1XsEqt3c6u/n+8eIOGRydqUHiUx+kAAAAAAEBhXaVeLNuh0oYq13rGhUboouFjNS81\nU37T51pfAADOhDBfiK7LmqGJg9L0eNFGNXa2BdyjvbtLTxRv1M6aw7o+c4ZiQsM9SAoAQN9jmKZ0\n0a2yO9qkA7scn7P3bJBCI6XzrpVhGB4mBD4Zr70CwGd4u6JYhfWVjuuvz5qhKH+oh4kAnAlJ4dFa\nmj3LcX1LV6f+uHetui3eAAMAAAAAwCsl9cf00I7X9dDO110bDo3xh2nJqCm6b9ql+tzQHIZDAQB9\n2oTENP04b5EmDRoWdI9tx8t1T8FK7aw57GIyAAD6NsMXIvPSf5XSsgI6Z29/Q/a6FzxKBXw2BkQB\n4FNUtzXpuf3bHNfPScnQhERWywP9RV7ScJ07JNtx/b7Gar1YtsPDRAAAAAAADEz7G6v1m51v6Jc7\nXgvoZe5PExUSqitGTtZ90xdrwbAxCvWxdA0A0D/EhIbrX8acpRuyZirMDO7rW0Nnm/7nvbf0l+JN\njrfsAQDQ3xn+MJmX/7s0OD2gc/bGl2RtXu1RKuDT8bQDAD6BZdt6vGiD2i3nq+WvzsjzOBWAM21J\nxhSVNlTpUHOto/pXyncrO26wxicO9TgZAAAAAAD938GmGi0v26GdNUdc6xnh82vBsFydNzRXESF+\n1/oCANCbGIaheamjlRM3WI8Urte+xuqg+rx9tER76yt1S85sjYpJcjklAAB9jxEWKfPKb8l66udS\nrfMXGO23/yYrLFLmhLM9TAd8FDeIAsAneKuiSEX1xxzX35A1U5EhrJYH+hu/6dOtY+YqLIBbRB4t\nXK+69hYPUwEAAAAA0L8dbq7T73e/rfu3rnZtODTMF6JFw8fp/umX6eL0CQyHAgAGhOSIGN056Xwt\nHjFRpoygehxrbdQD29bopbKd6rYtlxMCAND3GJGxMpfcKcUkBnTOXvMnWYX5HqUCPh4DogDwMapa\nGwNaLT83ZTS3BQL9WEpErK7PnOG4vqmrXcsK18niQRkAAAAAAAGpaKnXH/a8q3sKVmrb8XJXeoaa\nPi0cNlY/nb5Yl42cpCg/L3kDAAYWn2Hq4vTx+u7kC5QSERtUD0u2VhzcqV9uX6NjrY0uJwQAoO8x\nYhJlLrlDigzka6ste9XDsvfv9CwX8GEMiALAh5xYLb9RHVa3o/qE0EhdnTHF41QAetqMwSM1L3W0\n4/qi+mN6+eAuDxMBAAAAANB/HGtt1COF6/STLSu1pfqgKz39pk/z03J0//TFunLUZEX7w13pCwBA\nXzUyZpB+OOVCnTMkK+ge+xuP676CVXqnokS2bbuYDgCAvsdISJV55beksAjnh6xuWSt+J/twsXfB\ngA9gQBQAPuTvR4pU3OB8tfzS7JmKYLU8MCB8PmOqhkbGOa5/+eAu7a076mEiAAAAAAD6tuq2Jv2p\naIN+vPklbTx2QLZOf9AkxDB17pBs3TftUl2TMVWxoQF8UAcAQD8X6gvRtZnTddu4cxUb5MsT7VaX\n/lyySb/f/bYaOtpcTggAQN9iDE6Xefk3pEDmRro6ZD3/G9mVZd4FA/6BAVEA+IBjrY167oDz1fLz\nUkdrbMIQDxMB6E1CfSG6NXee/KbPUb0tadnedTwgAwAAAADgQ2ram/WX4k26e/MKra3cJ8uFwVDT\nMHRWaqbunXapvpg5TfFhkS4kBQCgfxqfOFQ/nrpIkwcNC7rH9prDuqfgZW0/Xu5iMgAA+h4jLUvm\n4n+THH6OLEnqaJX13K9k13DhELzFgCgA/MOJ1fIb1OlwtXxiWKSWjMrzOBWA3mZoVJy+OHqa4/qG\nzjY9WrhOFqt2AAAAAABQfUernizdrLvzV+jtoyWu/H3ZlKE5KRm6d9qluj5rhhLDo1xICgBA/xft\nD9fXxpylpVkzFeYLCapHY2e7frf7bf25eJPaujtdTggAQN9hjBwvc9FXJMNwfqi1UdazD8puOO5Z\nLoABUQD4hzeOFKqkocpx/dKsWYoI8XuYCEBvNSclQzMHj3Rcv7vuqF4t3+1dIAAAAAAAermGjjY9\ns69AP8hfrjePFKnLtk67pyFpRvJI/ce0i3Vj9iwlhUefflAAAAYYwzA0N3W07p6ySKNjk4Pu887R\nEt1fsEr7G6pdTAcAQN9iZE+TseDGwA411sh65kHZzfXehMKAx4AoAEiqbGnQCwe2O64/OzVTYxJS\nPUwEoDczDEPXjp6ulIgYx2dePLBDJfXOh9ABAAAAAOgPmjrb9fz+bfph/nKtObzX8faezzI1KV0/\nyrtYX8qdo5SIWFd6AgAwkCVHROvOifN12YhJMgO5+ewDjrU16YHta7SibIe6rdN/GQQAgL7IHH+W\njHM+H9ihusoT6+bbWrwJhQGNAVEAA55lW3q82Plq+UFhUbpq1BSPUwHo7cJD/Lo1d55CDGffTlmy\n9cfCtWrqbPc4GQAAAAAAPa+lq0PLy3boB/kvanX5brVbXa70nTxomO7Ou0hfGTNPQ6PiXOkJAABO\nMA1Ti9LH6XuTFio1yBcwLNl66eAuPbBjjSpbGlxOCABA32BOvUDGrEsDO1R1SNYLv5HN58lwGQOi\nAAa81w8XqjSAdRdLs2cqnNXyACQNj07QNRlTHdfXtrfo8aINsm3bw1QAAAAAAPSctq5OvXxwl36Q\n/6JePrhLbd3uDIaOTxiquyZfqH8Ze7aGRSW40hMAAHy8ETGJ+sGUC3XukOygexxoPK77tq7SWxXF\nPBMHAAxIxuzLZEyeH9ihIyWylv9WdlenN6EwIIX0dAAA6ElHWxr0YtkOx/XnDMlSbjyr5QH809lD\nMrW3/qgKqg85qt9Rc1ivHynU+Wm5HicDAAAAAODMae/u0t+PFOmV8j1q7nLvtpMx8am6dMQEjY5N\ndq0nAAD4bKG+EH0xc5omDhqqx4s2qr6jNeAeHVa3/lqSr501h7U0a6ZiQyM8SAoAQO9kGIb0uS9I\nHa2yd69zfrDsPVmrHpZ58VdlmD7vAmLA4AZRAAOWZVt6rGh9QKvlrxw12eNUAPoawzB0Q9ZMJYVH\nOT7z3P5tOtB43MNUAAAAAACcGR3dXXrt8F79IH+5njuwzbXh0Oy4wbpj4vn65oTzGA4FAKAHjUsY\nqh/lLVJe0vCge+ysOaKfbFmpbcfLXUwGAEDvZximjAtukkZPCexg8RbZa/7ELdxwBQOiAAasNYf3\nan8AA1o3Zs9SuI/V8gA+KjIkVLfmzpPPcPatVbdt6eG9a9Xa1eFxMgAAAAAAvNFpdevNI0W6e/MK\n/W1fgRo721zpmxGTpG+OP0+3T5iv7LjBrvQEAACnJ9ofpq/kztNN2bMU7gtuSWlTV7t+v/tt/alo\no9pYmwsAGEAM0yfz4q9K6WMCOme/967st55iSBSnjQFRAANSRUu9lh9wvlr+3CHZyolP8TARgL5u\nZMyggG4Zrm5r0hPFm/iGHgAAAADQp3Rblt6uKNHdm1foydLNqgti3ezHGRGdqNvGnavvTFqgMQmp\nJ1bxAQCAXsMwDM1OydDdeYuUeRq3e6+tLNW9W1eptKHKxXQAAPRuRohf5uKvS6kZAZ2zC9bI3viS\nR6kwUDAgCmDA6bYtPVa0QV225ag+KTya1fIAHJk/NEcTEoc6rt9SfVDvHC3xMBEAAAAAAO7oti2t\nq9ynH21Zob+UbFJte4srfYdFxetfx56t709eqPGJQxkMBQCgl0sKj9YdE+fripGTHG/V+rDqtib9\ncvtrevHAdnVbzj6vAwCgrzNCw2Ve8Q1pUFpA5+x1L8gqeM2jVBgIGBAFMOCsKd+rA4Gsls+aqbAg\n12UAGFgMw9BN2bOVEBrp+MxTpVtU3lzrYSoAAAAAAIJn2ZY2HTugn2x5+f+zd5/hcdVn3sd/09Q1\n6i6S1S3JDfduwMGm2aGbEhMIEENIsrsPkOQJpJDdpSzJs0sSkk1CIGAcMARCbwYSSoIb7sZNXbJl\ny1aXRl2amfO8kNGGBcORmDOj8v1cV66LSPf/r19exBZn7nPfWle8VfVd7QG5NzUqTjdPPl0/mrVC\nM5Im0BgKAMAwYrfZdX76VN0x81yNj4ob1B2GDL1edUA/2/uWTnR4ApwQAIChyRYZI/uq70hxYwZ0\nznjvKfkPbrYoFUY6GkQBjCrV7S165bD51fLLUvOVz2p5AAMQ4wrXjZMWyy5zH2x5Db8eOrRJXb5e\ni5MBAAAAAGCe3zC0s+6I7tq1QY8UbVZNZ2tA7h0bGas1BYt15+wVmp2cITuNoQAADFsZMYn64czz\ntCy1YNB3HG5r1D27N+i96mIZhhHAdAAADE22mHjZL/+uFB0/oHPGm2tllO6yKBVGMhpEAYwafavl\nt5heLZ8SEaNLslgtD2DgJsaN0UVZ003X13R69FTpDgsTAQAAAABgjmEY2tNwVPfu3qCHCjfqeEdL\nQO5NjojR9fkL9a9zvqz5Y7JkH+RKWgAAMLSEOZy6KneObpl2luLDIgd1R6/fp6fKdui/D7ynlp7O\nACcEAGDoscUl9zWJRsSYP2T45X/t9zKOHLQuGEYknsAAGDXeOnpIh9saTdXaJF2Xv5DV8gAG7bwJ\nUzQ5fpzp+q21FdpSU25hIgAAAAAATs0wDO1vrNZ9e97U7w7+XUfbmwNyb2J4lK7Nm6+75lygRWNz\n5KAxFACAEWlKwnj9ZPZKzUnOGPQd+5uO6993vq7d9VUBTAYAwNBkS0qV/bLbpLAI84d8Xvlf+m8Z\n1WXWBcOIw5MYAKPCsfZmvXp4n+n6ZakFyosbY2EiACOd3WbT1wsWye0y/wv9k6XbAzaZBQAAAAAA\nMwzD0KGmE/p/e/+iXx94z/QL1p8nPixSq3Pn6q65F+r0cRPlsPNxBAAAI120K1w3TVqiGwoWKcLh\nGtQd7d5uPXjofa0r3qoub2+AEwIAMLTYxmXJfvH/kQby92Zvt/wv/FJG3VHrgmFE4YkMgBHP5/fr\nseKtplfLj4mM1SVZMyxOBWA0cIdFas2kxbKZrO/x+/TQoY3q8XktzQUAAAAAgCQVN9fo/g/f1i/3\nv6Py1vqA3Ol2RejKnNm6Z95F+lJqvlx2R0DuBQAAw4PNZtPCMdn6yeyVyv8Cw1g215Tr7t2vq7Sl\nLoDpAAAYemzpBbJf+C1pIP/+3N0h//M/l9FUY10wjBg0iAIY8d48elBHBrJaPm+hwlgtDyBAJsWP\n08qMaabrqzta9Ez5LgsTAQAAAABGuzJPnX6x723dv+9tlXhqA3JnjDNcq7Jn6d55F2l52iQaQwEA\nGOWSIqJ122nLdFn2TDlsg2tLqO9q1399+Fe9WLlXXr8vwAkBABg6bDkzZDt/jWR69JCk9hb5n7tf\nRmuTZbkwMtABBWBEO9repFeP7DddvzxtkibGpViYCMBodEHGNJW01Kq4xdyHbu+fKFVB3BjNG5Nl\nbTAAAAAAwKhS2dqgVw5/qP1NxwN2Z5QzTOekTday1HxFOAe3ShYAAIxMdptd502Yoinx4/Vo0WZV\nd7QM+A5DhjZUHdCBpmp9vWCxxkfFWZAUAIDQs09aIH93p4y3Hzd/yNMg/3P3y37V7bJFxloXDsMa\nE0QBjFg+v1+PFW2Vz+Rq+bGRsbo4c7rFqQCMRnabXV8vWKwYZ7jpM0+UblNtZ6uFqQAAAAAAo0VV\nW5N+e+Bvum/PmwFrDo1wuHRBxjT9x7yLtDJjKs2hAADglNJjEvTDWedreVrBoO840take3e/oXeO\nFckwjACmAwBg6LDP+JJsp68a2KHG4/I//wsZ3Z3WhMKwR4MogBFrQ9UBVbWbG6Vtk03X5bNaHoB1\nEsKjdEPBItP1XT6vHi7cqF7W5gAAAAAABqm6vVm/P/S+7tm9QXsbjwXkznC7UyvSp+o/5l2kCzOn\nK9IZFpB7AQDAyOayO3RlzhzdOm2ZEsKiBnVHr9+np8t36lf731Vzd0eAEwIAMDTY56+Ubd6KgR2q\nOSz/i7+S0dtjTSgMazSIAhiRqtqa9FqV+dXyZ6dNUq6b1fIArDUtMVXnTphsuv5IW5Oer9htYSIA\nAAAAwEhU0+HRI4WbdNeu17Wrviogd7rsDp2TNln3zrtIl2TNULTVh8KnAAAgAElEQVTL/JYMAACA\nj0xOGKc7Z6/UvJTMQd9xsPmE7tr1unbWHQlgMgAAhg7b6atkm750YIeOFcv/6u9k85vbsovRg1F5\nAEYcr9+ndcVb5Te5XmJcpFsXZZ5mcSoA6HNJ5gyVtNSqorXBVP071cUqiBurmcnpFicDAAAAAAx3\ndZ1teu3IPm2trZShwKxeddrsOnP8RJ2fPlVxYZEBuRMAAIxu0a4w3ThpiaYnpunJ0u3q9PUO+I52\nb48eKtyohY3Z+kruHKaaAwBGFJvNJi27RurulFG0zfzBig81saVVdpvNdM8MRj4miAIYcQa6Wv56\nVssDCCKH3a6bJp2uKKfL9Jl1JVvV0NVuYSoAAAAAwHDW2NWux0s+0E92vqIttRUBaQ512OxaOj5P\n98y7SFflzqU5FAAABNz8MVn6yeyVKogbO+g7ttZW6O5dG1TSUhvAZAAAhJ7Nbpft/DVS9vQBnUtp\nrNCvLltoUSoMRzSIAhhRjrQ16vWqA6brz50wWdnuZAsTAcAnJUVE67o887+Ud3h79XDhRvlYBwAA\nAAAA+AdN3R16snS7frzjFW08URaQ6SB22XT6uFzdNfcCXT1xnhLCowKQFAAA4NMlRkTr1tOW6fLs\nWXLaBte+0NDdrvs//Kuer9gjr98X4IQAAISOzeGU/YJvSWn5Azr3zcWTde/KORalwnBDgyiAEWOg\nq+XHR8XpQlbLAwiRmcnpWpZq/hf5itYGvXh4r4WJAAAAAADDRUtPp54p26kfb39ZfzteIp/xxV8o\ntMmmhWOyddfcC3Rt3gIlR8QEICkAAMDns9tsOmfCZP1w1vlKi4of1B2GpDePHtRP97yl6vbmwAYE\nACCEbK4w2S/5P9LYzAGdu335DP3fs+iJAQ2iAEaQ148c0FGT/8Jnk03X5S+Qy+6wOBUAnNpl2bOU\nEZNguv6to4e0v7HawkQAAAAAgKGsrbdLz1Xs1o+2v6y3q4vkDUhjqDQvJVP/NmelbihYpJTI2C8e\nFAAAYBDSouP1g1nn6Zy0ybIN8o6q9ibdu/sNvX2sMCDT1QEAGAps4ZGyX3ablDh+QOfuu2CeblpY\nYFEqDBc0iAIYEY60NWrDAFbLn5c+WdmxrJYHEFouu0M3TTpdEQ6n6TNri7aoqbvDwlQAAAAAgKGm\nvbdHL1bu1Q+3v6y3jh5Sb4BWp85OSteds1fqxklLNC4qLiB3AgAAfBEuu0OX58zSbactV0J41KDu\n8Bp+PVO+S7/a/y7P0wEAI4YtMlb2Vd+R3EkDOvebVYt11awci1JhOKBBFMCw1+v3aW3RFvll7i3A\n1Kg4XZDBGG0AQ8OYyFhdM3G+6fo2b7ceKdwckPWBAAAAAIChrdPbo1cO79MPt7+kDVUH1O3zBuTe\n6Ylp+tGs83XzlDOUFj24Na4AAABWKogfq5/MXqn5KVmDvuNQ8wndtet17ag7HLhgAACEkC02UfZV\n35Wi3KbP2O02Pbb6TK2cPMHCZBjKaBAFMOy9dmS/qjtaTNXaZdN1+QtZLQ9gSJk3JktnjJtour7E\nU6vXjuy3MBEAAAAAIJS6fL3aUHVAP9z+sl49sk9dvt6A3Ds1YbzumHmu/mnqUmXEJAbkTgAAAKtE\nOcO0ZtJi3ThpiaKcrkHd0eHt0cOFm/Ro0WZ1ensCnBAAgOCzJYztaxIdwKRtl8Oup69bJrfnhIXJ\nMFSZ32cKAENQZWuD3qw6aLr+vPQpyood2LhtAAiGK3Nmq8xTZ7rh/fUj+5UfN0aT4sdZnAwAAAAA\nECxe+fWXo4f05tGDau3tDti9BXFjdVHmdE2MSwnYnQAAAMEyLyVTE90peqx4iwqbawZ1xwe1lSpp\nqdUN+YuUHz82wAkBAAguW8oE2S+9Vf7n7pdMPj+IdDk1qeRtGSfmyTYuy9qAGFKYIApg2Or1+7Su\neOuAVst/OWOaxakAYHDCHE59Y/LpCjM54diQ9EjhZnl6Oq0NBgAAAACwnCPMpamrztOLOq5nK3YH\nrDl0ojtF3zltub4zfTnNoQAAYFhLCI/SLdOW6Yqc2XLaBtfm0NjdoZ/ve1vPVexWr98X4IQAAASX\nLTVX9ov+WXKYnw/p9PfK//wvZDRUW5gMQw0NogCGrVeP7BvQavkbChaxWh7AkDY+Kk5XT5xnut7T\n26VHi7bIb5hrlAcAAAAADC12p0OTL1quq568X0tu+Zq65A/IvdmxSbpl2ln63vSzVcCELAAAMELY\nbTadnTZJP5x1viZExw/qDkPSW0cP6ad73tSx9ubABgQAIMhsmVNkX3mzZLOZP9TVJv9zP5fRUm9d\nMAwpNIgCGJYqWuv1ZtUh0/Ur0qcqIybRwkQAEBiLxuZo4Zhs0/WHmk/ozaMHLUwEAAAAAAg0R5hL\nBSuX6sr1/6Uzvvd1xYxJCsi9GTEJ+uepS3X7jHM1JWG8bAP5gAgAAGCYSIuO1x0zz9O5EyZrsL/t\nHG1v1n/sfkN/OXqIIQwAgGHNljdbtnNvGNihtib5X3xABhO1RwXzM2YBYIjo9fu0rmirDJOr5SdE\nx2tlxlSLUwFA4KyeOFcVrQ2q6fSYqn+58kPluVM0MW6MxckAAAAAAIPR0tOpMk+dyjz12qMaXf/6\nw3KEuQJ2f1pUvC7KPE0zkibQFAoAAEYFl92hVdmzdFpCqtYWb1Fjd8eA7/Aafj1bsVv7Gqt1fcFC\nJYZHW5AUAADr2acukb+7U8Z7T5k74AqX/UurZWML76hAgyiAYeflwx/quMmmKbvNpuvzF8nJX2oA\nhpEIh0vfmLxE9+1+U17j89cL+mXoD4Wb9ePZKxTjCg9CQgAAAADAqfgMv461N/c3hJZ76tXQ3f6x\nmkA1h46PdOuCzNM0OzlDdhpDAQDAKJQfP1Y/mb1Sfyrboa21lYO6o6ilRnfvel1X587TvDFZAc0H\nAECw2GefLX93h4wtL312YXiU7JfeKltqbnCCIeRoEAUwrJR76vWXo4Wm61emT1V6TIKFiQDAGhOi\nE3RV7hytL91uqr6pp0OPFW/RP01ZyrQYAAAAAAii9t5ulbfW9zeDVrTWq8fiFW1jImJ0QeZpmpeS\nKbvNbunPAgAAGOoinWG6oWCxpidO0BOl29Th7RnwHR3eXv2haLM+bDymr+TOU7QrzIKkAABYy7bw\nQh0rL1FqzcFP/X6PM0IRV35ftpT0ICdDKNEgCmDY6PF5ta7Y/Gr59OgErUhntTyA4euMcRNV2Fyj\nnfVHTNXva6zW29VFOjttksXJAAAAAGB08huGajo9J5tB+yaEnjC56SYQksKj9eWMaVo4NlsOGkMB\nAAA+Zk5KhnLcyVpXvFWHmk8M6o5tdYdV0lKn6wsWalL8uAAnBADAWjabTZXp8/TmKy/qhvn5H/te\nZWOrGpdepnk0h446NIgCGDZePrzP9AN3u82m6/IXsloewLBms9l0bd58HW5rVH1Xm6kzz1fsUa47\nWdmxyRanAwAAAICRr8vXq8rWhv6G0PLWhkFNpPqiEsKitDJjqhaPzeF5FwAAwGdICI/S/5l2lt6r\nLtbzlXvUO4jJ7k09HfrFvnd0dtokXZI1Qy5+/wIADCc2m775501yh7u0aka2JOlQTbPO//0beuq8\nfwlxOIQCDaIAhoUyT53+euyQ6foLMqaxWh7AiBDpDNNNk5bo/+39i3yG/3PrfYZffyjcpB/NWqEo\nJytwAAAAAMAswzDU0N2uMk+dyj19K+OPtjeb3mZjhbiwSK1In6LTx02kMQEAAMAku82mZWkFmhQ/\nTo8WbVZVe9Og7vnrsUIdajqhr09apAnRfO4IABg+fH5D167/m2IjXEqMitAFD7+l+vauUMdCiNAg\nCmDI+5/V8uZkxCTo/AmslgcwcmTFJmlV9kw9U77LVH19V7seL/lA35h0umw2m8XpAAAAAGB46vX7\ndKStsb8ZtMxTJ0/v0PiwJNYVrvMmTNHS8XkKc/AYHwAAYDBSo+N0x8xz9cqRfXqz6uCgXvs51tGs\n+3a/qYuzZujstEmy88wdADBM9Pj8uvyxd+Sw2dTa3RvqOAghniwBGPJeOvyhajpbTdU6bHZdn79I\nDrvd4lQAEFzLUgtU1FyjvY3HTNXvqq/S34+XamlqnsXJAAAAAGB4aOnp7F8VX+ap15G2RnlNbGoI\npjDZ9eWs6fpSap4iHK5QxwEAABj2nHaHLs2aqdMSUvVo0RY1dLcP+A6v4ddzFbu1r/GYbshfpMSI\naAuSAgAQeB093lBHwBBAgyiAIa20pU5vHys0XX9BxjSlRcdbmAgAQsNms+m6/IW6e/cGNXV3mDrz\nTPlO5biTlR7D6hsAAAAAo4vP8OtYe/PJhtB6lbfWqb5r4M0AwdLV0qp9f35D/3njrVqePiXUcQAA\nAEaciXFjdOfslXq6fKe21JQP6o7illrdtet1rZ44V/NTstjgBQAAhgUaRAEMWX2r5bcMYLV8os7j\nATqAESzaFa6bJi3Rf+39q/wm/nT0Gn49XLhRP5x5viKcTJ4BAAAAMHK19/aoorVvTXyZp16VrQ3q\n9g/dKRm9HV2qOViqmv3FqtlfoupdB+T3+hR243dCHQ0AAGDEinS6dH3+Qk1PTNUTJdvU7u0Z8B2d\nvl49WrRFHzYc09UT5yvaFWZBUgAAgMChQRTAkPVi5V7VdrWZqnXa7Lo+f6EcNlbLAxjZct0pujhr\nhl6o3GOqvqazVetLt+vrBYt4mxkAAADAiOA3DNV2elTmqe9fGX+80xPqWJ8pOSJGObHJynUnq6Ws\nSpd++VwZvqG13h4AAGC0mJ2coVx3itYVb9WBpuODumNH/RGVeup0ff6iAKcDAAAILBpEAQxJJS21\neqe6yHT9BZmnsVoewKhx7oTJKmqp0UGTD6621VVqUvxYLRmXa3EyAAAAAAi8bp9Xla0NKvPUqby1\nb2X8YKY9BYvTZldmbKJyYlOU605WjjtZcWGR/d9/v6yG5lAAAIAQiwuL1L9M/ZLeO16i5yp2q9fv\nG/AdzT2d+uX+dzRJMXKEueTr6bUgKQAAwBdDgyiAIafb59W64q2mV8tnxSTq3AmTLc0EAEOJ3WbT\nDfmLdM/uDWrp6TR15qmyHcqOTVZqdJzF6QAAAABg8AzDUEN3u8o/mg7aWqejbc3ym35SFHxuV4Qm\nulOUc7IZNCMmUS67I9SxAAAA8DlsNpvOSs3X5PixeqRoi460NQ7qnkK16dKH79G7d/9WDaWHA5wS\nAADgi6FBFMCQ82LlHtUNYLX8dfmLWC0PYNRxh0VoTcFi/WLf26Y+Ju31+/Rw4Ub9YOZ5CnPwKyAA\nAACAoaHX71NVW1PfdFBPvcpa602/CBcKdtk0ISb+5Lr4vqbQpPBo2Wy2UEcDAADAII2LitPtM87R\nq0f2642qgzIG8XJSYvYEXfL7u7TjD3/Wh0+/JsM/dF9wAgAAowvdAQCGlOLmGr1TXWy6/sLM6UzD\nAzBqFcSP1ZczpunVI/tN1Vd3tOjp8p26Nm+BxckAAAAA4NO19HT+w3TQeh1ubZDXGLrr1qOcYSeb\nQfsaQjNjExXhcIU6FgAAAALMaXfokqwZmpaQqrXFm1Xf1T7gOxwupxZ8a7XSF83Ue/c+qLaaeguS\nAgAADAwNogCGjC5fr9aVfGC6Pjs2SedMmGRhIgAY+r6cMU3FLbUqbqk1Vb/xRJkK4sZq/pgsa4MB\nAAAAGPX8hl/H2ltOTgatU5mnXvUmt8aEyvhIt3LcKScbQpM1JtItO9NBAQAARo2JcSm6c9ZKPVO+\nU5tqygd1R+rMybp87X3a9Mt1g5pGCgAAEEg0iAIYMl6o2GP6QwKnza7r8xeyWh7AqGe32bWmYLHu\n3rVBbd5uU2eeKN2mzNhEjY10W5wOAAAAwGjS4e1Ruae+vyG0orVB3T5vqGOdUrjdqazYJOWcbAbN\niU1WtCs81LEAAAAQYhFOl76Wv1DTE9P0eMk208/e/1FYTJTO+vG39L4aNLu3WzH8ngkAAEKEBlEA\nQ0JRc43eO15iuv6irOkaF8VqeQCQpPjwKN1QsEi/PvCeqfpun1cPH9qk22eeK5fdYW04AAAAACOS\nYRiq6WxVmadO5a19K+OPd7SEOtZnSgqP7msEPTkhNC06npePAQAAcEozk9OV7U7WH4u3an/T8UHd\ncUSdumvX67o+f6GmJIwPcEIAAIDPF7IGUa/Xq/3792vfvn0qLy/X8ePH5fF41N3drYiICMXGxio1\nNVW5ubmaNm2apk2bJoeDBgZgJOry9Wpd8VbT9dmxSTonjdXyAPCPpiWm6rwJU/Tm0YOm6qvam/Rs\n+W6tnjjX4mQAAAAARoJun1eVrQ0nm0HrVO5pUPsgJikFi9NmV0ZM4scaQuPCIkMdCwAAAMNMXFik\n/nnql/T346X6c8Uu9fp9A76jpadTD+x/V2el5uvy7FlyMrgBAAAEUVAbRHt6evTuu+/qtdde06ZN\nm9Te3m76bExMjBYvXqwLLrhAZ511llwul4VJAQTT8xV71NBt7s8Dl92h6/MXyc50BwD4hIszp6uk\npVblrfWm6t87XqyC+LGanZxucTIAAAAAw4lhGGrq7lCZp05lJ6eDHm1rkl9GqKOdktsVodyTjaA5\n7mRlxCSyMQEAAAABYbPZtDQ1TwXxY7W2aLMq2xoHdc/xjhY+4wQAAEEXlAbR+vp6PfHEE/rTn/6k\n5ubmQd3R1tamt956S2+99Zbi4+P1la98Rddcc42Sk5MDnBZAMB1qOqG/DWC1/MWZ0zUuym1hIgAY\nvhx2u26ctET37N6gDm+PqTN/LN6qjJgEJUfEWJwOAAAAwFDl9ftU1dZ0shm0TuWeejX3dIY61inZ\nZNOE6HjluJOV605WrjtFSeHRstlsoY4GAACAEWxclFvfn3GuXqvar9ePHJAxgBeoopyuk0Nw+J0V\nAAAEl6UNoi0tLXrooYe0fv16dXV1fex70dHRmjp1qgoKCjRhwgSlpKQoOjpaYWFh6unpUXt7u2pr\na3X06FEVFRVp//796uzseyjZ3NysBx98UOvWrdPVV1+tm2++WW43DWPAcNPl7dXjJR+Yrs91p2h5\nWoGFiQBg+EuKiNZ1+Qv1u4N/N1Xf6evVw4Wb9H+nn81aGwAAAGCU8PR0qtxTr7LWepV76lXZ2iCv\n4Q91rFOKcrqUE/s/q+KzYpIU4WTDFAAAAILPYbfroszpmpaQqkeLNquuq83UuasnzldCeJTF6QAA\nAD7JsgbRp59+Wr/4xS8+NjE0MzNT559/vpYvX64pU6bI6TT/471erw4cOKB33nlHb7zxhg4fPqzO\nzk498sgjeu6553TbbbfpqquusuJ/CgCLPFexe0Cr5a/LW8DaBQAwYWbSBC1LLdA71UWm6itbG/Ri\n5Ye6PGeWxckAAAAABJvf8Ku6o0VlnnqVe+pU5qk3/SF2qIyLdJ9cFZ+inNhkjYtyM2kJAAAAQ0qO\nO1k/nr1Cfy7fpY0nyj6zdsGYLM1LyQxSMgAAgI+zrEH0X//1XyVJDodD559/vlavXq25c+cO+j6n\n06kZM2ZoxowZuu2227Rjxw499dRT2rBhg5qbm/Vv//ZvNIgCw8jBpuP6+4lS0/WXZM3QWFbLA4Bp\nl2XPVKmnTkfaGk3V/+XYIRXEj9FpiWkWJwMAAABgpQ5vjypa6082hNarorVeXT5vqGOdUpjdoazY\nJOWenA6aHZusGFd4qGMBAAAAnyvC4dK1eQvkONGiN5rKFJkQ94maaDm0OnfwfRIAAABflGUNona7\nXZdeeqm++c1vKj09PeD3z507V3PnztWtt96qBx98UC+++GLAfwYAa3R6e/XHAayWn+hO0bJUVssD\nwEC47A59Y9IS3bN7g+kPg9cWbdWds1ew5gYAAAAYJgzDUG1nq8pa61XmqVO5p17HO1pkhDrYZ0gK\nj1aOO1m57mTlulOUFh0vBxtjAAAAMIylK1LPXn+Hzvz+TcpcMrv/64bfr8X2FEU6w0KYDgAAjHaW\nNYi+/PLLmjhxolXX90tPT9e9996rG264wfKfBSAwnq3YpabuDlO1LrtD1+UvZI0YAAxCSmSsrs1b\noIcLN5mqb/d26w+Fm/Sd6cv5gBYAAAAYgnp8XlW2Nfavii/z1Kvd2x3qWKfksNmVEZPQPx00JzZZ\n8byQBgAAgBGos8mjN39wvyZdeJYW/fM1ckVG6MM/va5rr/5WqKMBAIBRzrIG0WA0h4by5wEYnANN\n1dp4osx0/WVZMzUmMtbCRAAwss1NyVRRc43+fqLUVH2pp06vHt6ni7NmWJwMAAAAwOdp7G4/uSq+\nryG0qr1JfmPozgeNdUX0NYK6k5Ubm6LM2ES57I5QxwIAAACCpvCVd1W9+6BmffUibX/kzxINogAA\nIMQsaxAFgP+t09ujx4u3ma7Pc4/Rl1LzLUwEAKPDFTmzVeap17GOZlP1G6oOKD9urCYnjLM4GQAA\nAICPeP0+VbU3nWwI7ftPU4+5DSyhYJNNadFxynWn9DeEJkdEy8YWGAAAAIxynqM1+tvPHg51DAAA\nAEk0iAIIoj+X7zL9wUaY3aHr8hewWh4AAiDM4dQ3Ji/RvbvfUI/f97n1hqRHizbrx7NXKC4s0vqA\nAAAAwCjk6elSeWtfI2iZp06H2xrVa+L39VCJdLj6GkHdycqJTVF2bJIinK5QxwIAAAAAAADwGYZ0\ng2hhYaEqKioUGRmpmTNnKj4+PtSRAAzS/sZqbaopN11/WfZMpbBaHgACZlxUnK6eOE+PFW81Ve/p\n7dKjRZt1y7SzZLfZLU4HAAAAjGx+w6/jHR6VnVwVX+6pU21XW6hjfaaxke6TzaB9TaHjouJ4kRcA\nAAAAAAAYZoLeINrV1aXnnntOklRQUKC5c+d+oqaurk633HKLdu3a1f81p9OpNWvW6LbbbgtaVgCB\n0eHt0eMlH5iuz48bo6XjWS0PAIG2aGyOipprtKW2wlR9YXON3qg6qJUZ0yxOBgAAAIwsnd4eVbQ2\n9DeEVrQ2qMvXG+pYp+SyO5Qdm9S/Kj7HnaQYV0SoYwEAAAAAAAD4goLeIPrBBx/o7rvvls1m06OP\nPvqJ7xuGoW9/+9vat2/fx77u9Xr1+9//XpJoEgWGmWfKd6m5p9NUbbjdqevyFzKRAgAs8pWJc1XR\n2qATnR5T9S8f3qe8uDHKixtjcTIAAABgeDIMQ7VdrSr3fLQuvl7VHc0yQh3sMySGRynXnXJyOmiK\nJkTHy2FncwAAAAAAAAAw0gS9QXTz5s2SpPj4eC1cuPAT39+wYUN/c6jL5dLChQtlGIa2bNkin8+n\nRx55RJdddpkyMzODmhvA4OxrPKYtA1wtnxwRY2EiABjdIhwu3TR5iX665y31+n2fW2/I0B8KN+nO\n2SuYIAQAAABI6vF5dbitsX9VfJmnXm3e7lDHOiWHza6MmIR/mA6arITwqFDHAgAAAAAAABAEQW8Q\n3bNnjyRpzpw5sn3KhMDnn39ekmS327V27dr+FfQbNmzQbbfdJq/XqxdeeEG33npr8EIDGJT23h49\nXrLNdH1B3FidOT7PwkQAAEmaEJ2gK3PmaH2puT+jm3s69VjxVn17ylImPAMAAGDUaeru6F8VX+6p\n05H2JvmNoTsfNNYVrhx3inJjk5XrTlZGTKLCHEF/DAwAAAAAAABgCAj6k8GqqipJUnZ29ie+193d\nrW3b+hoVzjzzzP7mUElasWKF/vu//1tlZWX9NQCGtmfKd6rF7Gp5h1Nfy19A4xEABMkZ43JV1HxC\nO+qPmKrf11itt48V6pwJky1OBgAAAISOz+9XVXuTyjx1feviW+vV1N0R6linZJOUFh3fvyo+152s\n5IiYT30xHwAAAAAAAMDoE/QG0dbWVklSbGzsJ763b98+9fT0SJLOPvvsT3x/wYIFKisrU2VlpaUZ\nAXxxexuOamtthen6y7NnsVoeAILIZrPpmrwFOtzWqLquNlNnnq/co4nuFGW7ky1OBwAAAARHW2/X\nycmg9Srz1KuyrUG9fl+oY51ShMN1clV8X0NoVmySIp2uUMcCAAAAAAAAMEQFvUHU7/dLkoxPWcP0\n0fp5m82m+fPnf+L7ycl9zQgfNZkCGJrae7v1xABWy0+OH6czxk20MBEA4NNEOl26adLp+tnet+Qz\n/J9b7zcMPVy4ST+atULRrrAgJAQAAAACx28YOt7R0r8qvqy1XrWdQ/s549jIWOXEJvetjHcna3xU\nHNtXAAAAAAAAAJgW9AbRmJgYtbS06MSJE5/43vbt2yVJSUlJysjI+MT3P2ouZUUSMLQ9Xb5Tnt4u\nU7URDqeuzVvA/68BIEQyYxN1efYsPV2+01R9Q3e7Hi/5QDdPPp0/uwEAADCkdXp7VdFa398QWtHa\noE5fb6hjnZLL7lBWTJJy3cnKcScrJzZZsWERoY4FAAAAAAAAYBgLeoNoVlaW9u7dq61bt37s6x6P\np/9rs2fP/tSzzc3NkiS3221tSACDtqfhqD6orTRdf3n2bCVFRFsXCADwuc5KzVdhS432Nhw1Vb+7\noUrvHS/RWan5FicDAAAAzDEMQ3VdbSdXxdepvLVex9qb9ckdRkNHQnhU/6r4HHey0qMT5LDbQx0L\nAAAAAAAAwAgS9AbR+fPna+/evaqoqNDvfvc7ffOb35TX69U999yj7u5uSdIZZ5zxqWeLiook6VOn\niwIIvbbebq0fwGr5KfHjdPq4XAsTAQDMsNlsui5vge5pa1Rjd4epM8+W71KuO1kZMYkWpwMAAAA+\nqcfn1ZG2RpV56lXW2jchtLW3O9SxTslusykjJlE5scn9E0ITw3lhFgAAAAAAAIC1gt4gesUVV2jt\n2rXyer164IEHtHbtWvX29qqzs1OSFBcXpxUrVnziXGdnp/bu3StJKigoCGpmAOY8XbZjAKvlXbo2\nn9XyADBURLvCdeOkJfqvvX+V38ScJa/h18OHNupHs1YowukKQkIAAACMZk3dHf3TQcta61XV1iSf\n4Q91rFOKcYafbARNUa47WZkxiQpzBP1RLAAAAAAAAIBRLiNiqbcAACAASURBVOhPJTMyMnT77bfr\n3nvvldS3Wv4f3XHHHYqJifnEuXfeeUc9PT2y2WyaM2dOULICMG93fZW21R02XX9FzmwmZQDAEJPr\nTtElWTP0fOUeU/W1XW16onSb1hQspuEfAAAAAePz+1XV3qRyT73KW/uaQs1Oug8Fm6TUqPj+yaC5\n7hSlRMTwOzIAAAAAAACAkAvJa+vXXnut0tLS9Mgjj+jgwYPy+/2aPHmyvvGNb2jZsmWfeubxxx+X\n1LcCdfHixcGMC+BztPV2aX3pdtP1UxPGa8nYHAsTAQAG65wJk1XUUqMDTcdN1W+vO6xJ8eN0+rhc\ni5MBAABgpGrr7VK5p0FlrXUq99SrorVBvX5fqGOdUoTDpZzYpP7poNmxSYp0hoU6FgAAAAAAAAB8\nQsj2Gi1btuyUzaCf5v7775dhGHI4HEpMTLQwGYCBeqp0h1pNrpaPdLh0bR6r5QFgqLLbbLohf5Hu\n2b1BzT2dps78qWyHsmOTlBYdb3E6AAAADHd+w9CJjhaVeepV1lqvck+dajpbQx3rM42JiOlvBs11\np2h8lFt2mz3UsQAAAAAAAADgc4WsQXSg0tLSQh0BwKfYVX9EO+qPmK6/Ime2EsKjLEwEAPiiYsMi\ntKZgsX6+7x0ZMj63vtfv08OFm/SDmecp3DFsfr0EAABAEHR5e1XR2qAyT53KW+tV7qlXp6831LFO\nyWV3KDMmUbn900GT5Q6LCHUsAAAAAAAAABgUPsEHMGitPV16cgCr5aclpGoxq+UBYFjIjx+rCzKm\n6ZUj+0zVH+9o0dNlO/S1/IUWJwMAAMBQZRiG6rva+1fFl3nqdKy9xdRLR6ESHxbZ3wya405WenSC\nnHZHqGMBAAAAAAAAQEDQIApg0J4q26HW3m5TtZEOl67Jm89qeQAYRlZmTFVxS62KWmpM1W+qKVd+\n/FgtHJNtcTIAAAAMBY4wl5LzszV2Wp7+pnq99MELau3tCnWsU7LbbMqITlCOO7l/ZXxieHSoYwEA\nAAAAAACAZSxrEK2urrbqaklSamqqpfcD+Gw76g5r5wBWy1+VO4fV8gAwzNhtdq2ZtFh373rd9AsB\nT5ZsV3ZMksXJAAAAECpRSfGafPFyTZh7mpILsuVw9T1erFKnNMQ2x0c7w5XrTj45HTRFWTGJCnPw\nvjwAAAAAAKE0a9asT/16e3v7Kc+sWbNG0dGf/pLn7t27A5ILAEYqy56ILlu2zJJJgYZhyGaz6dCh\nQwG/G4A5np4uPVW6w3T9aYmpTJMDgGEqLixSXy9YrAf2v2uqvtvv1UOFG3WGYixOBgAAgGArVptW\nP/NAf1PoUGKTND4q7n/Wxccma0xkLJtMAAAAAAAYJqKjozVz5sxQxwCAEcfSp7mGYQyrewF8PsMw\n9FTpdrV5zU2Si3K6dM1EVssDwHA2JWG8zk+fojeqDpqqP9rerJ3yWpwKAAAAwbSrvkrb1DRkmkMj\nHE5lxyYr5+SE0OzYZEU5w0IdCwAAAAAAfA4mfgJAcFn2RHfevHlWXQ0ghHbUH9GuhirT9VflzlU8\nq+UBYNi7KHO6SlrqVOapM1VfrDZlL52vir9tszgZAAAArNbe2631JaH9vS4lIqZ/VXyuO1mpUXGy\n2+whzQQAAAAAAAAAQ51lDaKPP/64VVcDCBFPT+eAVsvPSEzTgpQs6wIBAILGYbPrxkmLdc+uDWr3\n9pg6s/T2m1RfXKHW4+aaSgEAADA0vVi51/QmkUBw2uzKik06OR00RTmxyXKHRQTt5wMAAAAAAADA\nSDE0dkIBGPIMw9D60u1qN71aPkxfzWO1PACMJInh0bouf6F+e/DvpurDYqK0/N/+RS//07/L7/VZ\nnA4AAABWqGxt0PsnSi39GfFhkX2NoO5k5cYmKz0mQU67w9KfCQAAAAAAAACjAQ2iAEzZXndYexqO\nmq5fnTtXcWGRFiYCAITCjKQJWp5WoLePFZmqHzM5V/Nv/oq2/ma9xckAAAAQaH7DrydLt8sI4J12\n2TQhJkG5J5tBc90pSgiP4gVTAAAAAAAAALAADaIAPldLT6f+VGZ+tfzMpAmal5JpYSIAQChdljVT\npS11OtzWaKp++lUrVb37oI5s3m1xMgAAAATS+yfKTP/OdyrRzrD+VfG5scnKjE1SuINHkgAAAAAA\nAAAQDEPiaWxZWZn27dunpqYmdXR0aMmSJZo5c2aoYwHQP66W7zFVH+0M11cnzmPyBwCMYE67QzdN\nOl337N6gLl+vqTNf+sHNem7ND9Ve+8UaDAAAABAcrT1derFy74DPpUbFKcedrJyT00HHRsbyjAAA\nAAAAAAAAQiSkDaIvvviiHnzwQR0+fFiG0besymazKSoq6hMNol//+tdVV1en/Px83X///aGIC4xK\nH9RVau+AVsvPkZvV8gAw4qVExuhreQv0UOFGU/URcbFa/pN/1iu33GNxMgAAAATC85V71GHyZdGa\nA6VaPXWhLlj4JUW7wixOBgAAAAAAAAAwyx6KH+rz+fTd735Xd9xxhyorK/ubQyV97J//0bx581RS\nUqINGzbo2LFjwYoKjGrN3R16umyn6frZSemay2p5ABg15qRkaOn4PNP146YXaO4NqyxMBAAAgEAo\nbanT5ppyU7V+r1d/++lDSlUkzaEAAAAAAAAAMMSEpEH0vvvu02uvvSZJioqK0pVXXqk777zzM89c\neOGFkiS/36/33nvP6ojAqGcYhp4o3WZ6WkiMM1yrWS0PAKPOFTmzNSE63nT9zGsu0nF1WZgIAAAA\nX4TP8Oupsu2m6/c984aaD/MyNwAAAAAAAAAMRUFvEC0sLNT69eslSXl5edqwYYPuuusuffWrX/3M\ncxMmTFBubq4kaft28w+pAQzO1toK7WusNl2/euJcucMiLEwEABiKXHaHbpp0usLtTlP1Nrtdm9Sg\n5u4Oi5MBAABgMP5WXaKj7c2mattqG7Rz3fMWJwIAAAAAAAAADFbQG0T//Oc/yzAMOZ1O/eY3v9HY\nsWNNn50yZYokqayszKp4ACQ1dXfomXLzq+XnJGewWh4ARrFxUW5dnTfPdH2X/HqkaLN8ht/CVAAA\nABiolp5OvXT4Q9P1W379hLyd3RYmAgAAAAAAAAB8EUFvEP3ggw8kSWeccYYyMjIGdDY1NVWSVFNT\nE/BcAPoYhqEnSrapw9trqj7WFa7VuXMtTgUAGOoWjsnW4rE5puuLW2r1yuF9FiYCAADAQD1bvltd\nPnPPA6q2faiKv22zOBEAAAAAAAAA4Iswtws0gE6cOCFJmjp16oDPRkdHS5I6OlhJClhlS22F9jeZ\nXy1/9cR5imW1PABA0ldy56rCU6/jnR5T9RuqDmiiO0XTElMtTgYAAIDPU9Rco211laZqfT292vTL\nxyzNAwDAR2bNmvWpX29vbz/lmTVr1vR/pvS/7d69OyC5AAAAAAAYDoLeINrd3bd2KiwsbMBnP2oM\njYyMDGgmAH2aujv0dJn51fJzkzM0O3lgk4ABACNXuMOpmyafrvv2vKlev8/UmUeLtujO2SuUEB5l\ncToAAACcis/v11NlO0zX733qVXmOsuEHABBa0dHRmjlzZqhjAAAAAAAwpAW9QTQhIUG1tbWqq6sb\n8NmKigpJUmJiYqBjAaOeYRh6vOQD06vkYl0RWj2R1fIAgI9Li47XV3Ln6PESc+tG273derhwk757\n2nI57HaL0wEAAODT/LW6UMc7WkzVeo7XavcTL1ucCACA/8HETwAAAAAABi/on8Ln5uZKknbuND+l\nUJK6urq0detWSYNbTw/gs22qKdeBpuOm6786cZ5iXKyWBwB80pKxucqS+YmgZZ46vXh4r4WJAAAA\ncCpN3R167fB+0/WbH/ijfN09FiYCAAAAAAAAAARK0BtEzzjjDEnSoUOHtG2buclSkvSHP/xBLS0t\nH7sDQGA0drfrz+W7TNfPS8nUrOR0CxMBAIYzm82mBUpQ8+Fq02feOnpIHzYcszAVAAAAPs0z5TvV\n7feaqk1ThI5sZoobAAAAAAAAAAwXQW8QXbVqlWJiYmQYhr7//e+rsrLyc888+eST+u1vfytJSklJ\n0Ze//GWLUwKjh2EYerzY/Gp5tytCX8lltTwA4LO5ZNdf/vVX8nZ1mz6ztniLGrraLUwFAACAf3Sw\n6bh21VeZqnXZHZqnBIsTAQAAAAAAAAACKegNonFxcbr99tslSSdOnNCll16q++67Txs3buyvOXHi\nhLZu3aq1a9dq1apVuuuuu+T3+yVJd955p8LCwoIdGxixNp4o08HmE6brv5o3XzGucAsTAQBGiqby\nKm38xWOm6zu8PXq4cKO8fp91oQAAACBJ6vX79FTZDtP1K9KnKkZOCxMBAAAAAAAAAAItJE91r7ji\nClVXV+t3v/udOjs7tW7dOq1bt67/+//7v3/k1ltv1bnnnhvMqMCI1tDVrmcrzK+Wn5+SpZlJEyxM\nBAAYaYo3/F3jZ05WwYozTdVXtDbo+co9ujJnjsXJgKFl1qxZAb1v927W/wIAPttbRw+ptrPVVO2Y\nyFidO2Gyth7ebHEqAAAAAAAAAEAghey1/1tuuUVTpkzRT3/6Ux07duwza8ePH6877rhD5513XpDS\nASOfYRh6vOQDdfm8pur7VsvTrAMAGLhNv3hMKZNylJht7iWDt48VKc89RrOS0y1OBgx97e3tKikp\n+dTv5eXlKTo6OsiJAAAjQX1XmzZUHTBdvzp3rlx2h4WJAAAAAAAAAABWCOleqHPOOUfLli3Te++9\npy1btqiwsFDNzc3yer1KSEhQbm6ulixZorPPPlsulyuUUYER5/0TpTo0gNXy1+TNVzSr5QEAg+Dt\n6tZff/IrXfrQXXJFRpg6s654qyZEJyglMsbidMDQcKqJn++//77OPPPTJ/A+8sgjOuOMM6yMBQAY\noZ4u26lev89U7ezkdE1JGG9xIgAAAAAAAACAFULaICpJDodDy5cv1/Lly0MdBRg16rva9GyF+bWj\nC8dkawar5QEAX0Dz4WN6/78e1bI7v22qvtPXq4cKN+r7M85hWhUAAEAA7W04qg8bP3ubz0fC7U5d\nmcM2EQAAAAAAAAAYruyhDjAYzc3NoY4ADFt+w9Afiz9Qt8nV8vFhkXwYBAAIiNK/bNKhV941XX+k\nrVHPlpt/oQEAAACfrcfn1dNlO03XfzlzmhLCoyxMBAAAAAAAAACwUtAbRL/3ve+po6Nj0Oc/+OAD\nXXzxxQFMBIwu7x8vVVFLjen6vtXyYRYmAgCMJpsfWKd4uUzXv3e8WDvrjliYCAAAYPTYUHVADd3t\npmrHR8Xp7NRJFicCAAAAAAAAAFgp6A2ir776qi699FLt379/QOd8Pp9++ctf6oYbblBtba1F6YCR\nrb6rTc8NYLX8orE5Oi0xzcJEAIDRxtfTqzOVpHCH0/SZP5ZsVU2nx8JUAAAAI19Np0dvHT1kun51\n7lw57MNy+RAAAAAAAAAA4KSQPOU9fPiwVq9erbVr15qqr66u1jXXXKMHH3xQfr9fhmFYnBAYefyG\noXXFW9XtH8hq+dkWpwIAjEZuuXRt3gLT9V0+rx4+tEm9fp+FqQAAAEYuwzD0p9Id8hp+U/XzU7JU\nED/W4lQAAAAAAAAAAKsFvUF0zpw5kqTe3l797Gc/00033aTGxsZT1r/55pu65JJLtHt339RDl8ul\nO+64IyhZgZHkb8dLVNxifvrutXkLFOVktTwAwBrzUjK1dHye6fqq9iY9U7bTwkQAAAAj1676Kh1s\nPmGqNsLh0uU5syxOBAAAAAAAAAAIhqA3iP7xj3/Ut771LdlsNknS+++/r4svvlhbtmz5WF13d7d+\n8pOf6JZbbpHH07dSNDMzU08//bSuv/76YMcGhrVWefX8AFbLLxmbo2mJqRYmAgBAuiJnttKjE0zX\n//1EqbbVVloXCAAAYATq8vXqmXLzL9pcnDldcWGRFiYCAAAAAAAAAARL0BtEHQ6HbrnlFj322GNK\nSUmRJNXV1WnNmjX6+c9/Lr/fr5KSEq1atUrPPPNM/7lLLrlEL7zwgqZMmRLsyMDwZrNpixrVY3It\nb0JYlK5gtTwAIAhcdodunny6Ihwu02eeKNmmEx0tFqYCAAAYWV47sl/NPZ2matOjE7Q01fyUdwAA\nAAAAAADA0Bb0BtGPLFiwQC+99JKWLl0qSfL7/XrooYd06aWX6vLLL1dpaakkKTo6Wv/5n/+pn/70\np4qKigpVXGDYmnrZuapVt+n6a/PnK5LV8gCAIEmJjNV1+QtM13f7vfr9oY3q8XktTAUAADAyVLc3\n66/HCk3Xr544Vw5byB4XAgAAAAAAAAACLKRPfBMTE/Xggw/q9ttvl8vVNzmqqKhI3d19zWynnXaa\nXnzxRV144YWhjAkMW+60sVpw81Wm608fl6upCayWBwAE1+zkDC1LzTddX93Roj+V7bAwEQAAwPBn\nGIaeKtshv2GYql8yNke57hSLUwEAAAAAAAAAginkIwFsNpumT5+uuLi4T3z92muvVXp6eoiSAcOc\nzaald3xDzohwU+UJ4VG6PJvV8gCA0FiVPUtZMYmm6zfVlGtLTbmFiQAAAIa3bXWVKm6pNVUb5QzT\npVkzLU4EAAAAAAAAAAi2kDaIGoah3/zmN/ra176m+vr6T3zv9ttv149//GN1dXWFKCEwfE27/DyN\nnzHJdP3X8hYo0umyMBEAAKfmtDt00+TTFTWAv4vWl25XdXuzhakAAACGp05vj54t3226/tKsGYoN\ni7AwEQAAAAAAAAAgFELWIFpTU6PrrrtOv/71r+Xz+SRJS5Ys0V/+8hetWrVKUl+T6LPPPqtVq1ap\nqKgoVFGBYSduwjjNv+lK0/VnjJuoKQnjLUwEAMDnS46I0fX5i0zX9/p9eujQRnX5ei1MBQAAMPy8\nfPhDeXrNvXCdFZOo08flWpwIAAAAAAAAABAKIWkQfffdd3XxxRdr27ZtkiSn06nvfve7euSRR5Se\nnq57771XP//5zxUTEyNJKisr05VXXqn169eHIi4wrNjsNi39wc2mV8snhUfr8uxZFqcCAMCcGUkT\ndE6a+QnYxzs9eqp0uwzDsDAVAADA8FHV1qR3q0tM1dokrZ44T3ZbSJcMAQAAAAAAAAAsEvSnv/fe\ne6++9a1vqbm5bx1oWlqa1q9fr5tuuuljdStXrtQLL7yg6dOnS5K6u7t1991369vf/rZaWlqCHRsY\nNqZdfr7GnZZvuv7avAWKYLU8AGAIuTRrpnJik03Xb62t1KaacgsTAQAADA9+w9CTpdtlyNzLM2eO\nz1NWbJLFqQAAAAAAAAAAoRL0BtHHH3+8/5/PO+88vfTSS5oxY8an1qanp+vJJ5/UjTfe2P+1d955\nRxdddJHlOYHhKC59vOYNYLX80vF5mpwwzsJEAAAMnMNu102TlyjaGWb6zJ/Kduhoe5OFqQAAAIa+\nLTXlKm+tN1Ub6wrXxZmf/kwOAAAAAAAAADAyhGR/VEREhP793/9dDzzwQP8a+VNxOp363ve+p0cf\nfVTJyX2TpGpra4MRExhW/DK09AffkDPcXDNNUni0LsueaXEqAAAGJzE8WjcULDJd3+v36aFDG9Xl\n7bUwFQAAwNDV3tut5yv2mK6/LHuWol3mX8gBAAAAAAAA8P/Zu/Poqup77+OffTJzMhOmQBJCCAmE\nIUCQURBBBq0WEYei0gqU3ue2ve11qNXHLq21am/7sO5t1XtFkGJtnSvihIhay6SEEOYkZCATQ+aJ\nzMnZzx9eIxECG80+md6vtbrWGT6/fT5hrS7D5nt+P6DncfuAaExMjF577TXdeuutl7VuxowZeuut\ntzRr1iyZprVjsoC+JF01GjzW+tHy3x81Tb4eHC0PAOi+xoUO1aJhYyzni+pr9GLWXn5XBAAAfdLm\n3IM629JoKRsTOEDTBkbb3AgAAAAAAAAA0NU83f2Bb7zxhnx9fb/R2v79++u5557Txo0bO7kV0LOd\nrqvSAVVZzl81JFZxwYNsbAQAQOe4Yfh4ZVWXKKu6xFI+uSRPsUEDNWdIrM3NAAAAuo/cmjLtOJNl\nKeuQoeUjk+QwDJtbAQAAAAAAAAC6mtt3EP2mw6FfMgxDK1eu7KQ2QM/nMl3adPwzuSzmw3ydupGj\n5QEAPYSH4dDq+JkK8PKxvObV7BTlny23sRUAAED34TJd+mtWsqzuoT43fJSGOUNs7QQAAAAAAAAA\n6B7cPiAKoHN9WJiuEzVllvPfj+VoeQBAzxLi008r42bI6h5XLaZLz6btVH1Lk629AAAAuoMdp7Mt\nfzkmyNtP10eNt7kRAAAAAAAAAKC7YEAU6MFO1VZpS94hy/m54aM0iqPlAQA90JiQIbo2YqzlfGnD\nWb1w/HOZptW9tAAAAHqe6qYGbc47YDm/LHqi/Dz50igAAAAAAAAA9BWedl147969Moyv9nmaMmXK\nBV//pr68HtCXnamvksMwZOUcuQG+/rpxOEfLAwB6ru9EjVVWdYkyqoos5feXFeiTU8d19dA4m5sB\nAAB0jb/nHlBdS7OlbFzQIE0ZEGVzIwAAAAAAAABAd2LbgOiKFStkGIZM05RhGEpLSzvv9ct1oesB\nfdmksEhFOEO06fjnyqwuvmj2+6OmycfDtv/LAwBgO4fh0Kr4GXps//uqbm6wtOb1E6mKDuyv6IAw\nm9sBAAC4V1ZVifYU5VjKehgOfW9kUqd8aRsAAAAAAAAA0HPYesT8l0OgXx8G/aZHfXZ0PaAvG+AX\noLvHz1OSgtXS0HjBTLz8FRs00M3NAADofEHefloVP0OGrA03tJouPZe2S7XNTTY3AwAAcJ9W06WX\nspMt5+cPjdeQfkE2NgIAAAAAAAAAdEe2bSe4ZMmSdjt+nvv6t8VuB0B7DsNQvAJ0710rNeeXazRk\nQnzbe1WFZ5Q4bHIXtgMAoHPFBw/W9VFjtSXvsKV8WWOtNmV+pv8z+kp+jwQAAL3CJ6eOq7C20lI2\nxKefrosca3MjAAAAAAAAAEB3ZNuA6JNPPnlZrwP49qpPFuntf3tMY5ct1BU/vEUe3l76x+PP6sfP\nrO/qagAAdKrFEQnKrCpRWuUZS/mDZYXafjJd1wwbbXMzAAAAe1U21untvEOW87eMmCwfD9tuAQIA\nAAAAAAAAujHuDgO9jWnqyGtblb8nVUMnj1XRkeNd3QgAgE7nMBxaGTdDv019X5VN9ZbW/D33gEYE\nhikmcIDN7QAAAOzz+olUNbS2WMomhAzRxP7DbG4EAAAAAAAAAOiuHF1dAIA9qguLlPbWR11dAwAA\n2wR6+2pV/EwZsnZsvMs09Vz6Lp1tbrS5GQAAgD3SK88ouSTPUtbTcOi2mCQZhrXflQAAAAAAAAAA\nvQ8DogAAAOixRgUN1JLh4y3nKxrrtDFjj1ymaWMrAACAztfiatVLWfss5xdGjNFAvwAbGwEAAAAA\nAAAAurtuccR8QUGBUlJSlJubq6qqKklSUFCQoqOjNWnSJEVERHRxQwAAAHRXC4aNUWZViY5UnLKU\nP1JxStsK07QoYozNzQAAADrP9pMZOlNfbSkb5uvUomH8rgMAAAAAAAAAfV2XDoju2bNHTz31lFJS\nUjrMGIahSZMm6cc//rFmzJjhxnYAAADoCRyGobvipumx/VtV0VRnac1buQcVExim2KCBNrcDAAD4\n9sobavVu/mHL+dtikuTt0S2+Fw4AAAAAAAAA6EJddsT8448/rrvuuuuiw6GSZJqmUlJStGrVKj32\n2GNuagcAAICexN/LVz8cPVMOw7CUd8nU+vRdqm5qsLkZAADAt/dqzn41uVotZSf0H6ZxoUNtbgQA\nAAAAAAAA6Am6ZCuBJ598Ui+88MJXJTw9dcUVVyguLk4hISGSpIqKCqWnpys5OVktLS0yTVMvvvii\nHA6HHnzwwa6oDQAAgG4sJnCAlg5P1OsnUi3lK5vqtTFjt346dq7lwVIAAAB3O1J+SqllBZayXg4P\n3Tpiss2NAAAAAAAAAAA9hdsHRA8cOKBNmza1Pb/11lv1s5/9TKGhoRfMl5eX609/+pNeeuklSdKL\nL76oa6+9VomJiW7pCwAAgJ5j/tB4ZVYV62D5SUv5Y5Vn9H7BUV0XOdbmZgAAAJev2dWql7P3Wc5f\nGzFW/X2dNjYCAAAAAAAAAPQkbj9i/uWXX5ZpmpKkn//85/r1r3/d4XCoJIWGhurhhx/W3XffLUly\nuVxtw6IAAADAuQzD0PdHTVd/H+uDEW/nHVZGZZGNrQAAAL6ZDwqOqaThrKXsIL8AXTMs3uZGAAAA\nAAAAAICexO0Donv37pUkRUdH60c/+pHldatXr1Z0dLQkKTk52ZZuAAAA6PmcXt764eiZ8jCs/apr\nytT69F2qaqq3uRkAAIB1JfVntbXwmOX892KmyMvhYWMjAAAAAAAAAEBP4/Yj5ktKSiRJc+bMkWEY\nltc5HA7NmTNHJ06cUFlZmV31zpOfn69Dhw7pyJEjOnbsmEpKSlRRUaGamhr5+PgoLCxM8fHxmjt3\nrhYtWiQ/Pz/L196zZ4+2bNmilJQUlZSUyOFwaPDgwZo2bZqWLl2qhISEy+paX1+vN998U9u2bVNO\nTo7Ky8sVHBysyMhIzZ8/XzfddJOCgoIu948AAACgx4kOCNOy6Il6JSfFUr66uUEb0nfr5+PmymFx\nsBQAAMAupmnqlZx9ana1WspPDovU6JDBNrcCAAAAAAAAAPQ0bh8QDQgIUHl5+UWPle9IcHCwJMnp\ntH5k6Le1Zs0a5ebmXvC9uro65efnKz8/X9u2bdPatWv161//WldfffVFr1lXV6eHHnpI77333nnv\nZWdnKzs7Wy+99JLuvPNO3X///XI4Lj2kcOjQId1zzz0qKCho93ppaalKS0u1f/9+Pf/883riiSd0\n5ZVXXvJ6AAAAPd3c8FHKrCrW/rKCS4clZVQV6Z38I7oharzNzQAAAC7uYPlJHS4/ZSnr4+Gpm0dM\nsrkRAAAAAAAAAKAncvuAaGRkpMrLy3X69OnLXltUq4heowAAIABJREFUVCRJioiI6OxaHTIMQ4Zh\naMCAARozZowiIyMVEhIiT09P1dTUKC0tTZ9//rmamppUUlKin/zkJ/qv//ovXXPNNRe8XnNzs376\n059q165dkr7YGXXmzJkaP368WlpatHfvXqWmpsrlcmnTpk2qr6/Xo48+etGO6enpWrlypc6ePStJ\nCgoK0oIFCzR06FAVFxdr27ZtbYOiP/7xj/Xcc89p6tSpnfsHBQAA0M0YhqEVo6YqP7VCpQ1nLa15\nL/+IRgYO0JiQITa3AwAAuLCm1ha9mm1tF3RJuj5ynEJ8+tnYCAAAAAAAAADQU7l9QHTx4sU6cOCA\nPvroI/3yl7+Uj4+PpXWNjY366KOPJEmLFi2ys2I799xzj8aMGaPw8PAOM0VFRbr77ruVkpIil8ul\nhx9+WFdddZW8vLzOy27cuLFtONTpdOqpp57S9OnT22W2bNmiBx54QK2trXr11Vd15ZVXdjhw2tra\nqvvuu69tOHTy5Ml65pln2h0lf//99+uee+7R9u3b1dTUpHvvvVfbtm2Tn5/fZf95AAAA9CR+nt76\n0ehZ+t2BbWoxXZfMm5Kez9ithyYuVjCDFgAAoAu8V3BUZY21lrLh/YJ0dXiczY0AAAAAAAAAAD3V\npc8u72TLli3T8OHDVVxcrIcfftjSGtM09cgjj6i4uFhRUVG65ZZbbG75lfnz5190OFSSBg0apKee\neqpt2LW8vFypqann5aqrq/Xss8+2Pf/lL3953nCoJN1www1avXp12/M//OEPMk3zgp+9efNmZWZm\nSpKCg4P1pz/9qd1wqCT5+PjoD3/4g6KioiRJJSUl2rhx40V/JgAAgN4i0j9Ut4yYbDlf09yo59J3\nqdXCQCkAAEBnOlNXrW2FaZbz3xs5RR4Ot9/eAwAAAAAAAAD0EG6/g+x0OvX0008rMjJSmzdv1u23\n3659+/Z1mN+3b5/uvPNOvfnmm4qMjNQzzzwjp9PpxsbWhISEaNSoUW3PS0tLz8ts375dtbVf7AAR\nHh6uZcuWdXi9VatWte3wmZeXp5SUCx8ttnnz5rbHt956q0JDQy+Y8/X11cqVK9uev/nmmxf5aQAA\nAHqX2UNGKiks0nI+q7pEW/IO2dgIAACgPdM09XL2PstfUpk2cLhGBQ20uRUAAAAAAAAAoCdz+xHz\nDzzwgCQpLi5OBQUFSklJ0R133KGwsDDFxcUpODhYklRZWan09HSVlZVJkgzDUFxcnNavX3/Jz3ji\niSfs+wEuoqqqqu3xwIHn36D/8MMP2x5fc801Mgyjw2sFBgZq2rRp+uSTT9rWJiUltctUVFS0G65d\nvHjxRfstXLhQjzzyiEzTVEFBgdLT0xUfH3/xHwoAAKAXMAxDd8ROVX5thYrrayyt2VpwTLGBAzU2\n9OK7yQMAAHSGlNJ8pVWesZT18/DSTdETbW4EAAAAAAAAAOjp3D4g2tHOlaWlpRfcdfNLpmm2G7Ds\niGEYXTIg+sEHHyg/P1+SNHToUE2ceP5N+mPHjrU9njz50secJiUltQ2Inrv2S+np6W1Hz/v7+19y\n2DM4OFgxMTHKyspquyYDogAAoK/w8/TSmvhZ+t3BbWp2tVpa83zGbj00abFCfbrfDvYAAKD3aGhp\n1ms5+y3nvzt8vAK9/WxsBAAAAAAAAADoDdx+xLzdvhyYtJvL5VJ1dbVSUlL0m9/8RnfffbckKTQ0\nVGvXrpWHh0e7fE1NjYqKitqeR0VFXfIzIiO/OgY1MzPzvPfPfe3c7Le5JgAAQG8W4R+i22Iu/UWd\nL9W2NOm5tF1qdVk76hUAAOCbeCf/sCqb6i1lI5whmjMk1uZGAAAAAAAAAIDewO07iG7atMnW61/s\n2PZv65lnntEf//jHC77ndDq1cOFC/exnP9OgQYPOe7+kpKRdx8GDB1/y887NVFVVqbW1td3g6bnX\nvNBnXuqaF9uxFQAAoLeaOShGx6uK9XlxrqV8Tk2p3sw9qGUjOMYVAAB0vpO1lfroZIbl/PKRU+Qw\net13vgEAAAAAAAAANnD7gOjUqVPd/ZGd5mLDp8OHD9eYMWMUFBR0wfdra2vbPffzu/QxYF/P1NbW\nKjAw8ILX7Nev3yWvJ0m+vr4ddgIAAOgLDMPQ8pFTlFdTrjP11ZbWfHgyTbFBAzSh/zCb2wEAgL7E\nNE29lLVPLlk7EWfmoBiNCAyzuRUAAAAAAAAAoLdw+4BoTzZjxoy2AcvW1lZVVFTo2LFj2rt3r44e\nPaqjR4/qhRde0H//938rJiam3drGxsZ2z729vS/5eT4+Pu2e19fXtxsQbWhoaHvs5eVl6Wc495rn\nrgcAAOhLfD28tGb0LD1x4AM1u1otrfnz8T36vxMXK8zX3+Z2AACgr/i8OFeZ1cWWsk5Pby2NnmBz\nIwAAAAAAAABAb8KA6GWYMGGCJkw4/0b8yZMn9cADD2jv3r3Kz8/XypUrtWXLlna7iX592LOpqemS\nQ6JfHyr9+o6i5+4G2tzcbOlnOPea564HAADoa4Y6g7V85BRtOv6ZpXxdS7OeS9+l+8bPl6fDw+Z2\nAACgt6tradLrJ1It55cMT5S/F/dyAAAAAAAAAADWMSDaCYYOHar169fr5ptvVkZGhoqKirRhwwbd\nfffdbRmn09luTX19/SUHROvr69s9//o1zn1eV1dnqeu5u4Z+/XqXIycnR0uWLLmsNZs3b/7GnwcA\nAGCHGYNGKLOqWLuLcizlc2vK9MaJA7o1ZrLNzQAAQG/3Vu4h1TRbO91leEB/zRocc+kgAAAAAAAA\nAKBLXe5MXU5OjkaMGGFTGxsHRE3TlGEYdl2+yz/v67y9vfXDH/5Q9957ryRp+/bt7QZEBwwY0PbY\nNE2dPn263Q6jF1JUVNT2OCgoSB4e7XeqOveaZ86csdTz3FxYWJilNQDQG02cOPGCr9fW1na4ZtWq\nVR0O16emWt/5B0D38r2YJOXWlOlUXZWl/MenMhQbNFCTwiJsbgYAAHqr/LPl+vR0pqWsIWl5zBQ5\nuvC+FwAAAAAAAACgZ7JtQPSGG27Qvffeqzlz5tj1EW3+8Y9/aO3atdqyZYvtn3Ux8fHxbY9PnjzZ\n7r2AgAANGjSobegzLy+vXf5C8vLy2h7Hxsae9/65rxUWFloaks3Pz7/oNa0aMWIEO4IC6JWcTqcS\nExO7ugYAN/L28NSPRs/S46kfqNHVYmnNpuOfKcIZrAF+ATa3AwAAvY3LNPW3rGSZMi3lZw+JVVRA\nqM2tAAAAAAAAAACd4XJn6i53x9HLZduAaGZmpv7lX/5FCQkJWr16tRYsWCCHw9Fp129padG2bdu0\nfv16HTt2rEt3Dz2305d8fHzOez8hIaFtQHT//v1auHDhRa+3b9++tsdjxow57/34+Hg5HA65XC7V\n1NQoIyPjokOnlZWVysrKkiQZhnHBawJAX8GOnwDONbhfkG6PnaLnM/ZYyje0Nmtd+k79YsICeTk8\nLr0AAADgf+0uytaJmjJL2QAvH303aoLNjQAAAAAAAAAAvZVtA6Jz5szRp59+qiNHjujnP/+5BgwY\noCVLlmjRokVKSEj4xtc9cuSItm7dqs2bN6u0tLTt9dmzZ3dG7W/l0KFDbY+HDRt23vvz58/Xxx9/\nLEn68MMPdf/993c4NFtdXa09e74aULjmmmvOy4SEhGjy5MlKTk6WJG3duvWiA6Lbtm1r1+9SO5gC\nAAD0JVMHRiuzqkQ7zmRZyuefrdBrOfu1fOQUm5sBAIDe4mxzo/5+4qDl/E3RE+X08raxEQAAAPqC\niRMnXvD12traDtesWrVKTqfzgu+xAQMAAADQc9g2IPrss8/qo48+0u9//3vl5uaqpKREzz33nNav\nX68BAwboiiuuUGJiokaNGqWIiAgNHDhQHh5f7b7U0tKioqIiFRQUKDMzUwcOHNDevXtVUlLS7nNG\njBihe++9V1dffbVdP4olZ8+e1XPPPdf2fM6cOedlrrnmGv32t79VbW2tTp06pb///e9atmzZBa+3\nYcMGNTQ0SJKioqKUlJR0wdySJUvaBkRffvllrVixQqGh5x871tDQoA0bNrRbBwAAgPZuGTFJJ2pK\nVVhbaSn/6elMxQYN1JQBUTY3AwAAvcGbuQdU29JoKTsycICmDYy2uREAAAD6MqfTqcTExK6uAQAA\nAMBGtg2IStK8efN01VVXafPmzVq/fr1OnDgh0zRVXFysd955R++8844ktR0P7+3tLS8vLzU3N6up\nqUmSZJrmBa89cuRIrV69WjfccEOnHl1/rqeeekqmaWrp0qUaOnRoh7mjR4/qoYceUkFBgSQpKChI\nd95553m5gIAA/ehHP9LatWslSU888YSGDRumadOmtcu9/fbbbcOmhmHonnvu6fCzb7zxRm3cuFFZ\nWVmqrKzUT3/6Uz3zzDMKCgpqyzQ0NOi+++5TXl6eJGnAgAFauXKlxT8FAACAvsPbw1NrRs/S46lb\n1dDaYmnNXzI/V6QzRIP6BdrcDgAA9GQnqku160y2paxDhpaPnNJ2zwwAAAD4NtjxEwAAAOi7bB0Q\nlSQPDw/ddNNNWrp0qXbs2KG///3v+vjjj9sGQKWvhkAbGxvV2NjxLgp+fn6aN2+eli5dqhkzZthd\nXVVVVfrLX/6ip59+WrGxsRo9erSGDBkip9OppqYmFRcX6+DBg8rIyGhb4+vrq7Vr115wF09Juuuu\nu7Rnzx7t2bNHtbW1uuuuuzRr1iyNHz9eLS0tSk5O1v79+9vyN910kxYsWNBhR4fDoT/84Q+64447\ndPbsWaWkpGjBggVauHChhgwZotLSUn3wwQcqLS2V9MUQ7n/8x3/Iz8+vk/6UAAAAepdBfoG6M3aq\nnkvfZSnf2Nqidek7df+EBfL2sP3XawAA0AO5TJf+lp2sC38N+nxzh47SUGewrZ0AAAAAAAAAAL2f\n2/4F2zAMzZ49W7Nnz1Z9fb0+++wz7d27V0eOHFFOTo7KysrOWxMWFqaYmBiNHTtWU6dO1dSpU+Xj\n4+Ouyu2OvM/MzFRmZmaHWcMwlJCQoEcffVRjxozpMOfl5aWnn35aDz74oLZu3SrTNLVjxw7t2LGj\nXc7hcOj222/Xgw8+eMme8fHxWr9+ve69914VFhaqqqpKr7766nm5sLAwPf7445o+ffolrwkAANCX\nJQ2IUmZVsf5xuuPf/85VWFupV3JSdGfsVJubAQCAnujT01nKP1thKRvk7afrI8fb3AgAAAAAAAAA\n0Bd0yRZHfn5+mjt3rubOndv2WlNTk2pqatTU1CRvb28FBATI29u7K+q1ue+++zR//vy2Qda8vDwV\nFxervr5eXl5e8vf3V1RUlMaOHasFCxZo0qRJlq7br18//ed//qf27Nmjt956S6mpqSouLpaHh4cG\nDRqkqVOn6qabblJCQoLlromJiXr77bf15ptvatu2bTpx4oQqKioUGBioyMhIzZs3TzfffLMCAzn6\nFAAAwIplIyYpp6ZM+WfLLeV3nslWbNBATRsYbXMzAADQk1Q31eut3IOW8zdHT5Sfp5eNjQAAAAAA\nAAAAfUW3OQPT29tb/fv37+oa7Xh4eCgpKUlJSUm2XH/69Omdupunn5+fli9fruXLl3faNQEAAPoq\nL4eH1sTP0m9T31d9a7OlNX/N3Kso/1AN6RdkczsAANBTvHHigOXfJeKCBilpQJTNjQAAAAAAAAAA\nfYWjqwsAAAAA3dUAP399f9Q0y/kmV6vWpe1UY2uLja0AAEBPkVlVrM+KT1jKehgOLR+ZJMMwbG4F\nAAAAAAAAAOgrGBAFAAAALmJiWITmhcdZzp+qq9JL2ftsbAQAAHqCVpdLf8tKtpy/Zmi8BrMLOQAA\nAAAAAACgEzEgCgAAAFzC0uhEDQ/obzm/pyhHu85k29gIAAB0dx+fytCpuipL2VCffro2cqzNjQAA\nAAAAAAAAfQ0DogAAAMAleDo8tCZ+lvp5elte81L2Pp2srbSxFQAA6K4qGuv0dv5hy/lbRkyWj4en\njY0AAAAAAAAAAH0RA6IAAACABf19nfrBqGmW882uVq1L26mG1mYbWwEAgO7o9Zz9amxtsZQdGzJE\nif2H2dwIAAAAAAAAANAXMSAKAAAAWDSh/zAtGDbacv5MfbX+mpks0zRtbAUAALqTtIoz2leabynr\naTh0W0ySDMOwuRUAAAAAAAAAoC9iQBQAAAC4DEuiJigmMMxyfm9JrnaeybaxEQAA6C6aXa16KXuf\n5fyiiDEa4BdgYyMAAAAAAAAAQF/GgCgAAABwGTwcDv0wfpacnj6W17ycvU8FZytsbAUAALqD7SfT\nVVRfbSkb5uuvhcPG2NwIAAAAAAAAANCXMSAKAAAAXKYQn35aGTfdcr7FdGld2g7VtzTb2AoAAHSl\nsoZavZt/xHL+tpjJ8vbwtLERAAAAAAAAAKCvY0AUAAAA+AbGhoZrcUSC5Xxxw1n9JfNzmaZpYysA\nANBVXs1JUbOr1VI2sf8wjQsdanMjAAAAAAAAAEBfx4AoAAAA8A1dHzVOo4IGWs6nlObr09OZNjYC\nAABd4XD5SR0oK7SU9XJ46JYRk21uBAAAAAAAAAAAA6IAAADAN+ZhOLQqboYCvHwsr3ktZ7/yaspt\nbAUAANypqbVFL2enWM5fFzlW/X2dNjYCAAAAAAAAAOAL3WpAtLKyUqdPn9bZs2e7ugoAAABgSbBP\nP62KmynDYr7FdGld+g7VtTTZ2gsAALjHB4VpKm2wdi9rkF+grhkab3MjAAAAAAAAAAC+0KUDojU1\nNXr22Wd1yy23aOzYsZo+fbquvvpqvfbaa+dlX3jhBW3cuFHbtm3rgqYAAABAx0aHDNZ1kWMt50sb\narXp+GcyTdPGVgAAwG4l9TXaWnDUcv57MUnydHjY2AgAAAAAAAAAgK94dtUHf/rpp/rFL36hqqoq\nS/mDBw/q3XffldPp1Jw5c+TjY/0YTwAAAMBu10WOVVZ1idIriyzlD5QV6uNTGZrHLmIAAPRIpmnq\n5ewUtZguS/mksEiNDhlscysAAAAAAAAAAL7SJTuI/vOf/9S//uu/tg2H+vn5aezYi++4dNttt0mS\namtrtWPHDts7AgAAAJfDYTi0Km6GAr18La95/USqTlSX2tgKAADY5WBZoY5UnLKU9fHw1LIRk2xu\nBAAAAAAAAABAe24fED179qx+8YtfqLW1VV5eXnrwwQe1d+9evf766xddN3nyZAUHB0uSdu/e7Y6q\nAAAAwGUJ9PbT6viZMmRYyrtMU+vSd6q2udHmZgAAoDM1trbolZwUy/nrI8cpxKefjY0AAAAAAAAA\nADif2wdEX3nlFVVWVkqSHnvsMa1YsUJeXl6XXOdwODR+/HhJUlpamq0dAQAAgG8qLniQbogaZzlf\n3linPx//TKZp2tgKAAB0pvcKjqi8sc5SNrxfkK4Oj7O5EQAAAAAAAAAA53P7gOg//vEPSdKoUaP0\n3e9+97LWxsTESJIKCgo6uxYAAADQaRZFJGhMyBDL+UPlJ/XhyXQbGwEAgM5ypq5KHxZa/+/28pFT\n5OFw+y04AAAAAAAAAADcPyCak5MjSZoxY8Zlrw0MDJQk1dTUdGonAAAAoDM5DEMrR01XsLef5TVv\nnjigrKoSG1sBAIBvyzRNvZS9T62my1J+2sBoxQYNtLkVAAAAAAAAAAAX5vYB0aqqKklS//79L3st\nx24CAACgpwjw9tUP42fKIcNS3iVTz6Xv1NnmBpubAQCAb2pfab7SK4ssZf08vHRTdKLNjQAAAAAA\nAAAA6JjbB0SdTqckqba29rLXlpR8saNScHBwp3YCAAAA7DAyaKCWDJ9gOV/ZVK/nM/bIxRejAADo\ndhpamvV6zn7L+e8On6DAy9hNHAAAAAAAAACAzub2AdHBgwdLkjIyMi57bXJysiQpKiqqUzsBAAAA\ndrlm2GiNCw23nD9acVofFB6zsREAAPgm3s4/rMqmekvZSP8QzRky0uZGAAAAAAAAAABcnNsHRKdO\nnSpJ2r17t8rLyy2v2717t7KysiRJV1xxhS3dAAAAgM7mMAz9YNR0hfj0s7zmrdxDOm7x+FoAAGC/\nk7WV+viktS87G5KWx0yRw3D7bTcAAAAAAAAAANpx+53q66+/XpLU2Niohx9+2NKaU6dO6cEHH5Qk\neXp66sYbb7StHwAAANDZ/L18tCZ+lhyGYSlvytT6jN2qtrhLGQAAsI9pmvpbVrJcMi3lZw6OUXRg\nmM2tAAAAAAAAAAC4NLcPiI4bN06LFy+WJH344YdatWqV0tPTL5itqKjQiy++qGXLlunMmTOSpJtv\nvllDhw51W18AAACgM4wIDNPS4YmW81VN9Xo+Y49cpsvGVgAA4FI+Kz6hrOoSS1mnp49uvIz/3gMA\nAAAAAAAAYCfPrvjQ3/zmN8rKylJmZqZ27dql3bt3Kyzsq50VNmzYoBdeeEFFRUVyub76B/GEhAQ9\n8MADXVEZAAAA+NbmD41XZnWJDpYVWsqnVZ7Re/lH9Z2ocTY3AwAAF1LX0qQ3ThywnF8aPUH+Xj42\nNgIAAAAAAAAAwDq37yAqSf7+/vrrX/+qq6++WtIXR3WVlHy1E0NpaalOnz7dbjj0qquu0qZNm+Tt\n7e32vgAAAEBnMAxD34+dpv4+Tstr3sk/rLSKMza2AgAAHXkr96BqmhssZaMD+mvGoBibGwEAAAAA\nAAAAYF2XDIhKUmBgoJ555hlt3LhR8+fPV0BAwHkZPz8/zZ49W+vWrdP//M//yN/fvwuaAgAAAJ3H\n6eWtNaNnycOw9qu4KWlDxm5VNdXbWwwAALSTf7Zcn57OspQ1ZGj5yClyGIbNrQAAAAAAAAAAsK5L\njpg/1/Tp0zV9+nS5XC6dPHlSlZWVam1tVXBwsMLDw9kxFAAAAL3O8ID+WhY9Ua/kpFjK1zQ3aH36\nLv183NWWB0sBAMA35zJN/S0rWaZMS/k5Q2IV6R9qcysAAAAAAAAAAC5Plw+IfsnhcCgiIkIRERFd\nXQUAAACw3dzwUcqsLtb+0gJL+eNVxXon77C+O3yCzc0AAMCuM9k6UVNmKRvo5avvDh9vcyMAAAAA\nAAAAAC4f2w8BAAAAXcAwDK2InaoBvv6W17xfcFRHK07Z2AoAAJxtbtCbuQcs52+Knqh+npyAAwAA\nAAAAAADofhgQBQAAALqIn6e31oyeJU+Lx8abkp5P36OKxjp7iwEA0Ie9mXtQtS1NlrKxgQM1deBw\newsBAAAAAAAAAPANMSAKAAAAdKFI/1DdEjPZcv5sS6PWp+9Sq+mysRUAAH1TTnWpdp7JtpR1yND3\nRibJMAybWwEAAAAAAAAA8M142nXh+Ph4W26Qm6YpwzCUlpbW6dcGAAAAusLswSOVWVWs5JI8S/ms\n6hK9lXtIS6MTbW4GAEDf4TJd+ltWsuX8vKFxGuoMtrERAAAAAAAAAADfjq07iJqm2en/AwAAAHob\nwzB0x8grNMgvwPKaDwqP6XD5SRtbAQDQt3x6OlMFtRWWssHefvpO5DibGwEAAAAAAAAA8O3YtoNo\neHi4XZcGAAAAeh1fTy+tGT1LTx7YpmZXq6U1GzP26KGJixXq67S5HQAAvVt1U73eyj1kOX/ziEny\n9fSysREAAAAAAAAAAN+ebQOiH3/8sV2XBgAAAHqlYc4Q3RaTpL9kfm4pX9vSpHXpO3Xv+PnydHjY\n3A4AgN7rjROpqm9ttpQdHTxYk8MibW4EAAAAAAAAAMC3Z+sR8wAAAAAuz8xBIzRtYLTl/ImaMr2Z\ne9DGRgAA9G7Hq4r1WXGupayH4dBtMUkyDMPeUgAAAAAAAAAAdAIGRAEAAIBuxDAMLR85RUP6BVle\ns/1kug6UFdrYCgCA3qnV5dJLWcmW8wuGjdbgfoE2NgIAAAAAAAAAoPPYdsQ8AAAAgG/Gx8NTa+Jn\n6YkDW9XkarW05s8Ze/TQpMUK8/W3uR0AAL3Hx6cydKquylK2v49T10Yk2Nyoe5g4ceIFX6+tre1w\nzapVq+R0Oi/4Xmpqaqf0AgAAAAAAAABcHgZEAQAAgG4o3Bmk5SOn6M/HP7OUr29t1rq0nbpvwjXy\ncnjY3A4AgJ6vorFOb+cftpy/JWayvD369q00p9OpxMTErq4BAAAAAAAAALCo29zVbm5uVnV1tRob\nGy3lw8PDbW4EAAAAdK3pg0Yos6pEu4qyLeXzzpbrjROpui0myeZmAAD0fK/l7Fdja4ul7LjQcE0I\nHWpzo+6DHT8BAAAAAAAAoHfo0gHR/fv365VXXlFycrJOnz5taY1pmjIMQ2lpaTa3AwAAALrebTGT\nlVtTppN1lZbyn5w6rtjAgZo8INLmZgAA9FxpFWeUUppvKevl8NCtI5JkGIbNrQAAAAAAAAAA6Fxd\nMiDa3NysRx55RG+88cY3Wm+aZic3AgAAALonbw9PrRk9S48f2Gp5l7MXMj9ThH+IBvoF2NwOAICe\np9nVqpeyky3nFw0bowF+/jY2AgAAAAAAAADAHl0yIProo4+2Gw4dPny4WltbVVBQIEmaMmWKqqqq\nlJubq6amJkmSYRiaNGmSHA5HV1QGAAAAuszgfoG6Y+QV2pCx21K+obVF69J26v7EBfJyeNjcDgCA\nnuXDwnQV1ddYyg7w9dfCiDE2NwIAAAAAAACAyzNx4sQLvl5bW9vhmlWrVsnpdF7wvdTU1E7phe7H\n7QOiR48e1WuvvSZJCg8P11NPPaUxY8Zow4YN+v3vfy/DMPSXv/xFktTU1KRPPvlEa9euVV5ennx8\nfLR27VoFBwe7uzYAAADQpa4YOFyZVcX655ksS/mC2gq9mp2i22OvsLkZAAA9R2nDWb1XcMRy/raY\nJL5sAQAAAAAAAKDHcDqdSkxM7Ooa6EbcPiD6+uuvS/piR9A//elPGjOm410YvL29tXDhQs2aNUur\nVq3S7t27dc8992jDhg3uqgsAAAB0G7fETNaJmjIV1FZYyv/zTJZigwbqioHD7S0GAEAP8WrOfjW7\nWi1lJ/aP0NjQcJsbAQAAAAAAAMDlY8dPWOXWzzGfAAAgAElEQVT289pTUlIkfbHNbUJCgqU1TqdT\na9eulbe3t3bt2qWtW7faWREAAADolrwcHlozepZ8Pax/z+vFrL06U1dtYysAAHqGw+UndbCs0FLW\n2+GhW0ZMsrkRAAAAAAAAAAD2cvuA6JkzZyRJEyZMaPe6YRhtj5ubm89bFx4ertmzZ0uS3n33XRsb\nAgAAAN3XQL8ArYidZjnf2NqidWk71dTaYmMrAAC6t6bWFr2cvc9y/rrIsQr1ddrYCAAAAAAAAAAA\n+7l9QLS2tlaSFBoa2u51Hx+f8zJfFxcXJ0k6duyYTe0AAACA7m/ygEjNDR9lOX+yrlIvZ6fY2AgA\ngO5ta+ExlTZc+H7T1w32C9T8ofE2NwIAAAAAAAAAwH5uHxD19fWVJDU1NbV73d/fv+3xl7uMfp3L\n5ZIklZWV2dQOAAAA6Bluip6o4f6hlw7+r11F2dpTlGNjIwAAuqfi+hp9UGD9y8bfG5kkT4eHjY0A\nAAAAAAAAAHAPtw+IhoeHSzp/yDM6OlqSZJqmDh8+fMG1OTlf/IO2w+H22gAAAEC34uXw0A9Hz1I/\nTy/La/6WlaxTtVU2tgIAoHsxTVMvZ+9Ti+mylJ8yIErxwYNtbgUAAAAAAAAAgHu4fdJy1KgvjsI8\nfvz4ea9/ubvo66+/ft66vLw8ffTRR5KkyMhIm1sCAAAA3V+Yr7++HzvNcr7J1ap16TvV2NpiYysA\nALqP1LJCHa04bSnr6+GpZdETbW4EAAAAAAAAAID7uH1ANCkpSZJ06NAh1dXVtb3u6+ur+fPnS5IO\nHjyon/zkJ9q3b5/y8vL0/vvva9WqVWpp+eIfsufOnevu2gAAAEC3lBgWoflD4y3nT9dV6W9ZyTJN\n08ZWAAB0vcbWFr2ak2I5f33UeAX79LOxEQAAAAAAAAAA7uX2AdGrr75aktTU1KRt27a1e+/f/u3f\n2nYR3b59u+644w4tWrRI//7v/67CwkJJUlhYmFasWOHe0gAAAEA3tnR4oqID+lvOf1Z8QruLcmxs\nBABA13s3/4gqGusuHZQ0tF+w5oaPsrkRAAAAAAAAAADu5fYB0UGDBunRRx/V3XffLafT2e69yMhI\nPf300woMDGx77dydjQYNGqR169YpJCTEbX0BAACA7s7D4dCa+FlyenpbXvNS9j4V1lbY2AoAgK5z\nuq5KH55Ms5xfPjJJHobbb5MBAAAAAAAAAGArz6740FtuuaXD92bOnKmtW7dqy5YtSk1NVXV1tUJC\nQjRlyhQtWbJEfn5+bmwKAAAA9Ayhvk7dFTddTx391FK+2dWqdWk79WDiIvl6etncDgAA9zFNUy9l\n7ZPrnC8dX8z0gdEaGTTQ5lYAAAAAAAAAALhflwyIXkpoaKh+8IMf6Ac/+EFXVwEAAAB6jHGhQ7Vg\n2GhtK7S2Y1pRfY1ezNqrVXEzZBiGze0AAHCP5JI8ZVQVWcr28/TS0uiJNjcCAAAAAAAAAKBrcHYW\nAAAA0IssiZqgkYEDLOeTS/K040yWjY0AAHCf+pZmvX4i1XL+u1ETFOjta2MjAAAAAAAAAAC6DgOi\nAAAAQC/i4XBodfxM+Xv6WF7zSnaK8s+W29gKAAD3eDvvkKqa6i1lI/1DNXvISJsbAQAAAAAAAADQ\ndbpkQHTfvn1KTk5WZmam5TWZmZlKTk5Waqr1XSAAAACAvijEp59Wxk+X1UPjW0yX1qXtVH1Lk629\nAACwU2FthT45ddxS1pC0fGSSHAbfnQYAAAAAAAAA9F5uvwt+7Ngx3XHHHVqxYsVlDXvu27dPd955\np5YvX66sLI7ABAAAAC4mISRciyISLOdLGs7qhczPZZqmja0AALCHyzT1t6x9csnaf8dmDR6p6IAw\nm1sBAAAAAAAAANC13D4g+sEHH0iSvL299Z3vfMfyuuuvv17e3t4yTVPvv/++XfUAAACAXuP6qHEa\nFTTQcn5/aYH+cdrazmsAAHQnnxWfUHZ1iaWs09NHS4ZPsLkRAAAAAAAAAABdz+0Dovv375ckTZ48\nWf369bO8zt/fX5MnT5b0xW6iAAAAAC7Ow3BodfxMBXr5Wl7zWk6qcmvKbGwFAEDnqm1u0t9PWD+l\nZml0ovy9fGxsBAAAAAAAAABA9+D2AdHs7GxJUnx8/GWv/XJNTk5Op3YCAAAAeqsgbz+tjJshw2K+\n1XRpXdpO1TY32doLAIDO8lbeQdU0N1rKjggI04xBI2xuBAAAAAAAAABA9+D2AdHq6mpJUnBw8GWv\n/XJNVVVVp3YCAAAAerPRIYN1XeQ4y/myxlptyvxMpmna2AoAgG8vt6ZM/zydaSlryNDykVPkMKx+\nbQIAAAAAAAAAgJ7N7QOiXl5ekqT6+vrLXvvlGg8Pj07tBAAAAPR210UmaHTwYMv5g2WF+uhUho2N\nAAD4dlymSy9lJcvq1xmuCo9VhH+IrZ0AAAAAAAAAAOhO3D4gGhoaKumro+Yvx5dHy4eEcDMfAAAA\nuBwOw6GVcTMU5O1nec0bJ1KVU11qYysAAL65nWeylXu23FI20MtX340ab3MjAAAAAAAAAAC6F7cP\niCYkJEiSdu3adVlHxVdVVWnnzp2SpFGjRtnSDQAAAOjNAr19tTpuhgxZO1rXZZpal75TZ5sbbW4G\nAMDlqWlq0Ju5By3nbxoxUX6e3jY2AgAAAAAAAACg+/F09wdeeeWV2rZtm2pra/XEE0/oySeftLTu\n8ccfV11dnSRp9uzZdlYEAAAAeq1RwYN0Q9R4vZVnbaimorFOfz6+R/86Zo4chrXBUgAA7PZm7gHV\ntTRZyo4KGqipA4bbWwgALmDixIkXfL22trbDNatWrZLT6bzge6mpqZ3SCwAAAAAAAH2H2wdEb7jh\nBv3xj39USUmJNm/eLJfLpV/96lcKCAi4YL66ulqPPfaYtmzZIumLI+pvvPFGd1YGAAAAepVFEWOU\nVV2soxWnLeUPl5/Sh4VpWhgxxuZmAABcWnZ1iXYV5VjKOgxD34tJksGXHAB0I06nU4mJiV1dAwAA\nAAAAAH2A2wdEfXx89Mgjj+jHP/6xJGnLli3avn275s2bp/Hjx6t///6SpNLSUh06dEgfffSR6uvr\nJUmGYejhhx+Wn5+fu2sDAAAAvYbDMLQybroe279VFU11ltZszj2omMAwjQwaaHM7AAA61mq69Les\nZMv5eeHxCncG29gIADrGjp8AAAAAAADoam4fEJWkefPm6Ve/+pV++9vfyuVyqa6uTm+//bbefvvt\nDtd4eHjo/vvv18KFC93YFAAAAOid/L18tTp+pv7foe1yybxk3iVTz6Xv0kMTFyvA29cNDQEAON+n\npzJVWFtpKRvs7afvRI21uREAAAAAAAAAAN2Xo6s++Pbbb9emTZuUkJBwyey4ceP05z//WStWrHBD\nMwAAAKBvGBk0QEuiJ1jOVzbV6/nje+QyLz1QCgBAZ6tqqtdbeYcs528ZMVm+Hl42NgIAAAAAAAAA\noHvrkh1EvzRlyhS98cYbOnTokPbs2aOsrCxVVlbKNE2FhIQoNjZW06dP17hx47qyJgAAANBrXTN0\ntLKqSnSo/KSl/LGK09pacFTXRrIjGwDAvV7PSVVDa7Ol7OjgwZoUFmFzIwAAAAAAAAAAurcuHRD9\n0vjx4zV+/PiurgEAAAD0OQ7D0A9GTdNvU7eqrLHW0poteYcVEzhAccGDbG4HAMAXMiqLtLck11LW\n03DoezFJMgzD3lIAAAAAAAAAAHRzXXbEPAAAAIDuwenlox/Gz5SHYe2vB6ZMrU/fpeqmepubAQAg\ntbpceil7n+X8NcNGa1C/QBsbAQAAAAAAAADQMzAgCgAAAEDRgWFaGp1oOV/d3KD16bvlMl02tgIA\nQNp+Kl2n66osZfv7OHVtRILNjQAAAAAAAAAA6Bm6xRHz5yovL9fmzZt1+PBh1dTUKDg4WImJibr2\n2msVGhra1fUAAACAXmteeJwyq4p1oKzQUj6jqkjv5h/R9VHjbW4GAOirKhrr9G7eEcv5W2Mmy9uj\n293uAgAAAAAAAACgS9h+x3zHjh1qamqSw+HQ3LlzL5p955139Ktf/Ur19fXnvf7HP/5Rv/71r7V4\n8WI76wIAAAB9lmEY+v6oaSpMfV+lDbWW1rybf0QjAwdqdMhgm9sBAPqiV3NS1OhqsZQdFxquCf2H\n2dwIAAAAAAAAAICew9Yj5svLy7VmzRr95Cc/0QsvvHDR7D//+U/dd9995w2Hfqm6ulr33Xefdu3a\nZUdVAAAAAJL6eXprTfyV8jSs/VXBlLQhY5cqG+vsLQYA6HOOVZzW/tICS1kvh4dui0myuREAAAAA\nAAAAAD2LrQOie/bskWmaMk1Ty5Yt6zDX3NysRx55RKZptr02evRoXXfddZo6dao8PDwkSS0tLXr0\n0UfV2tpqZ20AAACgT4sKCNWyEZMs52uaG7U+fbdaTZeNrQAAfUmzq1UvZe+znF8cMUZhvv42NgIA\nAAAAAAAAoOex9Yj5w4cPf/Ehnp6aM2dOh7n3339fp06dkiQ5HA797ne/0/XXX9/2fnZ2tlavXq3T\np08rLy9PO3fuvOj1AAAAAHw7Vw2JVWZVsVJK8y3lM6uL9XbeYS0ZPsHmZgCAvmBbYZqK62ssZQf6\n+mvBsDE2NwIAAAAAAAAAoOexdQfRjIwMSVJCQoL8/TvexeG9995re7xs2bJ2w6GSFBMTo9/97ndt\nzz/55JNObgoAAADgXIZh6M7YqRroF2B5zfsFR3Wk/JSNrQAAfUFpw1m9X3DUcv62kUnycnjY2AgA\nAAAAAAAAgJ7J1gHR/PwvdhsaPXp0hxmXy6WUlJS253feeecFc1dccYViYmIkSenp6Z3YEgAAAMCF\n+Hl6aU38LHka1v/a8HzGHpU31trYCgDQ272SnaJmV6ul7KT+EUoICbe5EQAAAAAAAAAAPZOtA6Ll\n5eWSpLCwsA4zJ06cUE3NF0eGDRo0SLGxsR1mJ02aJEkqLCzsxJYAAAAAOhLhH6JbY5Is52tbGrU+\nfZdaXS4bWwEAequDZYU6VH7SUtbH4ambYybZ3AgAAAAAAAAAgJ7L1gHRxsZGSZKPj0+HmbS0tLbH\nEyZMuOj1Bg8eLEmqrWVHIgAAAMBdrhwcoysGDLecz64u1ea8g/YVAgD0Sk2tLXolO+XSwf91XeRY\nhfo4bWwEAAAAAAAAAEDPZuuAqK+vrySpurq6w8y5A6JxcXEXvZ6Xl5ckqbm5uRPaAQAAALDCMAzd\nHjtFg/0CLa/ZVpimg2Xs/A8AsO79gqMqa7T2peAhfoGaN/Ti95EAAAAAAAAAAOjrbB0QDQkJkSRl\nZmZ2mDlw4EDb47Fjx170elVVVZKkfv36dUI7AAAAAFb5enhpzehZ8nJ4WF7z/9m78+i+6zpf/K/v\nN3vSbN3SdG/TPQVa2gpIAR1ZVC6iLCKMzlxh1HP0+Dv3/NTr6J3fuXNnRpnjVY8e73WuIjqemQvI\nuOCu4DIKWKQbW0tpm+5NuqTZmjRptu/vD7DDUtpPoZ80y+Px1zfJ8/PJsz2Y2uTZ9+eftz4WR3qc\n/g/A6R3s7ogH9z17+uALbp23KvLP4M8kAAAAAAAYi1IdiC5atCgiIh577LFoa2t7xcdbWlriySef\nf/RkJpOJZcuWnfJ+TU1NERExadKks9wUAAA4nWllVXFr3crE+WP9vfH1LY9E/+BAiq0AGOlyuVzc\nt31d9OcGE+XfMGlWLKyqSbkVAAAAAACMfKkORFevXh0RET09PfH3f//3r/j4V77ylejv74+IiAsv\nvDAqKytPeb+nn346IiJmzZp1lpsCAABJXDqlLi6ZPCdxftfRI/H9nU+cPgjAmLWheW9sbjuQKFuc\nVxA3zb0w5UYAAAAAADA65Kd582uvvTa+8IUvRGdnZ/z0pz+NvXv3xtvf/vaIiHj44Yfj0UcfPZG9\n6aabTnmv3bt3x969eyMior6+Pr3SAADAKd06b1Xs7myJxmPtifK/bnwu5ldOjuUTZ6TcDICRpmeg\nL+7fsT5x/h2zzovKwpIUGwEAAAAAwOiR6kC0oqIiPvGJT8R//+//PSIinnrqqXjqqadekZs/f35c\nd911p7zXT3/604h4/lH0K1asOPtlAQCARIry8uODi1fHnRt/GccH+xNd8+2tj8X0suqYVDIu5XYA\njCQ/3fNMtPV2J8pOL6uKN01dkHIjAAAAAAAYPVJ9xHxExC233BIf/ehHI5PJnPTjtbW18ZWvfCXy\n8199q9rf3x/3339/RESUlpbGhRd6lBgAAJxLtaWVcdv8VYnz3QN98fUtj0Tf4ECKrQAYSRq72uJX\n+7ckzt82b1XkZVL/VhYAAAAAAIwaqZ4g+icf+chH4oorroj7778/Nm3aFJ2dnTF58uS49NJL473v\nfW+MG3fqU4TWrVsXkydPjpqamlixYkUUFhYORW0AAOAULp48J7a1H4pHDjQkyu/pbInv7tgQt85L\nPiwFYHTK5XJxb8O6GMzlEuXfWDM36iompdwKAAAAAABGlyEZiEZELF26NJYuXfqarr344otPnCAK\nAAAMH7fMXRG7jh6JfV1tifL/3rQt5ldOjpWTZqXcDIDh7PHDu2Jr+6FE2dL8wrhh9rKUGwEAAAAA\nwOjjuVwAAMBrVpiXHx9ctDqK8pL/27N/2fbHONjdkWIrAIaz7v7e+O6OjYnz75x9QZQXFqfYCAAA\nAAAARicDUQAA4HWpKa2I982/KHG+Z6A/vv7sI9E70J9iKwCGqx/tfio6+noSZWeNGx+XTalLuREA\nAAAAAIxOQ/aIeQAAYPRaNWlWbGs/FL9r2pYov6+rLe7fsSHeO/8NKTcDxpLly5ef1ftt3Jj8lEuS\n2dvZGr9tTPZnRSYibpu3KrIZ/74ZAAAAAABeCwNRAADgrLh57oWx82hz7OlsTZR/+MD2mF85KS6a\nPCflZsBY19XVFdu2nXyUOH/+/CgrKxviRmPTYC4X9zasjVzkEuUvmzIvZpdPSLkVAAAAAACMXgai\nAADAWVGQzYsPLlod/7DxF9Ez0Jfomv+7bW3MGjc+ppRWptwOGAte7cTPhx9+OC6//PKTfuzuu++O\nyy67LM1avGDNwR3R0NGcKDsuvyjeOfuClBsBAAAAAMDo5hldAADAWTOppDz+csFFifPHB/vja88+\nEr0D/Sm2AuBc6+o7Ht/f+UTi/A1zlkVZQVGKjQAAAAAAYPQzEAUAAM6qCyfOjD+buiBxvvFYe9zb\nsC7FRgCcaw/sejI6+48nytZVTIxLauam3AgAAAAAAEY/A1EAAOCsu3HO8phdPiFx/g8Hd8QfDu5I\nsREA58quo0fi4QPbE2UzkYlb61ZFNpNJuRUAAAAAAIx+BqIAAMBZl5/Niw8sujRK8wsSX3PP9rWx\nv6stxVYADLXB3GDcs31t5BLm3zx1QcwYV51qJwAAAAAAGCsMRAEAgFRMLB4X/3nBJYnzfYMD8fVn\nH4megb4UWwEwlB4+0BC7O1sSZSsKiuMds85LuREAAAAAAIwdBqIAAEBqLpgwPa6atihx/kB3x/Mn\nzeWSnjUHwHB1tLcnHtj1ZOL8zXMvjJL8whQbAQAAAADA2GIgCgAApOpds5fF3PKJifN/PLQrHj3Y\nkGIjAIbC93c9Ecf6exNlF1bWxKpJs1JuBAAAAAAAY4uBKAAAkKq8bDY+sPjSKMsvSnzNvdvXxd7O\n1hRbAZCm7e2H4w8HdyTKZjOZeE/dyshkMim3AgAAAACAscVAFAAASN34orK4feElifP9ucH4+pZH\noru/L8VWAKRhIDcY9zasTZy/ctqimFpWmWIjAAAAAAAYmwxEAQCAIbF0/NR46/QlifOHuo/Gv277\nY+RyuRRbAXC2/Xvj1tjX1ZYoW11YGtfOXJpyIwAAAAAAGJsMRAEAgCHzjtnnx7yKSYnz65r3xO+b\ntqfYCICzqb23O360+6nE+ZvnXhjFeQUpNgIAAAAAgLHLQBQAABgyeZlsfGDRpVFeUJT4mvt3rI/d\nR1tSbAXA2fLdHRuiZ6A/UXZJ1ZS4cOKMlBsBAAAAAMDYZSAKAAAMqaqi0rh94RsjkzDfnxuMr295\nJLr7e1PtBcDr81zbwXj88O5E2fxMNt4zb2VkMkn/NAAAAAAAAM6UgSgAADDkllTXxttnLE2cb+7p\njG9v/WPkcrkUWwHwWvUPDsS929cmzl89fXHUlFSk2AgAAAAAADAQBQAAzon/NGtpLKysSZzfeGRv\n/LZxa4qNAHitfr3/uWjq7kiUnVBUFm+bUZ9yIwAAAAAAwEAUAAA4J7KZbNyx6I1RUVCc+Jrv7twY\nO482p9gKgDPVcrwrfrLn6cT5W+pWRGFefoqNAAAAAACACANRAADgHKosLIm/WnRpZCKTKD+QG4y7\nnn00uvqOp9wMgKT+rWFD9A4OJMqeP35aXDBhesqNAAAAAACACANRAADgHFtYVRPXzVqaOH/keFd8\ne+tjkcvlUmwFQBKbWhtjw5G9ibIF2by4pW5Fyo0AAAAAAIA/MRAFAADOubfNWBpLqqYkzj/Zsj9+\ntX9Lio0AOJ2+wYG4b/u6xPm3zaiPicXjUmwEAAAAAAC8mIEoAABwzmUzmbh94RujqrAk8TXf3/VE\nNHQcTrEVAKfy4L7NcainM1F2ckl5XD19ccqNAAAAAACAFzMQBQAAhoXywuL4q0WXRjYyifKDuVzc\n9eyj0dnXk3IzAF6uuaczfr53c+L8rXUroyCbl2IjAAAAAADg5QxEAQCAYWN+5eS4fvb5ifOtvcfi\nW8+ticFcLsVWALzcfQ3rom9wIFH2wokzYkl1bcqNAAAAAACAlzMQBQAAhpWrpy+JpdVTE+efaW2K\nB/clP8UOgNfnySP74umWxkTZomx+vHvuipQbAQAAAAAAJ2MgCgAADCvZTCbev/CSqC4qTXzND3c9\nFVvbD6XYCoCIiN6B/vhOw/rE+WtnLT2jr+cAAAAAAMDZYyAKAAAMO+MKiuIDiy6NbCaTKD8YufjG\nlkejo7cn5WYAY9vP9m6KI8e7EmVrSyvjyqmLUm4EAAAAAAC8GgNRAABgWKqrmBQ3zF6WON/e2x3f\nfO4PMZgbTLEVwNh18FhHPLTv2cT5W+tWRl7Wt54AAAAAAOBc8V16AABg2Lpy2qK4YPy0xPln2w7E\nz/duSrERwNiUy+Xi3oZ10Z9whP+GSbNjYVVNyq0AAAAAAIBTyT/XBQAAGLmWL19+0vd3db36o2fv\nuOOOKCsrO+nHNm7ceFZ6MXpkMpn4ywWXxGc2/jzxI41/vPuZqKuYFIuqpqTcDmDs2NC8N55tO5Ao\nW5xXEDfNPfn/RwAAAAAAAIaOgSgAAGddWVlZLFuW/NHgcCplBYXxwcWr43NPPhQDCU6uy0Uu7t7y\nh/ibC98WlYUlQ9AQYHTr6e+L+3esT5y/ftb5vv4CAAAAAMAwYCAKAMBr5sRPhsrs8glx05zl8Z2E\nA6WOvp64e8sf4r+c9+bIZrIptwMY3X6y55lo6+1OlJ1RVh1XTJ2fciMAAAAAACAJPykFAABGhDdP\nXRAXTpiROP9c+8H4ye5nUmwEMPo1drXFrxu3JM7fOm9l5BnmAwAAAADAsOA79gAAwIiQyWTiLxZc\nFBOLxyW+5md7n4nNrU0ptgIYvXK5XNyzfV0M5nKJ8pfWzI26ikkptwIAAAAAAJIyEAUAAEaMkvzC\n+NDi1ZGf8HS6XETcveUP0Xr8WLrFAEahPx7eFds6DiXKluYXxrtmL0u5EQAAAAAAcCYMRAEAgBFl\n5rjx8e65KxLnO/uPxze2PBoDucEUWwGMLsf6e+N7OzYmzr9r9gVRXlicYiMAAAAAAOBMGYgCAAAj\nzuW182LlxJmJ89s7DsePdj2VYiOA0eVHu5+Kjr6eRNnZ48bH6il1KTcCAAAAAADOlIEoAAAw4mQy\nmXjf/IuipqQ88TW/2Lc5nm7Zn2IrgNFhT2dL/HvjtkTZTETcOm9VZDO+xQQAAAAAAMON794DAAAj\nUnF+QXxw8eooyOYlvuZbz62Jlp6uFFsBjGyDuVzcs31t5CKXKH957fyYXT4h5VYAAAAAAMBrYSAK\nAACMWNPLquM9dSsS57v6e+OuLY/GwOBgiq0ARq4/HNwRO48eSZQtLyiK62ddkHIjAAAAAADgtTIQ\nBQAARrRLa+riosmzE+d3HG2OH+x6Ir1CACNUZ9/x+P7O5F8fb5izPMoKClNsBAAAAAAAvB4GogAA\nwIiWyWTitnmrorakIvE1D+3fEk8c2ZdiK4CR54FdT0ZX//FE2bqKSXHx5DkpNwIAAAAAAF4PA1EA\nAGDEK84riA8uXh2F2bzE13x765po7ulMsRXAyLHzaHM8cmB7omw2MnHbvJWRzWRSbgUAAAAAALwe\nBqIAAMCoMLWsKm6btypx/lh/X9z17CPRPziQYiuA4W8wNxj3bF8buYT5N09dENPLqlPtBAAAAAAA\nvH4GogAAwKhxSc3ceGPN3MT5XZ0t8b2dG1NsBDD8/b5pe+zpbE2UrSwsietmnZ9yIwAAAAAA4Gww\nEAUAAEaVW+tWxtTSysT53zRujQ3Ne1JsBDB8dfT2xA93P5k4f9Oc5VGSX5BiIwAAAAAA4GwxEAUA\nAEaVwrz8+NDi1VGUzU98zbe3/jEOdx9NsRXA8PT9nRvjWH9fouzCyppYNWlWyo0AAAAAAICzxUAU\nAAAYdaaUVsZ7578hcb5noC++9uwj0Tc4kGIrgOFle/uhWHNoZ6JsXiYbt85bGZlMJuVWAAAAAADA\n2WIgCgAAjEpvmDw7LpsyL3F+b1dr/NuODSk2Ahg+BnKDcc/2dYnzV05bFLWllSk2AgAAAAAAzjYD\nUQAAYNS6pW5FzCirTpz/XdO2WHtoV3qFAIaJ3zZujf3H2hJlq4tK49qZS1NuBAAAAAAAnG0GogAA\nwKhVkM2LDy5eHcV5+Ymv+Zftj8eBYx0ptgI4t9qOH4sf734qcf7dc1dE0Rl8HQUAAAAAAIYHA1EA\nAGBUm1xSHn8x/+LE+eMD/XHXlkeid1clvDsAACAASURBVKA/xVYA5853d26MnoRf4+qra2P5hOkp\nNwIAAAAAANJgIAoAAIx6KybNjDfVzk+c39fVFt/ZsT7FRgDnxrOtB2Lt4d2JsvmZbLynbmVkMpmU\nWwEAAAAAAGkwEAUAAMaEm+ZeGDPHjU+cf+RAQzx2cGeKjQCGVv/gQNzXsC5x/poZS2JySXmKjQAA\nAAAAgDQZiAIAAGNCQTYvPrR4dZTkFSS+5v9ufzwau9pTbAUwdH61f0sc6O5IlJ1YXBZvnb4k5UYA\nAAAAAECaDEQBAIAxY2LxuPjLBRcnzvcODsTXtzwSxwf6U2wFkL6Wnq746Z5nEuffU7cyCvPyU2wE\nAAAAAACkzUAUAAAYU5ZPnBFvmbowcb7pWHvcu31tio0A0vedHeujd3AgUfaCCdPjvPHTUm4EAAAA\nAACkzUAUAAAYc26YsyzmlE9InF9zaGc8eqAhxUYA6XmmpTGeOLIvUbYgmxe3zF2RciMAAAAAAGAo\nGIgCAABjTn42Lz6waHWU5hcmvubehnWxv6stxVYAZ1/f4EDc17Aucf7tM5bGhOKyFBsBAAAAAABD\nxUAUAAAYkyYUl8X7F1ySON83OBBfe/aR6OnvS7EVwNn1i72b43BPZ6JsTUl5XDV9UcqNAAAAAACA\noWIgCgAAjFnnT5gWV09fnDh/sLsj/u/2xyOXy6XYCuDsONx9NH6xd1Pi/K11q6Igm5diIwAAAAAA\nYCgZiAIAAGPaO2ddEHUVExPnHz+8Ox4+0JBiI4DXL5fLxX0N66M/N5gov2LizFhcPSXlVgAAAAAA\nwFAyEAUAAMa0vGw2PrBodZTlFyW+5jsN62JPZ0uKrQBenyeP7ItnWhsTZYvy8uPmuRem3AgAAAAA\nABhqBqIAAMCYV11UGrcvvCRxvj83GHc9+0h09/el2ArgtTk+0B/f2bE+cf66medFdVFpio0AAAAA\nAIBzwUAUAAAgIpaOnxpvm1GfOH+opzP+ZdsfI5fLpdgK4Mz9bO8z0XL8WKLs1NLK+LOpC1NuBAAA\nAAAAnAsGogAAAC+4btZ5saBycuL8+uY98e9N21JsBHBmDhxrj4f2bUmcv3XeqsjL+vYQAAAAAACM\nRn4CAAAA8IK8TDbuWPjGKC8oTnzNv+3YELuOHkmxFUAyuVwu7m1YFwO5wUT5iyfPPqNRPAAAAAAA\nMLIYiAIAALxIVVFp3LHwjZFJmB/IDcZdWx6JY/29qfYCOJ11zXtiS9vBRNmSvIK4cc7ylBsBAAAA\nAADnkoEoAADAyyyunhLXzlyaON/c0xXf3vpY5HK5FFsBvLqe/r747o4NifPXzz4/KgpLUmwEAAAA\nAACcawaiAAAAJ3HtzKWxqKomcf6JI/vi143PpdgI4NX9eM/T0dbbnSg7o6w6rqidn3IjAAAAAADg\nXDMQBQAAOIlsJht3LHxjVBQUJ77mezs3xo6O5hRbAbzS/q62+M3+5AP12+atimzGt4QAAAAAAGC0\n89MAAACAV1FRWBIfWHRpZCKTKD+Yy8VdWx6Jrr7jKTcDeF4ul4t7tq+Nwcglyq+eUhdzKyam3AoA\nAAAAABgODEQBAABOYUFVTbxj1nmJ8y3Hj8W3tq6JwVyysRbA6/HYoZ2xveNwomxZfmG8a/YFKTcC\nAAAAAACGCwNRAACA03jrjPpYUl2bOP90S2M8tP/ZFBsBRBzr743v7Xwicf5ds5fFuILiFBsBAAAA\nAADDiYEoAADAaWQzmbh9wSVRVViS+JoHdj4Z29uTneoH8Fr8cNeTcbSvJ1F2dvmEuHRKXcqNAAAA\nAACA4cRAFAAAIIHywuL4wKLVkY1Movxg5OKuLY/E0d5k4y2AM7GnsyV+17Q9UTYTEbfVrYpsJtnX\nLwAAAAAAYHQwEAUAAEhoXuWkeOfsCxLn23q745tb18RgLpdiK2CsGczl4p7tayMXyb62XF47P2aV\nj0+5FQAAAAAAMNwYiAIAAJyBq6YvjvPGT02c39zaFL/YuznFRsBY8+iBhth59EiibHlBUVw/K/mw\nHQAAAAAAGD0MRAEAAM5ANpOJ/7zgkhhfVJr4mh/tfiq2th1MsRUwVnT29cQPdj2ROH/jnOVRVlCY\nYiMAAAAAAGC4MhAFAAA4Q+MKiuIDi1ZHNpNJlM9FLu7a8mh09Han3AwY7X6w68no6u9NlJ1XMSku\nnjwn5UYAAAAAAMBwZSAKAADwGsytmBg3zlmeON/R1xN3P/eHGMwNptgKGM12dDTHIwcaEmWzkYnb\n5q2KTMIhOwAAAAAAMPoYiAIAALxGb5m6MJZNmJ44v6XtYPx0z6YUGwGj1WBuMO7ZvjZx/s3TFsS0\nsqoUGwEAAAAAAMOdgSgAAMBrlMlk4i/mXxwTi8sSX/PTPU/Hs60HUmwFjEa/a9oWe7taE2UrC0vi\nupnnp9wIAAAAAAAY7vLPdQEAAICRrKygMD6waHX8zycfiv4Ej4/PRcTdz/0h/r8L3xaVhSXpFwRG\nvI7e7vjhrqcS52+eszxK8gtSbAQAAABjz/Lly0/6/q6urle95o477oiyspP/4/KNGzeelV4AAKdi\nIAoAAPA6zS6fEDfNXR73NaxPlD/a1xPf2PJo/Jfz/izyMh7sAJza93ZujO6BvkTZhZU1sXLSrJQb\nAQAAAH9SVlYWy5YtO9c1AABOykAUAADgLHhT7YLY1n441jfvSZTf2n4ofrz76Xjn7AtSbgaMZFvb\nD8Vjh3YlyuZlsnHbvJWRyWTSLQUAAABjkBM/AYCRyFE1AAAAZ0Emk4n3zX9DTC4el/ian+/dFM+0\nNKbYChjJBgYH497taxPnr5q2KKaUVqbYCAAAAAAAGEkMRAEAAM6SkvzC+ODiyyL/DB4b/83n1kTr\n8WMptgJGqt80PheNx9oTZccXlcbbZy5NuREAAAAAADCSGIgCAACcRTPGVcctdSsS57v6j8ddWx6N\ngcHBFFsBI03r8WPx4z1PJ86/e+6KKMrLT7ERAAAAAAAw0hiIAgAAnGWXTZkXqybNSpxv6DgcD+x+\nMsVGwEjz3R0b4vhAf6Ls0uraWDZhesqNAAAAAACAkcZAFAAA4CzLZDLx3nlviJqSisTXPLjv2Xjq\nyP4UWwEjxbOtB2Jd855E2fxMNt5TtzIymUzKrQAAAAAAgJHGQBQAACAFxfkF8aHFq6Mgm5f4mm9t\nXRNHerpSbAUMd32DA3Fvw7rE+bfOWBKTSspTbAQAAAAAAIxUBqIAAAApmVZWFbfWrUycP9bfG3dt\neST6BwdSbAUMZ7/avyUOdnckyk4sHhfXTF+SciMAAAAAAGCkMhAFAABI0Rtr5sbFk+ckzu88eiS+\nv+uJFBsBw9WRnq746Z5nEuffU7ciCvPyU2wEAAAAAACMZAaiAAAAKcpkMnHbvFVRW1qZ+Jpf738u\nNjbvTbEVMBzdv2N99CU8QXjZhOlx3vhpKTcCAAAAAABGMgNRAACAlBXl5ccHF62Owmxe4mu+vfWx\nOBr9KbYChpOnW/bHE0f2JcoWZPPi3XNXpNwIAAAAAAAY6QxEAQAAhsDUssr483lvSJzvHuiLh6M5\nsgUeHw2jXe9Af9zXsD5x/tqZS2NCcVmKjQAAAAAAgNHAQBQAAGCIXFwzJy6tqUucb4m+uPjDt6XY\nCBgOfrlvczT3dCbK1pRUxFXTFqXcCAAAAAAAGA0MRAEAAIbQe+pWxLTSqsT5pTdeE3PelPzkUWBk\nOdx9NH6xd3Pi/K11KyM/m5diIwAAAAAAYLQwEAUAABhChXn58cHFq6MoL/mj46/45AejYnpNiq2A\ncyGXy8V9DeuiPzeYKL9y4sxYXD0l5VYAAAAAAMBoYSAKAAAwxKaUVsT75iU/FbSwrCSu/Nv/J/IK\nC1JsBQy1J47si2damxJli/Ly46a5F6bcCAAAAAAAGE0MRAEAAM6BVZNnx+VT5iXOT1wwOy756PtS\nbAQMpeMD/fGdHesT56+beV5UF5Wm2AgAAAAAABhtDEQBAADOkXfXrYgZZdWJ80uuf0vUXfnGFBsB\nQ+Vne56J1uPHEmWnllbGn01dmHIjAAAAAABgtDEQBQAAOEcKsnnxwcWrozgv+aPjL//4HVE5szbF\nVkDaDhxrj4f2b0mcv23eqsjL+hYOAAAAAABwZvx0AQAA4ByaXFIef7ngosT5gtLieOs/fjw2R0c0\ndrVFLpdLsR1wtuVyubhn+7oYyA0myl88eU7Mr5yccisAAAAAAGA0yj/XBQAAAMa6CyfOjDdPXRC/\nbdyaKF85fUpsiPbYsOFnUVVYEvXVU6O+ujYWVU2JsoLClNsCr8e6w7vjufaDibIleQVx45xlKTcC\nAAAAAABGKwNRAACAYeDGOctjZ0dz7OpsOaPr2nq749GDDfHowYbIRCbmVkyIJVW1UT++NmaNGx/Z\njAdHwHDR3d8X/7ZzY+L89bMviIrCkhQbAQAAAAAAo5mBKAAAwDBQkM2LDyxeHZ/Z+PM41t/3mu6R\ni1w0dDRHQ0dz/HjP01GWXxhLqmtjSXVt1FfXRqWhGZxTP97zVLT3difKzhxXHVfUzku5EQAAAAAA\nMJoZiAIAAAwTE4vHxV8uuCT+afPvz8r9uvp7Y+3h3bH28O6IiJheVhVLqmtjafXUqKuYGPnZvLPy\neYDT29/VFr/dvzVRNhMRt9WtcgIwAAAAAADwuhiIAgAADCPLJkyPK6ctil/t33LW772vqy32dbXF\ng/uejaJsfiysqon6F04XnVRSftY/H/C8XC4X92xfG4ORS5S/dEpdzKmYmHIrAAAAAABgtDMQBQAA\nGGZumL0sGjoOx86jR1L7HMcH++Oplv3xVMv+iIiYXDzuhUfRT40FVZOjOK8gtc8NY81jh3bG9o7D\nibJl+UXxrtnLUm4EAAAAAACMBQaiAAAAw0xeNhsfXLQ6/n7tT+JYDAzJ5zzU0xmHmrbFvzdti7xM\nNuZVTIr68c+fLjqttCoymcyQ9IDRpquvN763c2Pi/A1zLohxBUUpNgIAAAAAAMYKA1EAAIBhaHxx\nWVwdk+Nrz/w+apbOH9LPPZAbjOfaD8Zz7Qfj+zufiKrCklj8wqPoF1dNMV6DM/DD3U/G0b7jibJz\nyifEG2vqUm4EAAAAAACMFQaiAAAAw9S4yI8ffvhvo2bp/Jh16YUxfdX5MXHB7CHv0dbbHWsO7og1\nB3dEJiJml0+I+uraWFJdG3PKJ0Q2kx3yTjAS7D7aEr9v2pYom4lM3DZvVWSd1gsAAAAAAJwlBqIA\nAADD3MFntsXBZ7bF41/7TpSMr4zpq86L9/+3j8Xh/IHo6k92MuHZkouInUePxM6jR+Ine56J0vzC\nWFw15cRgtLqodEj7wHA1mMvFPQ1rI5cwf0Xt/Jg5bnyqnQAAAAAAgLHFQBQAAGAE6W5pj22/fCRW\n/7fPxqUXXxp7OltjU2tjbGo9EDs6miOXeI52dhzr7431zXtiffOeiIiYWloZ9dVTo766NuZVToqC\nbN6Q9oHh4pEDDbHr6JFE2YqC4rh+9vkpNwIAAAAAAMYaA1EAAIARKpvJxuzyCTG7fEJcO/O8ONbf\nG1vaDsSm1qbY1NIUrb3HhrxT47H2aDzWHg/tfzYKs3mxsKomllTVRv342phcXB4Zj89mDOjs64kH\ndj2ROH/jnOVRml+YYiMAAAAAAGAsMhA9jVwuF08//XSsWbMmNm7cGNu3b48jR45EX19flJeXx+zZ\ns2PFihXxrne9K+rq6s7o3mvWrIkf/ehHsX79+jh8+HBks9mYMmVKXHzxxXHDDTdEfX39Gd2vu7s7\nfvCDH8SDDz4YO3bsiJaWlqiqqoqZM2fGlVdeGTfeeGNUVlae0T0BAICRozS/MC6cODMunDgzcrlc\nNB3riE2tjbG5tSm2th+K/tzgkPbpHRyIp1sa4+mWxogdEROLy06cLrqwsiaK8wuGtA8Mle/vfDK6\n+nsTZedXTI6LJs9OtxAAAAAAADAmGYiewq9//ev4H//jf8ShQ4dO+vHW1tZobW2NjRs3xt133x03\n33xzfOpTn4qSkpJT3vfYsWPxN3/zN/Gzn/3sFR9raGiIhoaGuPfee+N973tffPKTn4xsNnvark89\n9VR87GMfi717977k/c3NzdHc3BwbNmyIb37zm3HnnXfGZZdddtr7AQAAI1smk4mpZZUxtawyrpq+\nOHoH+mNr+6HnTxdtbYqD3R1D3qm5pyt+17Qtfte0LfIy2airmBj11bVRXz01ppdVOV2UUaGh43A8\nerAhUTYbmbh13kr/7QMAAAAAAKkwED2FhoaGE+PQTCYT06dPjwsvvDCmTp0aJSUl0djYGL///e+j\nsbExcrlc3H///bFz5864++67o7Dw5I+G6+vri49+9KPx6KOPRkRENpuNSy+9NM4///zo7++Pxx9/\nPDZu3BiDg4Px7W9/O7q7u+Pv/u7vTtlzy5Ytcfvtt0dnZ2dERFRWVsbVV18d06ZNi0OHDsWDDz54\nYij6kY98JO6666646KKLzuLvFAAAMNwV5uXH0vFTY+n4qRER0dzTGZtfGItuaTsQPQP9Q9pnIDcY\nW9sPxdb2Q/GDXU9GRUFxLKmujfrq2lhSPSXGFRQPaR84GwZyg3Hv9nWJ82+ZtjCmlVWl2AgAAAAA\nABjLDERPo6ysLG6++ea44YYbYsGCBa/4+ODgYPzTP/1TfOUrX4mIiLVr18Zdd90VH/nIR056v299\n61snxqFlZWXxv/7X/4pLLrnkJZkf/ehH8alPfSoGBgbi/vvvj8suuyyuuuqqk95vYGAgPvGJT5wY\nh65YsSK++tWvvuRR8p/85CfjYx/7WPzqV7+K3t7e+PjHPx4PPvjgaU86BQAARq+JxePi8tr5cXnt\n/BgYHIyGo80vDEYbY09n65D36ejriccO7YzHDu2MTETMGjf+hcHo1JhTMSHyMqd/sgKca79r3BZ7\nu5L976eqsCT+08zzUm4EAAAAAACMZQaip3DFFVfELbfc8pKx5ctls9n4yEc+EocPH4777rsvIiLu\nueee+PCHP/yKR8R1dHTE1772tRNv//Vf//UrxqEREe94xzuioaHhRPbzn/98XHnllSd95NwDDzwQ\n27Zti4iIqqqq+MpXvvKKvkVFRfH5z38+rr/++ti9e3ccPnw4vvWtb8WHP/zhhL8TAADAaJaXzcaC\nysmxoHJyvHP2BdHR2x2b2w7EppameLatKY72HR/SPrmI2NXZErs6W+JnezdFSV5BLK6aEvXja2NJ\ndW2MLyob0j6QRHtvd/xw91OJ8zfPvTCK8wtSbAQAAAAAAIx1jmA5hYULF55yHPpif/EXf3HidUtL\nS+zevfsVmV/96lfR1dUVERFTp06Nm2666VXvd8cdd5w44XP37t2xfv36k+YeeOCBE69vueWWGD9+\n/ElzxcXFcfvtt594+wc/+MEpfjUAAMBYVlFYEhdPnhN3LHpjfO6iG+LTy94a18+6IOZVTIpsvPIf\nrqWte6AvNhzZG/+y7fH41OM/jL9d/9O4f8f62NzaFH2DA0PeB07mezs3Rs9AX6Ls4qopsWLizJQb\nAQAAAAAAY50TRM+S6dOnn3idy+Wivb39FZmHHnroxOurrrrqpCeC/klFRUVcfPHF8dvf/vbEtStX\nrnxJprW1NdatW3fi7be97W2n7HjNNdfE3/7t30Yul4u9e/fGli1bYtGiRaf+hQEAAGNaNpOJWeXj\nY1b5+Hj7zPro7u+NLW0HY1NrU2xubYojx7uGvFPTsfZoOtYev97/XBRk82JB5eSor66N+uraqCmp\nOOXftSANW9sOxh8P7UqUzctk4z11K/13CgAAAAAApM5A9Cw5ePDgideZTOakJ3lu3rz5xOsVK1ac\n9p4rV648MRB98bV/smXLlsjlchERMW7cuNOOPauqqqKuri62b99+4p4GoiPP8uXLT/r+P51OezJ3\n3HFHlJWd/DGcGzduPCu9AAAYG0ryC2P5xBmxfOKMyOVycbC7Iza1NsWm1qbY2n5oyE/07BscOPH5\nIyImFJXFkhfGoouqpkSJR3iTsoHBwbi3Yd3pgy+4evrimFJakWIjAAAAAACA5xmIniU///nPT7ye\nPHlyzJgx4yUfP3r06EtGpLNmzTrtPWfO/I/HzW3btu0VH3/x+16cPd09/zQQPdk9GbnKyspi2bJl\n57oGAABjSCaTiSmllTGltDLeMm1R9A70x/aOw/FMa2Nsbj0QTcde+WSFtB053hUPH9geDx/YHtlM\nJuaWT4z66qlRX10bM8ZVR9apjZxlv258LhoT/rc+oags3j6jPuVGAAAAAAAAzzMQPQsOHz4c3/jG\nN068/e53v/ukmT/JZDIxZcqU0973xZn29vYYGBiIvLy8k96zpqYmUdcX37O5uTnRNQwvTvwEAGC4\nKszLjyXVtbGkujYiIlqOd8Xm1qbY1NIUz7YdiO6BviHtM5jLxfaOw7G943D8cPeTUV5QFIuraqN+\nfG0sqaqNisLiIe3D6NN6/Fj8ZPfTifPvrlsRhXm+FQMAAAAAAAwNP5V4nfr7++O//tf/Gh0dHRER\nMX369Pirv/qrV+Re/vjvkpKS09775Zmurq6oqKh4ydt/UlpamqhvcfF//AD0VI8kBwAAeL3GF5XF\n6inzYvWUeTGQG4ydHUdiU2tjbG5tit2dLZEb4j5H+47H44d3xeOHd0VExMxx1VFfPTWWVNdGXfnE\nyMtmh7gRI92/7dgQxwf7E2XPGz81Lhg/LeVGAAAAAAAA/8FA9HX6u7/7u1izZk1ERBQWFsaXv/zl\nKCoqekXu+PHjL3m7sLDwtPd++X26u7tfMhDt6ek58bqgoCBR3xff88XXAwAApCkvk415lZNiXuWk\nuH72BdHZ1xObWw/Eptam2NzaFB19Q//3kz2drbGnszV+vndTFOflx6KqKVH/wgmoE4vHDXkfRpbN\nrU2xvnlPomxBNi9umbsyMplMyq0AAAAAAAD+g4Ho6/DFL34x7r///oiIyMvLizvvvDPq6+tPmn35\n2LO3t/e0I9GXj0pffqLoi08D7etL9qjGF9/zxdcDAAAMpXEFxfGGybPjDZNnx2AuF/u72mJTa2Ns\nam2K7R2HYzA3tOeL9gz0xxNH9sUTR/ZFRERNSUXUV9dGfXVtLKic7LHgvETf4EDc27Aucf6t05fE\npBKjYwAAAAAAYGj5Cddr9OUvfzm+/vWvR8Tz49DPfOYzce21175qvqys7CVvd3d3n3Yg2t3dfcp7\nvPjtY8eOJer94lNDX36/M7Fjx4545zvfeUbXPPDAA6/58wEAAKNXNpOJGeOqY8a46njrjPro6e+L\nLe0HY3NrU2xqbYzmnq4h73SwuyMOdnfEbxqfi/xMNhZUTo4l1bVRXz01aksrnAQ5xj2079k41H00\nUXZS8bi4ZsaSlBsBAAAAAADDwZlu6nbs2BFz585NqY2B6GvypS99Kf7P//k/EfH8OPSzn/1sXH/9\n9ae8ZtKkSSde53K5aGpqisrKylNec/DgwROvKysrIy8v71XveeDAgUTdX5ybOHFiomsAAACGUnF+\nQSybMD2WTZgeuVwuDvUcjU0tTbG5rSmeazsYvYMDQ9qnPzcYm9sOxOa2A/HdnRujurA06sc/f7ro\noqopUZp/6n/8x+jS3NMZP9u7KXH+PXUroyCbd/ogAAAAAADAWWYgeoa+8IUvxF133RUREfn5+XHn\nnXfGddddd9rrysvLo6am5sToc/fu3bFo0aJTXrN79+4Tr+fPn/+Kj7/4ffv27YtcLnfaU2z27Nlz\nynsmNXfuXCeCAgAAqctkMlFTUhE10yriz6YtjL7Bgdjefjg2vXC6aOOx9iHv1Np7LB450BCPHGiI\nbGRiTsXEqK+eEvXVU2PmuPGRdbroqHZ/w/roSzhSXj5hRiwdPzXlRgAAAAAAwHBxppu6Mz1x9EwZ\niJ6Bz33uc/HNb34zIp4fh37uc5+Lt7/97Ymvr6+vPzEQ3bBhQ1xzzTWnzK9bt+7E6yVLXvk4ukWL\nFkU2m43BwcE4evRoPPfcc6ccnba1tcX27dsj4vkfsp7sngAAAMNZQTYvFldPicXVU+KmWB6tx4+9\n8Cj6pni2rSmO9fcNaZ/ByEVDx+Fo6DgcP9r9dIzLL4rF1VOivro2llTXRmVhyZD2IV1PHdkfT7bs\nT5QtzObFu+suTLkRAAAAAADAqzMQTegf//Ef45//+Z8j4vlx6Be+8IXTDjxf7sorr4zf/OY3ERHx\n0EMPxSc/+cnIZrMnzXZ0dMSaNWtOvH3VVVe9IlNdXR0rVqyItWvXRkTEL37xi1MORB988METr6dP\nn37aE0wBAACGu+qi0rh0Sl1cOqUuBnKDsevokROD0V1Hj0RuiPt09h+PtYd3x9rDzz8RYkZZdSyp\nfv5x9HUVEyPfo8ZHrN6B/vjOjnWnD77g2pnnxfiishQbAQAAAAAAnNrJ14m8xGc+85kT49CCgoL4\n0pe+dMbj0IjnR55lZc//cKixsTG+//3vv2r27rvvjp6enoiImDVrVqxcufKkuRcfMXvfffdFS0vL\nSXM9PT1x9913n/Q6AACA0SAvk426iklx3azz46+XXROfv/jG+KtFl8Yba+aes5M893a1xi/3bY4v\nPv3r+H8f+158ddPv4neN2+Jwd+c56cNr94u9m6O5pytRtrakIq6ctjDlRgAAAAAAAKfmBNHT+Id/\n+If413/914iIKCoqii9/+cvxpje96TXdq7y8PD70oQ/FF7/4xYiIuPPOO2P69Olx8cUXvyT34x//\nOO66666IeP5R8B/72Mde9Z7vete74lvf+lZs37492tra4qMf/Wh89atfjcrKyhOZnp6e+MQnPhG7\ndz9/gs2kSZPi9ttvf02/BgAAgJFiXEFRrJo0K1ZNmhW5XC72H2uLTa1NsamlKbZ3HI6B3OCQ9jk+\n0B9PtvzHI8onl5RH/Quniy6orImiPH9FH64OdnfEL/dtTpy/dd4qp8UCAAAAAADnnJ8+ncLXvva1\nE+PQiIg3vOENsWPHjmhoaDjlKpZRZwAAIABJREFUdZlMJi6//PKYN2/eKz72/ve/P9asWRNr1qyJ\nrq6ueP/73x+rV6+O888/P/r7+2Pt2rWxYcOGE/kbb7wxrr766lf9XNlsNj7/+c/He9/73ujs7Iz1\n69fH1VdfHddcc03U1tZGc3Nz/PKXv4zm5uaIiCgsLIzPfe5zUVJybk7PAQAAOBcymUxML6uO6WXV\ncc30JdEz0Bdb2w7FptbG2NzaFId6hv5Ez0PdR+NQ99H4bePWyM9kY17lpKivnhr11bUxtbQyMpnM\nkHfilXK5XNzXsD76Ew6KV02aFQuralJuBQAAAAAAcHoGoqewc+fOl7z98MMPx8MPP5zo2urq6pMO\nRAsKCuJ//+//HZ/+9KfjF7/4ReRyuZPeN5vNxp//+Z/Hpz/96dN+rkWLFsU3vvGN+PjHPx779u2L\n9vb2uP/++1+RmzhxYnz2s5+NSy65JNGvAQAAYLQqziuI8ydMi/MnTIuIiMPdR58/XbS1KZ5rOxjH\nB/uHtE9/bjC2tB2MLW0H43s7N0ZVYUnUV9fGkuraWFw1JcoKioa0D/9h45G9sbm1KVG2OC8/bpqz\nPOVGAAAAAAAAyRiInsKfTmt5Lae2nOqa0tLS+NKXvhRr1qyJH/7wh7Fx48Y4dOhQ5OXlRU1NTVx0\n0UVx4403Rn19feLPt2zZsvjxj38cP/jBD+LBBx+MnTt3Rmtra1RUVMTMmTPjLW95S9x8881RUVFx\nxr8WAACA0W5SSXm8qaQ83jR1QfQNDsSOjuZ45oXTRfd1tQ15n7be7nj04I549OCOyEQmZpePP3G6\n6Ozy8ZHNZIe801jUM9AX9zdsOH3wBdfNOj+qikpTbAQAAAAAAJCcgegp3HnnnXHnnXemdv9LLrnk\nrJ7mWVJSErfddlvcdtttZ+2eAAAAY01BNi8WVtXEwqqauHHO8mjv7Y7NL5wuurm1Kbr6e4e0Ty5y\nsfPokdh59Ej8ZM/TUZZfGIurpsSS6tqor641SEzRT/c8E629xxJlp5VWxZunLki5EQAAAAAAQHIG\nogAAAHAKlYUlcUnN3LikZm4M5gZjd2dLbGppis1tTbGj40jkIjekfbr6e2Nd855Y17wnIiKml1Wd\nGIvWVUyKgmzekPYZrRq72uNX+7ckzt82b2XkOdkVAAAAAAAYRgxEAQAAIKFsJhtzyifGnPKJ8Z9m\nnRddfb2xpe1AbGptik2tjdHW2z3knfZ1tcW+rrZ4cN+zUfjC6af11bVRXz01JpeUD3mf0SCXy8W9\nDWtjMJds/HvJ5Dkxr3Jyyq0AAAAAAADOjIEoAAAAvEZlBYWxYtLMWDFpZuRyuWg61v7CWLQptrUf\niv7c4JD26R0ciKdbGuPplsaIWB+TisedOF10YVVNFOcVDGmfkWrt4d2xtf1QomxpfkHcMGd5yo0A\nAAAAAADOnIEoAAAAnAWZTCamllXF1LKquGr64jg+0B9b2w/G5hcGowe7jw55p8M9nfG7pm3xu6Zt\nkZfJxryKSVFfXRtLqmtjellVZDKZIe803HX398a/7diQOH/9rAuiorA4xUYAAAAAAACvjYEoAAAA\npKAoLz/OGz8tzhs/LSIimns6T5wuuqXtQBwf6B/SPgO5wXiu/WA8134wvr/riagsLIklVVOivro2\nFlfXxriCoiHtM1z9aPfT0dHXkyg7c9z4uLx2XsqNAAAAAAAAXhsDUQAAABgCE4vHxRW18+OK2vnR\nPzgQOzqaY1NbU2xqaYq9Xa1D3qe9tzvWHNoZaw7tjExEzCqfEPUvPI5+dvmEyMtkh7zTuba3szV+\n27g1UTYTEbfNWxnZMfj7BAAAAAAAjAwGogAAADDE8rN5saCqJhZU1cS7Zi+Ljt7u2Nx6IDa1NsXm\n1qbo7D8+pH1yEbHr6JHYdfT/Z+9eY+s+6wSP/85x7NhxfMvNdq7NDVwbSkpSJUDLzkybVJ1loSEU\nmCmIaYqG0bJlV5tWpRXSLrwgEsoLJBASqkqFECpiJRJaLVPSrpDYQanaJul0ajcllzZNJs7FsWMn\nvsWxz75oOJs0Tmw39nH89PN59f+f8/yf83P7rv3q+Z+O//3O6zFjWnE0VNdFU838aKqpj5rpMwo6\nz2QYyuXi6YMvRy5yo1p/e92KWFoxZ4KnAgAAAAAAeP8EogAAADDJKkvKYl3t0lhXuzSGcrl451x7\ntFx8Hf2hrrYYGmW0OF56LgzEnrYjsaftSEREzJ9RFU019dFYUx8rq+ZFcbaooPMUwq4Th+JgV9uo\n1pZPmx733vSxCZ4IAAAAAADg+ghEAQAA4AaSzWTiporZcVPF7PjbxR+J3gvn440zJ6K541i0dLRG\ne39PwWc61tMZx3o64/l/3xfF2aL4cNW8/Omi88oqIpPJFHym8dQ90B+/eevVUa///NJVMbN4+gRO\nBAAAAAAAcP0EogAAAHADK5tWEh+fsyg+PmdR5HK5ON7bFc0XTxfd33kyBoYGCzrPwNBgvN7RGq93\ntEZExOzp5dFUUx9NNfXx4eq6KJtWXNB5xsOOt/81zl3oH9XaZRVz4pO1yyZ4IgAAAAAAgOsnEAUA\nAIApIpPJRP2MqqifURV3LWiI84MXYn/XyWhub42WjtZo7e0q+Eyn+7vjj8cPxB+PH4hsJhMrKudG\n48VgdGF5TWRv8NNF26I//u/xI6Nam4lM/P2K2274vwkAAAAAACBCIAoAAABTVknRtIuvep8fERHt\nfd3500XfOHM8+gYHCjrPUC4Xf+48GX/uPBk73v7XqCgujaaaumiqmR83V9dFRUlpQecZSSabiZei\nI3KjXP9X81fGopk1EzoTAAAAAADAeBGIAgAAQCJmlZbHHfUr4o76FTE4NBRvnW2L1zvePV308Ln2\ngs9zdqAvXjz5drx48u3IRMTimbOisaY+PlJTH0sr50RRJlvwmS7V8Jm/ifYYXURbWVwan1tyywRP\nBAAAAAAAMH4EogAAAJCgomw2VlTNixVV8+Lemz4WXef74o0z78aizR3H4+xAX0HnyUXE4XPtcfhc\ne/zzkeYoLSqOm6vrouni6+hnlZYXdJ7Sqoq47R+/OOr1m5bdGmXTSiZwIgAAAAAAgPElEAUAAIAP\ngMqS0lg7b2msnbc0hnK5ONrdEc0XTxc90HUqhnKjfdH6+OgbHIi9p4/E3tNHIiKivqwyGmvqo2lW\nfaysnBclRRP7nyzW/tOXo7Ry5qjWfqhqXqyde9OEzgMAAAAAADDeBKIAAADwAZPNZGLxzFmxeOas\nuGdRU/ReGIg3O09Ec/uxaO5ojdP93QWfqbW3K1p7u+L/HHszirNFsbJqXv500bqyyshkMuP2W7Uf\n+VB8+D/+1ajWZjOZ+Lvla8b19wEAAAAAAApBIAoAAAAfcGXTimPV7IWxavbCyOVycbL3bDR3tEZz\nR2u82XkiBoYGCzrPwNBgtFw83fR/RcSs6TPePV20Zn7cXF17Xa96zxRl4/b//g+jXn/n/IaYX179\nvn8PAAAAAABgsghEAQAAgLxMJhO1MyqjdkZl/M2CD8fA0GDs7zwZLReD0WM9nQWfqb2/J/7l+MH4\nl+MHIxuZWFY5J5pq6qOxpj4Wz5wV2TGc7tm0cX3MXrFkVGurS8riM0s+8n7HBgAAAAAAmFQCUQAA\nAOCqirNF0XgxxvxCRHT090TzxdM93zjTGj0XBgo6z1Dk4kDXqTjQdSp+e/i1qCieHjdX118MRuui\nsqTsqs+Wza6ONQ/eN+rf+uKy1VFaVDweYwMAAAAAABScQBQAAAAYtZrpM+L2uuVxe93yGMwNxdtn\nT+dfR3/47OnIFXieswP98dKpt+OlU29HRMSi8ppomlUfTdX1sbxybhRls/m16/7z30dJ+dUD0kvd\nXF0XH5+zaCJGBgAAAAAAKAiBKAAAAPC+FGWysbxybiyvnBufXXJLnBvoizc6jueD0a6BvoLPdKS7\nI450d8RzR1qitGhaNFTXRUl0x/I7PxEr139qVHtMy2Tj75avicwYXl0PAAAAAABwoxGIAgAAAONi\nZnFp3Dbvprht3k2Ry+XiaPeZaLkYix7oOhWDuaGCztM3eCFePX00IiLu/B//ZdTPrV94c9TOqJyo\nsQAAAAAAAApCIAoAAACMu0wmE4tm1sSimTVx96LG6BsciDfPnMifLtrWd26yRxzW7Onl8beLmiZ7\nDAAAAAAAgOsmEAUAAAAmXGlRcXxs9sL42OyFERFxsvfsxVj0WLx55kScHxqc5Anf9aXlq6OkyH8u\nAQAAAAAApj7/xwMAAAAouHllFTGvrCL+ev6HYmBoMA52nYrmjtZo6WiNo91nJmWmj86anw9YAQAA\nAAAApjqBKAAAADCpirNF0VBdFw3VdbFp6a1xpr8nWs4cj+b2Y9Fy5nj0XDhfkBm+vHzNhP8OAAAA\nAABAoQhEAQAAgBtK9fQZ8cnaZfHJ2mUxlBuKw2fb4/WLp4u+dfZ05CI37r95z6LGmFM6c9z3BQAA\nAAAAmCwCUQAAAOCGlc1kY2nlnFhaOSf+05KPRvdAf7xx5ni0dLRGc0drnDnfe92/Ma90ZmxY2DgO\n0wIAAAAAANw4BKIAAADAlFFePD3WzF0Sa+YuiVwuF8d6OqP54umi+ztPxoXc0Jj3/PKKNVGcLZqA\naQEAAAAAACaPQBQAAACYkjKZTCwor44F5dWxYeHN0T94If7ceSKaL54uerL37Ih7NEVFNNXML8C0\nAAAAAAAAhSUQBQAAAJIwvWhafHTWgvjorAUREXGq91y0dLTGHw/+Wxzq6YiSGWX5tefP9cRrv/7n\nuH/zf52scQEAAAAAACaUQBQAAABI0tyymfEfylZG9uDx+J+f+WLM+dDSKK2qiExRNo6+/G8x2H8+\nMpv/22SPCQAAAAAAMCEEogAAAEDyhi4MxsmWA5M9BgAAAAAAQMFkJ3sAAAAAAAAAAAAAAMaXQBQA\nAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAA\nAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAA\nIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJR\nAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAA\nAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAA\nAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQI\nRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAA\nAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAA\nAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAAS\nIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUA\nAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAA\nAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAA\nSIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAU\nAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAA\nAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAA\nACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDEC\nUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAA\nAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAA\nAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDE\nCEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEA\nAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAA\nAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAA\nEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAF\nAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAA\nAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAA\nAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxA\nFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAA\nAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAA\nAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAx\nAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAA\nAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAA\nAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACA\nxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQB\nAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAA\nAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAA\nABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQ\nBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASM22yBwAA\nAAAYD7feeuuwn3d3d1/1mQcffDDKy8uH/W7v3r3jMhcAAAAAAMBkEIgCAAAASSsvL49Vq1ZN9hgA\nAAAAAAAFJRAFAAAAkuDETwAAAAAAgP8vO9kDAAAAAAAAAAAAADC+BKIAAAAAAAAAAAAAiRGIAgAA\nAAAAAAAAACRGIAoAAAAAAAAAAACQGIEoAAAAAAAAAAAAQGIEogAAAAAAAAAAAACJEYgCAAAAAAAA\nAAAAJEYgCgAAAAAAAAAAAJAYgSgAAAAAAAAAAABAYgSiAAAAAAAAAAAAAIkRiAIAAAAAAAAAAAAk\nRiAKAAAAAAAAAAAAkBiBKAAAAAAAAAAAAEBiBKIAAAAAAAAAAAAAiRGIAgAAAAAAAAAAACRGIAoA\nAAAAAAAAAACQGIEoAAAAAAAAAAAAQGIEogAAAAAAAAAAAACJEYgCAAAAAAAAAAAAJEYgCgAAAAAA\nAAAAAJAYgSgAAAAAAAAAAABAYqZN9gBTQUdHR7S0tERzc3O0tLRES0tLvPPOO/nvt27dGhs3bhzz\nvrt27Ypnnnkmdu/eHadOnYpsNht1dXWxbt26+PznPx9NTU1j2q+3tze2b98eO3fujEOHDkV7e3tU\nV1fH4sWL46677opNmzZFVVXVmOcEAAAAAAAAAAAAphaB6Aiefvrp+O53v3vNNZlMZkx79vT0xHe+\n85343e9+d8V3Bw8ejIMHD8bTTz8dX/3qV+PRRx+NbHbkg15fe+212LJlSxw5cuSyz9va2qKtrS32\n7NkTP/vZz2Lr1q1xxx13jGleAAAAAAAAAAAAYGoRiI6gv7//svtMJhOlpaWRy+Wir69vzPsNDAzE\nQw89FH/6058iIiKbzcanPvWpuOWWW+LChQvx0ksvxd69e2NoaCh+/vOfR29vb3zve9+75p779u2L\nzZs3x7lz5yIioqqqKjZs2BALFiyIkydPxs6dO/Oh6De/+c144oknYu3atWOeHQAAAAAAAAAAAJga\nBKIjKC8vj9tuuy0aGxujsbExmpqaYtmyZfG1r30tXn755THv99RTT+Xj0PLy8vjxj38cn/jEJy5b\n88wzz8Rjjz0Wg4OD8etf/zruuOOOWL9+/bD7DQ4OxiOPPJKPQ1evXh0/+clPLnuV/KOPPhpbtmyJ\nF154Ic6fPx8PP/xw7Ny5M8rKysY8PwAAAAAAAAAAAHDjG/nd5R9w9913X/ziF7+Ixx57LD73uc/F\nihUrRvXK9+F0dXXFT3/60/z9t7/97Svi0IiIz372s/H1r389f79t27bI5XLD7rljx47Yv39/RERU\nV1fHj370o8vi0IiI6dOnx7Zt22LJkiUREXHq1Kl46qmn3tffAAAAAAAAAAAAANz4BKIF9MILL0R3\nd3dERMyfPz++8IUvXHXtgw8+mD/h8/Dhw7F79+5h1+3YsSN//aUvfSlmzZo17LrS0tLYvHlz/n77\n9u1jnh8AAAAAAAAAAACYGgSiBfT888/nr9evXx+ZTOaqaysrK2PdunXDPvsXHR0d8corr+Tv77nn\nnmv+/t13353/zSNHjsS+fftGPTsAAAAAAAAAAAAwdQhEC6ilpSV/vXr16hHXr1mzZthn/2Lfvn35\nV8/PnDkzGhoarrlfdXV1LF++/Jp7AgAAAAAAAAAAAFOfQLRAzp49GydOnMjfL1myZMRnFi9enL/e\nv3//Fd9f+tmla69nTwAAAAAAAAAAAGDqE4gWyKlTp/LXmUwm6urqRnzm0jWdnZ0xODh41T1ra2tH\nNcele7a1tY3qGQAAAAAAAAAAAGBqEYgWSHd392X3ZWVlIz7z3jXv3ePS+xkzZoxqjtLS0qvuBwAA\nAAAAAAAAAKRBIFog/f39l92XlJSM+Mz06dMvu+/t7b3svq+vL39dXFw8qjku3fPS5wEAAAAAAAAA\nAIB0CEQL5L2x5/nz50d85r1R6XtPFL30NNCBgYFRzXHpnpc+DwAAAAAAAAAAAKRj2mQP8EFRXl5+\n2X1vb++Ip4i+98TQ9+5x6X1PT8+o5rj01ND37jcWhw4dinvvvXdMz+zYseN9/x4AAAAAAAAAAADc\nyMba1B06dCiWLVs2QdM4QbRg5s6dm7/O5XLR2to64jMnTpzIX1dVVUVRUdFV9zx+/Pio5rh03Zw5\nc0b1DAAAAAAAAAAAADC1OEG0QCoqKqK2tjYffR4+fDgaGhqu+czhw4fz1ytXrrzi+0s/O3r0aORy\nuchkMtfc85133rnmnqO1bNkyJ4ICAAAAAAAAAADARWNt6sZ64uhYOUG0gJqamvLXe/bsGXH9K6+8\nkr9ubGy84vuGhobIZt/9V3j27Nl48803r7nfmTNn4sCBAxERkclkht0TAAAAAAAAAAAAmPoEogV0\n11135a+ff/75GBoauurarq6u2LVrV/5+/fr1V6ypqamJ1atX5++fe+65a/7+zp0789cLFy4c8QRT\nAAAAAAAAAAAAYGoSiBbQ+vXro7y8PCIijh07Fr/5zW+uuvbJJ5+Mvr6+iIhYsmRJrFmzZth1lx4x\n+6tf/Sra29uHXdfX1xdPPvnksM8BAAAAAAAAAAAAaRGIjoNcLjeqdRUVFfGNb3wjf79169Z48cUX\nr1j37LPPxhNPPBER774KfsuWLVfdc+PGjbFixYqIePcV8g899FB0dnZetqavry8eeeSROHz4cERE\nzJ07NzZv3jyqmQEAAAAAAAAAAICpZ9pkDzAVfOtb37riswMHDuSvf/nLX8Yf/vCHy75fu3Zt3H//\n/Vc898ADD8SuXbti165d0d3dHQ888EDcfvvtccstt8SFCxfi5Zdfjj179uTXb9q0KTZs2HDV2bLZ\nbGzbti2+8pWvxLlz52L37t2xYcOGuPvuu6O+vj7a2tri97//fbS1tUVERElJSfzgBz+IsrKyMf9z\nAAAAAAAAAAAAAKaGTG60x19+gDU0NIz5mY0bN8bWrVuH/a6npycef/zxeO655676fDabjfvvvz8e\nf/zxyGQyI/7eq6++Gg8//HAcPXr0qmvmzJkT3//+9+PTn/70yH/ANfzl9fQ7duy4rn0AAIB33Xrr\nrcN+3t3dHfv37x/2u5UrV0Z5efmw3+3du3fcZgMAAAAAAAAmxkS3eE4QHaXRRJqjNWPGjPjhD38Y\nu3btit/+9rexd+/eOHnyZBQVFUVtbW2sXbs2Nm3aFE1NTaPec9WqVfHss8/G9u3bY+fOnfHWW29F\nR0dHVFZWxuLFi+POO+9Sd/ubAAAgAElEQVSM++67LyorK8ft7wAAACZWeXl5rFq1arLHAAAAAAAA\nAKYgJ4gyZk4QBQAAAAAAAAAAgOsz0S1edkJ2BQAAAAAAAAAAAGDSCEQBAAAAAAAAAAAAEiMQBQAA\nAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAA\nAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABI\njEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQA\nAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAA\nAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAA\nIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJR\nAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAA\nAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAA\nAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQI\nRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAA\nAAAAAAAAABIjEAUAAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAA\nAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAAS\nIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUA\nAAAAAAAAAABIjEAUAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAA\nAAAAAEiMQBQAAAAAAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAA\nSIxAFAAAAAAAAAAAACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAUAAAAAAAAAAABIjEAU\nAAAAAAAAAAAAIDECUQAAAAAAAAAAAIDECEQBAAAAAAAAAAAAEiMQBQAAAAAAAAAAAEiMQBQAAAAA\nAAAAAAAgMQJRAAAAAAAAAAAAgMQIRAEAAAAAAAAAAAASIxAFAAAAAAAAAAAASIxAFAAAAAAAAAAA\nACAxAlEAAAAAAAAAAACAxAhEAQAAAAAAAAAAABIjEAWA/8fenQdZVd/p43+aTRYFJQgEETW4EEAN\ngWgUjRPBIEYUMmpmxjGJxlKjidbXJIoG41IqZDEuOFHHGM3ERA0MizpuaDBuraJiXFAjQjAiGBCk\nodmhf39Q3h8o0C3S3fTp16uKqs/p+z73PBerPNzbzz0HAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAU\nRAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEA\nAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAA\nAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAA\nAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAK\nRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEU\nAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAA\nAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAA\nAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAA\noGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAU\nRAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEA\nAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAA\nAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAA\nAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAK\nRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEU\nAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAA\nAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAA\nAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAA\noGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAU\nRAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEA\nAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAA\nAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAA\nAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAK\nRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEU\nAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAA\nAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAA\nAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAA\noGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAU\nRAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEA\nAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAA\nAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAA\nAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAK\nRkEUAAAAAAAAAAAAoGAURAEAAAAAAAAAAAAKpll9B2Drmjt3bsaOHZvJkydn9uzZqaysTIcOHbLP\nPvtk8ODBOfroo9O0adP6jgkAAAAAAAAAAADUIgXRAhk3blwuv/zyLF26dIOfz5kzJ3PmzMmjjz6a\n//mf/8nVV1+dbt261VNKAAAAAAAAAAAAoLYpiBbE+PHjc+GFF5a2u3XrlgEDBqRt27aZMWNGJk2a\nlOXLl+fVV1/NySefnDvuuCMdO3asx8TUpqFDhyZJJkyYUM9JAMB5CYBti/MSANsS5yUAthXOSQBs\nS5yXALYeBdECmD17di6++OLS9oknnpgRI0akrKxsg5lTTz01M2fOLM3fcMMN9REXAAAAAAAAAAAA\nqGVN6jsAn951112XlStXJkn69euXiy66aINyaJLssssuue6669Ks2bpO8OTJk/Pcc8/VeVYAAAAA\nAAAAAACg9imINnDLli3Lgw8+WNo+88wzNzm71157ZdCgQaXt8ePH12o2AAAAAAAAAAAAoH4oiDZw\nTzzxRJYvX54kadeuXQ4++ODNzh955JGl9cMPP1yr2QAAAAAAAAAAAID6oSDawL366quldZ8+faqd\n79u3b2ldUVGRd955p1ZyAQAAAAAAAAAAAPVHQbSBmz59emm9++67Vzvfvn377LDDDkmSqqqqvPnm\nm7UVDQAAAAAAAAAAAKgnCqIN3Lx580rrzp0712ifTp06ldbz58/f6pkAAAAAAAAAAACA+qUg2sBV\nVlaW1q1atarRPi1bttzo/gAAAAAAAAAAAEAxKIg2cMuXLy+tmzdvXqN9tttuu43uDwAAAAAAAAAA\nABSDgmgDt/7VQFetWlWjfVasWLHR/QEAAAAAAAAAAIBiUBBt4Nq0aVNaL1u2rEb7rH/V0PX3BwAA\nAAAAAAAAAIqhWX0H4NPZeeedS+u5c+fWaJ/159bf/5N4/fXXs99++32ifT73uc9t0bH45GbMmJEk\nGTp0aD0nAQDnJQC2Lc5LAGxLnJcA2FY4JwGwLXFeAhqyD/8fVlMrV65Mjx49aimNgmiDt+eee+bh\nhx9Okvz973+vdn7BggVZsmRJkqSsrCx77rnnJz7mhAkTPnE5lLqljAvAtsR5CYBtifMSANsS5yUA\nthXOSQBsS5yXgMakRYsWmTBhQq09v4JoA9e7d+/SeurUqdXOP//886V127Zt07Vr1y067ksvvbRF\n+wEAAAAAAAAAAAC1r0l9B+DT6d+/f1q2bJkkWbRoUcrLyzc7/8ADD5TWAwcOrNVsAAAAAAAAAAAA\nQP1QEG3gWrVqlUGDBpW2f/3rX29ydvr06XnwwQeTrLu9/LBhw2o9HwAAAAAAAAAAAFD3FEQL4Oyz\nz06LFi2SJFOmTMnll1+etWvXbjAze/bsnH322Vm9enWS5LDDDku/fv3qPCsAAAAAAAAAAABQ+8qq\nqqqq6jsEn97YsWMzYsSI0na3bt0yYMCA7LDDDpk5c2YmTZqU5cuXJ0m6dOmSO++8Mx07dqyvuAAA\nAAAAAAAAAEAtUhAtkLFjx+bKK6/M0qVLNznTs2fPXHPNNenWrVsdJgMAAAAAAAAAAADqkoJowcyd\nOzdjxozJ5MmTM2fOnFRWVqZDhw7Ze++9M3jw4AwZMiRNmjSp75gAAAAAAAAAAABALVIQBQAAAAAA\nAAAAACgYl5IEAAAAAAAAAAAAKBgFUQAAAAAAAAAAAICCURAFAAAAAAAAAAAAKBgFUQAAAAAAAAAA\nAICCURAFAAAAAAAAAAAAKJhm9R0A2Drmzp2bsWPHZvLkyZk9e3YqKyvToUOH7LPPPhk8eHCOPvro\nNG3atL5jAlBgVVVVefnll1NeXp6pU6dm+vTpef/997Nq1arssMMO2X333dO3b98MGzYs3bt3r++4\nADRilZWVOeaYYzJ79uzSz0aOHJlhw4bVYyoAGosVK1bkgQceyJ///Oe8/vrrmTdvXtauXZvPfOYz\n+exnP5s+ffrkgAMOyCGHHJKysrL6jgtAQa1YsSL333//BuejlStXpnXr1unSpUt69+6do446Kv37\n96/vqAA0UAsXLsy0adPy6quvZtq0aZk2bVrefvvt0uNb+nlceXl57r777jz//POZN29emjRpks6d\nO+fLX/5yvvGNb6RXr15b82UANHhlVVVVVfUdAvh0xo0bl8svvzxLly7d5EyvXr1y9dVXp1u3bnWY\nDIDG4pFHHsmll16af/7zn9XOlpWV5fjjj88FF1yQVq1a1UE6ANjQxRdfnLvuumuDn40aNSpDhw6t\np0QANBaPPPJIrrjiirz77rvVzj799NPZcccd6yAVAI3Nc889l/POO69G56N+/frlV7/6VTp27FgH\nyQAoijvuuCOXXnrpZmc+6edxS5cuzYgRI3LfffdtcqZJkyY56aSTcv7556dJEzdVBkhcQRQavPHj\nx+fCCy8sbXfr1i0DBgxI27ZtM2PGjEyaNCnLly/Pq6++mpNPPjl33HGHN/EAbHVvvfVWqRxaVlaW\nrl275otf/GK6dOmSVq1a5d13381jjz2Wd999N1VVVfnTn/6UmTNn5pZbbkmLFi3qOT0AjUl5eXmp\nHNq8efOsWrWqnhMB0Fj87ne/y8iRI5Ose9+066675oADDkjnzp3TtGnTzJs3L3Pnzs3zzz+fioqK\nek4LQFFNmzYtp5xySlauXJlkXZHm4IMPzp577pkdd9wxc+fOzdSpU/PGG28kWVcmPemkkzJ+/Pi0\nbt26PqMD0ICsWLFig+2ysrK0bNkyVVVVWb58+Sd+vlWrVuUHP/hBnnzyySTrzl/9+/fPfvvtl9Wr\nV+fZZ5/N1KlTs3bt2vzud7/LsmXLctlll22V1wLQ0CmIQgM2e/bsXHzxxaXtE088MSNGjNjg1lOz\nZ8/OqaeempkzZ5bmb7jhhvqIC0DBtWnTJscff3y+8Y1vZO+99/7Y42vXrs0NN9yQ0aNHJ0mmTJmS\nm2++OWeddVZdRwWgkVqyZEnpC3b9+/fPypUrM2XKlHpOBUBjcO+995bKoR06dMhll12Www8/fKOz\nVVVVefnll5VwAKgVP/vZz0rl0N133z3/9V//le7du39s7sEHH8x5552XFStWZNasWfnd736X733v\ne3UdF4AGqk2bNvnSl76Unj17pmfPnunVq1c+97nP5dvf/vYWfR536623lsqhbdq0yfXXX5+DDjpo\ng5m77747F1xwQdasWZM//elPOfTQQ3PEEUdsldcD0JC5njI0YNddd13pTXy/fv1y0UUXbVAOTZJd\ndtkl1113XZo1W9cHnzx5cp577rk6zwpAsR122GH585//nOHDh2+0HJqs+zbnWWedlX/7t38r/eyP\nf/xjqqqq6iomAI3cqFGjMmfOnLRu3doVBACoM//85z9L550dd9wxd9111ybLocm6K+vst99+7rYA\nwFa3YsWKPPvss6Xtyy67bKPl0CQZNGhQTjnllNL2Y489Vuv5ACiO448/Pr///e9zwQUX5Nhjj82e\ne+65xbd8r6ioyE033VTaHj58+MfKoUlyzDHH5NRTTy1t//KXv/Q7KIAoiEKDtWzZsjz44IOl7TPP\nPHOTs3vttVcGDRpU2h4/fnytZgOg8dlnn33Srl27Gs1+61vfKq0XLFiQWbNm1VYsACh5/PHHM3bs\n2CTJueeem1122aWeEwHQWNx6662lW8b/+Mc/dg4CoN588MEHpaJMWVlZ+vTps9n5L37xixvsCwD1\n4eGHH05lZWWSpEuXLjnuuOM2Ofvd7343rVq1SpLMmjUrzz//fJ1kBNiWKYhCA/XEE09k+fLlSZJ2\n7drl4IMP3uz8kUceWVo//PDDtZoNADana9eupXVVVVUWLVpUj2kAaAwWL16cESNGJEn69u2b//zP\n/6znRAA0FitWrMi4ceOSJG3bts0xxxxTz4kAaMzat2+fli1blrYXLFiw2fn333+/tO7SpUut5QKA\nzZk0aVJpfcQRR3zsrqrra9u2bb785S9vdF+AxkpBFBqoV199tbSu7hueybpfgn6ooqIi77zzTq3k\nAoDqvPfee6V1WVlZ2rdvX49pAGgMrrzyyrz33ntp2bJlrrjiivqOA0Aj8te//rX0pbj9998/zZs3\nz3vvvZerr746Q4YMSZ8+fdKnT58MGjQoF1xwQcrLy+s5MQBF1rx58wwePDjJui9u33rrrZucXbFi\nRW6//fYk6z7DGzp0aJ1kBICPmjZtWmm9fu9hU/r167fRfQEaq2b1HQDYMtOnTy+td99992rn27dv\nnx122CGLFy9OVVVV3nzzzQ2u4AYAdeX+++8vrTt27Jhdd921HtMAUHSPPvpoxo8fnyT5/ve/X6P3\nTwCwtbz44oul9W677ZYHHnggI0aMyJIlSzaYmzVrVmbNmpXx48fnX/7lX/LLX/4y22+/fV3HBaAR\nGD58eN5888288sorue222zJr1qx861vfSvfu3bPjjjvmvffeywsvvJCbb74506dPT1lZWb75zW9m\nyJAh9R0dgEZo8eLFG1x4ZLfddqt2n27dupXWb775Zq3kAmhIFEShgZo3b15p3blz5xrt06lTpyxe\nvDhJMn/+/FrJBQCbM2/evPzmN78pbZ9wwgn1mAaAolu0aFEuuuiiJEnv3r3z3e9+t54TAdDYzJw5\ns7R+5ZVXcscdd2TNmjX5zGc+kwEDBqRr165ZtGhRysvLS1e2efTRR3PyySfnD3/4Q1q0aFFf0QEo\nqHbt2uWOO+7ITTfdlHHjxmXy5MmZPHnyRmd79+6d73znOzn66KPrOCUArLN+L6KsrKxG3Yj1ZxYt\nWpQ1a9akadOmtZIPoCFQEIUGqrKysrRu1apVjfZp2bLlRvcHgLqwevXqnHfeeamoqEiSdO3aNaee\nemo9pwKgyC6//PLMmzcvzZs3z5VXXpmysrL6jgRAI/Ph+5/k/7+a6BFHHJFRo0alTZs2G8yOGTMm\nl1xySdasWZOXX345119/fc4999w6zQtA49C8efP06dMnf/vb3zJ37tysXbv2YzPbb7999t1333z+\n85+vh4QAsM5Hew016UZ8dKaysjJt27bdqrkAGhIFUWigli9fXlo3b968Rvtst912G90fAOrCZZdd\nlvLy8iRJixYtcu21125wbgKAremRRx7JPffckyQ5/fTTs/fee9dzIgAao4/+MrN79+656qqrNnpl\n0OOPPz6zZ8/OjTfemCS5/fbbc9ppp7nVPABb1cqVK3P++efn/vvvT5I0bdo0/fv3T+/evdOmTZu8\n//77efrpp/PGG2/kjjvuyJgxY3LuuefmlFNOqefkADRGK1as2GC7JndZ+OjvnpYtW6YgCjRqCqLQ\nQK1/NdBVq1bVaJ/1//G0/v4AUNt+9atf5U9/+lOSdR86jxw5Mr169arnVAAU1QcffJCLL744SbL3\n3nvnjDPOqOdEADRWH/0M7uSTT97sLzRPOeWU/Pa3v83KlSuzdOnSPPPMMxkwYEBtxwSgERk+fHip\nHNq1a9dcf/316dGjx8fm7rvvvgwfPjwrV67Mz3/+82y//fY54YQT6jouAI3cR8ueK1eurLYk+tFS\naU3vyApQVE3qOwCwZda/BdWyZctqtM/6Vw396C2sAKC2XHvttfnv//7vJOvKoVdccUW+/vWv13Mq\nAIrssssuy/z589OsWbNceeWVadbM92MBqB/rfwZXVlaWgw8+eLPzbdu2Tc+ePUvbr776aq1lA6Dx\nee6553LfffclSZo1a5Ybb7xxo+XQJDnqqKMyfPjw0vYvf/nLLF26tE5yAsCHPtprqEk34qMzuhFA\nY6cgCg3UzjvvXFrPnTu3RvusP7f+/gBQW6655prccMMNSdaVQ6+88soMHTq0nlMBUGTl5eWlX3h+\n+9vfTu/evWu0X1VVVW3GAqCR6tix4wbbnTt3rnaf9Wc++OCDrZ4JgMbrgQceKK0PPvjg7Lnnnpud\nP+GEE9K6deskSUVFRZ566qlazQcAH7V+r6Gqqipz5sypdp/33nuvtG7Xrl2aNm1aK9kAGgoFUWig\n1n/T/ve//73a+QULFmTJkiVJ1l2toLo3/QDwaV111VW58cYbk6y7IsGoUaNy7LHH1nMqAIpu/Q+J\nb7nllvTo0WOTf6ZMmVKaveCCC0o/92UGALaWvfba6xPvU1ZWttE1AHxa6/8+ae+99652vlmzZune\nvXtpe9asWbURCwA2aYcddkinTp1K2zU5F60/syXvyQCKRkEUGqj1r4IzderUaueff/750rpt27bp\n2rVrreQCgCT5+c9/nptvvjnJug+Sf/7zn2fIkCH1nAoAakYZB4CtZd99991guyZXu1l/pn379ls9\nEwCN15Z8CWH9uy00aeJXywDUvV69epXWL7zwQrXzzz33XGnds2fPWskE0JA0q+8AwJbp379/WrZs\nmeXLl2fRokUpLy/PQQcdtMn59W8bMnDgwLqICEAjNWrUqNx2221J1pVDr7rqqgwaNKh+QwHQaOy2\n224ZNmxYjWYff/zxzJ8/P0nSt2/fdOvWLUnSpUuXWssHQOOy1157ZY899sjMmTNTVVWV8vLyHHfc\ncZucr6ioyLRp00rb+++/f13EBKCRWP8KbK+//nq186tWrcqMGTNK2+vf5hcA6srAgQPz5z//OUky\nadKknH/++Zv80kJFRUXKy8tL20cccUSdZATYlimIQgPVqlWrDBo0KBMnTkyS/PrXv95kQXT69Ol5\n8MEHk6z7RmhNf1kKAJ/UFVdckd///vdJkubNm+fqq6/2xQQA6lTfvn3Tt2/fGs2edNJJpYLo8ccf\n79byANSKb3zjG7nqqquSJL/97W9zzDHHpEWLFhudveWWW7Jy5cok664eesABB9RZTgCK74ADDsjY\nsWOTJE899VTeeiTLifAAABO1SURBVOutDW4h/1F33XVXli5dmmTd75eclwCoD0cccUSuuOKKVFZW\n5t133824ceM2+cW7W265JcuXL0+y7ovk/fr1q8uoANsk9wGABuzss88ufZg8ZcqUXH755Vm7du0G\nM7Nnz87ZZ5+d1atXJ0kOO+ww/wgCoFZcfvnlpXLodtttl9GjRyuHAgAAjd63v/3t7LLLLkmSGTNm\n5Nxzz01lZeXH5saMGZObb765tH3aaadtskgKAFviiCOOSIcOHZIka9asyRlnnJG//e1vG5299957\n87Of/ay0PXDgwHTs2LFOcgLQOFRVVdVobocddsjpp59e2h45cmSefvrpj83dc889pfdUZWVl+eEP\nf7h1ggI0cGVVNf0/LrBNGjt2bEaMGFHa7tatWwYMGJAddtghM2fOzKRJk0rfkOnSpUvuvPNOb+AB\n2OpuuummXH311aXtQw89NAcddFC1b+7Lysryla98JXvuuWdtRwSAjznppJMyZcqUJMmoUaNcQRSA\nWvPSSy/lO9/5TukqbO3bt8/AgQPTpUuXLFmyJE8++WRee+210vxXv/rV3HDDDfUVF4AC+8tf/pKz\nzjqrdGGRJk2a5KCDDsq+++6b1q1b5/333095efkGxdFOnTrlrrvuSufOnesrNgAN0Nlnn/2xn02Z\nMiULFy5MkvTu3TtdunTZ4PEDDzwwJ5544sf2W7VqVU477bTS7ePLyspyyCGHZL/99svq1aszZcqU\nvPDCC6X54447LpdffvnWfDkADZaCKBTA2LFjc+WVV5Y+YN6Ynj175pprrkm3bt3qMBkAjcXw4cMz\nYcKELdp35MiRGTZs2FZOBADVUxAFoC5NnTo1559/ft5+++1NzjRp0iTf/OY385Of/CTNmjWrw3QA\nNCaPPfZYfvKTn2TevHnVzn7hC1/IL37xi+y66651kAyAIunRo8cn3mfYsGEZOXLkRh9bunRpLrzw\nwjzwwAOb3L9JkyY58cQTc+GFF6asrOwTHx+giHzCBAVw3HHH5ZBDDsmYMWMyefLkzJkzJ5WVlenQ\noUP23nvvDB48OEOGDEmTJk3qOyoABfXhm+wtebPtDToA9c25CIC60KdPn9x7772ZOHFiHnzwwbz1\n1lt5//3307Jly3Tu3DkHHHBATjjhhOy99971HRWAgvvKV76SSZMm5b777sujjz6a119/Pe+//35W\nrFiRNm3apFOnTtl3331z1FFHpX///vUdF4AGbGt+7ta6detcc801KS8vz8SJEzN16tT885//TNOm\nTdOpU6cceOCB+dd//df06tVrqx0ToAhcQRQAAAAAAAAAAACgYFxOEAAAAAAAAAAAAKBgFEQBAAAA\nAAAAAAAACkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAA\nAAAACkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAA\nCkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZB\nFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZBFAAA\nAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZBFAAAAAAAAAAAAKBgFEQBAAAAAAAAAAAACkZBFAAAAABg\nKxk3blx69OiRHj165Prrr9/ozOjRo0sz48ePr/VMtXG8D5/v8MMP3yrPVx9OOumk0ut499136zsO\nAAAAAGx1CqIAAAAAQINx+OGH12m5sjaVlZWlrKysQR+vLvPXliK8BgAAAADYGAVRAAAAAKBBaujF\nvqqqqkIfDwAAAACoXwqiAAAAAAB16MNia10VXOv6eAAAAADAtqFZfQcAAAAAAGhMvv/97+f73/9+\nYY8HAAAAAGwbXEEUAAAAAAAAAAAAoGAURAEAAACAwhg9enR69OiRHj16ZPz48UmSBQsW5Ne//nWG\nDh2aL33pS9l///0zaNCgXHzxxfnHP/5R4+eeP39+fvWrX2XIkCHp06dP+vbtmyFDhuQXv/hFZs+e\n/akyfuimm24qPfbTn/60xs95xhlnlPYbO3ZsjY/3UWvXrs2ECRNy8skn5+CDD86+++6bww8/PGef\nfXYee+yxGucZN25c6ZjXX399tfM1zbhw4cKMHz8+F1xwQYYNG5YDDjggvXr1Sr9+/XLUUUflwgsv\nzNNPP13jnAAAAABQZG4xDwAAAAAUTllZWcrKyvLss8/m3HPPzfz58zd4fNasWZk1a1bGjx+fq6++\nOgMGDNjs8/3lL3/Jj3/841RUVGzw8zfffDNvvvlm7rzzzowaNWqLMq7v2GOPzbXXXpu1a9fmgQce\nyIgRI9KiRYvNPs+CBQvy+OOPJ0latmyZI488ssbHW9/ChQvzve99Ly+++OIGP3/33Xfz7rvv5qGH\nHsqwYcNy2WWX1eTlbZHNZXzsscfyve99L2vWrPnYY0uWLMmSJUsyY8aMjBs3Ll/96lfzi1/8Ittv\nv32tZQUAAACAbZ2CKAAAAABQOFVVVXnjjTdy6aWXZvny5endu3cOPPDAtGvXLnPnzs1DDz2U+fPn\nZ+XKlfnRj36Uu+++O7vuuutGn+vZZ5/NWWedldWrVydJ2rZtmwEDBmT33XfP4sWL8+STT+a1117L\nD3/4w5xwwgmfKONHde7cOQceeGDKy8tTUVGRRx55JIMHD97s89xzzz2l0uSAAQM2WYrc2PE+tGLF\nipx88sl5/fXXkyRNmjTJgQcemD59+qRp06Z54403Mnny5IwfPz477rhjTV/iJ7a5jIsXL86aNWvS\nrFmz9OzZMz169EjHjh2z3XbbZfHixXnllVfyzDPPZM2aNZk8eXLOOeec/OY3v9lsKRYAAAAAikxB\nFAAAAAAopFtvvTWtW7fO6NGjM3DgwA0eO/fcc3PqqafmxRdfzLJly3LLLbfkkksu+dhzLFu2LBdc\ncEGpHHrAAQfkmmuuSfv27UszP/rRj3LHHXfksssuyx/+8IdPnfvYY49NeXl5kmTixInVFkQnTpxY\nWg8dOnSLjnndddeVyqHbb799Ro8enYMOOmiDmbfeeiunn356brvtti06xqfVqVOnXHTRRTn66KPT\nrl27jc68/fbbOeecc/Laa6/lySefzL333pshQ4bUcVIAAAAA2DY0qe8AAAAAAAC15YorrvhYOTRZ\nV4K84oorStsPPfTQRvefOHFiZs+enWRdQfGGG27YoBz6oX//93/P6aefvtkrYNbUoEGD0rp16yTJ\nE088kQULFmxydvr06Zk2bVqSZOedd84hhxzyiY+3aNGi3H777aXtkSNHfqwcmiTdu3fPTTfdlKZN\nm37iY2wN/fr1y4knnrjJcmiSdOvWLTfeeGNatmyZJLnrrrvqKh4AAAAAbHMURAEAAACAQurRo8dm\nr77ZvXv37LnnnkmShQsX5r333vvYzIQJE0rr0047LW3atNnk851++umbfbymWrVqla997WtJktWr\nV+fee+/d5Oz6+YYMGbJFt1N/8MEHs2LFiiRJr169csQRR2xytnv37jn22GM/8THqUqdOndKvX78k\nyUsvvZRVq1bVcyIAAAAAqB9uMQ8AAAAAFNJhhx1W7cwee+yR6dOnJ0kWLFiQTp06lR5buXJlXnnl\nlSRJWVlZqbS5Ka1atcqhhx6aBx544FOkXmfo0KGl8ueECRPyrW9962Mza9euzT333FPKN2zYsC06\n1gsvvFBaDxo0qNr5r33ta/nf//3fLTrW1rJq1apMnz49b731VioqKrJ8+fINrt764VVXV61aldmz\nZ2f33Xevp6QAAAAAUH8URAEAAACAQurSpUu1Mx/eyr2qqiqVlZUbPPbOO+9k9erVSZL27dtn5513\nrvb5evTosVUKol/+8pfz2c9+NnPmzMm0adPy1ltvpXv37hvMPPPMM6Wrnn7+85/PXnvttUXHmjlz\nZmndo0ePaudrMlNb5s+fn+uvvz7/93//l8WLF1c7X1VVlYqKijpIBgAAAADbHreYBwAAAAAKabvt\ntqt2Zv1bsq9/BcokGxQLd9xxxxods6ZzNXHMMceU1uvfSn5jP/s0t31ftGhRaV2T/DvttNMWH+vT\neO2113L00UfnzjvvLJVDy8rKNvpnfStWrKiPuAAAAABQ7xREAQAAAAC2QUOHDi2t77nnng0KrEuX\nLs1DDz2UJGnWrFmGDBlS5/nq0sqVK3POOefkgw8+SJJ07949I0aMyJgxY/Lkk0/mr3/9a1577bXS\nn/X/7gAAAACgsXKLeQAAAACAjWjbtm1p/WExsToLFy7casffY489st9+++Wll17K3Llz8/TTT+eg\ngw5KkkyaNCnLli1LkhxyyCFp3779Fh9n/auG1uR11uQ1fvQqntX58LVsyl/+8pe8/fbbSZL99tsv\nt99+e1q0aLHJ+fWvigoAAAAAjZUriAIAAAAAbETXrl3TvHnzJMmCBQsyb968avd5/fXXt2qG9a+E\nOXHixI2uhw0b9qmOsccee5TWNclfk5nWrVuX1pWVldXOz5kzZ7OPT506tbQ+8cQTN1sOTZI333yz\n2mMCAAAAQNEpiAIAAAAAbESLFi3Sq1evJElVVVXplu6bsmzZsjz++ONbNcPXv/71Ukn1oYceyrJl\ny/Lee++lvLw8SdKuXbscfvjhn+oYffr0Ka2re401nenQoUNpPXPmzM3Orly5Mk8//fRmZyoqKkrr\nnXfeebOzr7zySt55551qMwIAAABA0SmIAgAAAABswvpX8Lz55ps3ezXMm2++OUuXLt2qx2/Xrl2+\n+tWvJkmWLl2ahx56KHfffXeqqqqSJIMHDy4VSLfUkUcemZYtWyZZV658+OGHNzn71ltvbXD10k3p\n0aNHmjZtmiR55plnsnjx4k3O3nbbbdXetn6nnXYqradNm7bJuTVr1mTkyJHV5gMAAACAxkBBFAAA\nAABgE4499th06dIlSTJ37tyceeaZGy0z3nXXXbnhhhtSVlZWKxk+dPfdd+fuu+9OkpSVlW1QYN1S\nbdu2zX/8x3+UtocPH55nnnnmY3MzZszIGWeckTVr1lT7nG3atEn//v2TrLuy6k9/+tOsXr16g5mq\nqqr88Y9/zLXXXlvt833pS18qrW+++ea8/PLLH5tZuHBhfvCDH+T555+vlf8OAAAAANDQNKvvAAAA\nAAAA9W1ThcJWrVpl5MiROfXUU7Nq1ao888wzGTRoUAYOHJhdd901lZWVefLJJ/Paa69lu+22y/HH\nH5/bb799q2Y77LDDstNOO2XhwoV56qmnSlcP3W233fKFL3xhqxzjnHPOyZNPPpk33ngjS5YsyXe+\n850cdNBB+cIXvpAmTZrkb3/7WyZPnpzVq1fnlFNOyS233FLtc5511ll54oknsnbt2tx///155ZVX\nMnDgwOy0006ZP39+Hn/88cycOTMdO3bMYYcdljFjxmzyuQ499ND07Nkz06ZNy6JFi3LCCSfksMMO\nyz777JMWLVpkxowZefTRR1NZWZm99tore+yxRx566CFFUQAAAAAaNQVRAAAAAKDR+7B0uTEHHnhg\nRo8enfPOOy8VFRWpqKjIuHHjNphp06ZNRo0alSVLlmz1bM2aNcvXv/713H777RvkXP/Kop/Wdttt\nl1tvvTVnnnlmXnzxxVRVVeWpp57KU089VZr58Iql/+///b9SQXRzf2/7779/LrnkklxyySVZu3Zt\n/vGPf+TWW2/dYGa33XbL6NGj8/+1c8corYRRGIa/mVRaagoRtLFU3IEkpXYKImLpkoILCCKkU7EI\nJI2pXYTYWLoBm7mVF2w0F4SLh+dp5+efw9TvnNls9uV8TdPk6uoql5eXeXl5Sdd1WSwWWSwWn87t\n7e1lNBplNBp9O9+HZc4AAAAAwG8kEAUAAAAAfpWvtkJ+PFt2c+Sy54fDYabTaa6vr/P4+JjX19e0\nbZuNjY0cHBzk4uIiW1tbubu7+/EZk+Tk5CQ3NzdpmiZd16Vt26UD0WXft7a2lslkkvv7+zw8PPzd\nJtrv97O7u5vT09MMBoNP935359nZWfb39zMej/P09JS3t7esrKxke3s7h4eHOT8/z+rqaubz+bcz\nbm5u5vb2NpPJJLPZLM/Pz3l/f8/6+np2dnZydHSU4+Pj9Hq9f/rGtowCAAAAUFXT+T0aAAAAAAAA\nAAAAoJT2fw8AAAAAAAAAAAAAwM8SiAIAAAAAAAAAAAAUIxAFAAAAAAAAAAAAKEYgCgAAAAAAAAAA\nAFCMQBQAAAAAAAAAAACgGIEoAAAAAAAAAAAAQDECUQAAAAAAAAAAAIBiBKIAAAAAAAAAAAAAxQhE\nAQAAAAAAAAAAAIoRiAIAAAAAAAAAAAAUIxAFAAAAAAAAAAAAKEYgCgAAAAAAAAAAAFCMQBQAAAAA\nAAAAAACgGIEoAAAAAAAAAAAAQDECUQAAAAAAAAAAAIBiBKIAAAAAAAAAAAAAxQhEAQAAAAAAAAAA\nAIoRiAIAAAAAAAAAAAAUIxAFAAAAAAAAAAAAKEYgCgAAAAAAAAAAAFCMQBQAAAAAAAAAAACgGIEo\nAAAAAAAAAAAAQDECUQAAAAAAAAAAAIBiBKIAAAAAAAAAAAAAxQhEAQAAAAAAAAAAAIoRiAIAAAAA\nAAAAAAAUIxAFAAAAAAAAAAAAKEYgCgAAAAAAAAAAAFCMQBQAAAAAAAAAAACgmD87D+kZ6wsoZgAA\nAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x125cb6710>"
       ]
      }
     ],
     "prompt_number": 279
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "e = ski.img_as_float(E[1000:2000, 1000:2000])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": 4
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "sg.correlate(e, e)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [],
     "prompt_number": "*"
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "lacunarity[0, :]"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "F = io.imread(files[325] + \"_processed.jpg\")\n",
      "print nd.correlate(F[1950:2000], F[1950:2000])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "plt.plot(t, np.array(lacunarity[:, :325]), \"k\");\n",
      "plt.plot(t, np.array(lacunarity[:, 325:]), \"r\");"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "A = pd.read_csv(\"backup3.csv\")\n",
      "lacunarity = []\n",
      "minlac = []\n",
      "for i in range(401) :\n",
      "    lacunarity.append(eval(A.values[:, 3][i]))\n",
      "    \n",
      "lacunarity = np.array(lacunarity).T\n",
      "print lacunarity.shape\n",
      "\n",
      "print t\n",
      "for i in range(50) :\n",
      "    minlac.append(t[np.argmin(lacunarity[i, :])])"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "XX = np.array([lacunarity[0, :], entropy[-1, :]]).T\n",
      "X = XX\n",
      "q = SVC()\n",
      "q.fit(X, y) \n",
      "\n",
      "x_min, x_max = X[:, 0].min() - .05, X[:, 0].max() + .05\n",
      "y_min, y_max = X[:, 1].min() - .05, X[:, 1].max() + .05\n",
      "xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))\n",
      "Z = q.predict(np.c_[xx.ravel(), yy.ravel()])\n",
      "\n",
      "Z = Z.reshape(xx.shape)\n",
      "#plt.figure(1, figsize=(4, 3))\n",
      "\n",
      "plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.7)\n",
      "plt.xlabel('Lacunarity')\n",
      "plt.ylabel('Entropy')\n",
      "\n",
      "plt.xlim(xx.min(), xx.max())\n",
      "plt.ylim(yy.min(), yy.max())\n",
      "#plt.xticks(())\n",
      "#plt.yticks(())"
     ],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}