|
a |
|
b/4x/reference/NumFoci.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
# <nbformat>3.0</nbformat> |
|
|
3 |
|
|
|
4 |
# <codecell> |
|
|
5 |
|
|
|
6 |
import os |
|
|
7 |
|
|
|
8 |
import numpy as np |
|
|
9 |
|
|
|
10 |
import skimage as ski |
|
|
11 |
from skimage import io, filter, color, exposure, morphology, feature, draw, measure, transform |
|
|
12 |
|
|
|
13 |
import matplotlib |
|
|
14 |
%matplotlib inline |
|
|
15 |
matplotlib.rcParams["figure.figsize"] = (16, 10) |
|
|
16 |
|
|
|
17 |
# <codecell> |
|
|
18 |
|
|
|
19 |
l = os.listdir("../data") |
|
|
20 |
print l[6] |
|
|
21 |
|
|
|
22 |
qstain = np.array([[.26451728, .5205347, .81183386], [.9199094, .29797825, .25489032], [.28947765, .80015373, .5253158]]) |
|
|
23 |
|
|
|
24 |
# <codecell> |
|
|
25 |
|
|
|
26 |
A = io.imread("../data/" + l[5]) |
|
|
27 |
io.imshow(A) |
|
|
28 |
|
|
|
29 |
# <codecell> |
|
|
30 |
|
|
|
31 |
#B = exposure.adjust_sigmoid(filter.gaussian_filter(A[:, :, 0], 19), cutoff=.45, gain=15) |
|
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
|
35 |
B = exposure.adjust_sigmoid( |
|
|
36 |
filter.gaussian_filter( |
|
|
37 |
exposure.rescale_intensity( |
|
|
38 |
color.separate_stains( |
|
|
39 |
A, |
|
|
40 |
np.linalg.inv(qstain)), |
|
|
41 |
out_range=(0, 1))[:, :, 1], |
|
|
42 |
29), |
|
|
43 |
cutoff=.35, gain=20) |
|
|
44 |
io.imshow(B) |
|
|
45 |
|
|
|
46 |
# <codecell> |
|
|
47 |
|
|
|
48 |
#b = morphology.remove_small_objects(filter.threshold_adaptive(filter.gaussian_filter(exposure.adjust_sigmoid(A[:,:,1]), 31), 501, offset=-0.05), 2000) |
|
|
49 |
|
|
|
50 |
C = morphology.remove_small_objects( |
|
|
51 |
filter.threshold_adaptive(B, 301, offset=-0.025), |
|
|
52 |
4000) |
|
|
53 |
#io.imshow(morphology.binary_closing(np.logical_or(morphology.binary_dilation(C, morphology.disk(11)), b), morphology.disk(31))) |
|
|
54 |
io.imshow(C) |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
#io.imshow(exposure.adjust_sigmoid(A[:, :, 1])) |
|
|
58 |
|
|
|
59 |
# <codecell> |
|
|
60 |
|
|
|
61 |
io.imshow(A) |
|
|
62 |
|
|
|
63 |
# <codecell> |
|
|
64 |
|
|
|
65 |
d = ski.img_as_float(color.separate_stains(A, np.linalg.inv(qstain))) |
|
|
66 |
|
|
|
67 |
dd = exposure.adjust_sigmoid(filter.gaussian_filter(exposure.rescale_intensity(d[:, :, 0] + d[:, :, 2], out_range=(0, 1)), 21), gain=7, cutoff=0.6) |
|
|
68 |
|
|
|
69 |
ddd = morphology.remove_small_objects(filter.threshold_adaptive(dd, 301, offset=-0.06), 2000) |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
io.imshow(morphology.binary_erosion(morphology.binary_dilation(ddd, morphology.disk(41)), morphology.disk(21))) |
|
|
73 |
|
|
|
74 |
#io.imshow(exposure.rescale_intensity(ski.img_as_float(A[:, :, 1]) + ski.img_as_float(A[:, :, 2]), out_range=(0, 256))) |
|
|
75 |
|
|
|
76 |
# <codecell> |
|
|
77 |
|
|
|
78 |
e = filter.gaussian_filter(exposure.rescale_intensity(d[:,:,1], out_range=(0, 1)), 31) |
|
|
79 |
#io.imshow(filter.gaussian_filter(e, 21)) |
|
|
80 |
#print np.mean(e) |
|
|
81 |
plt.plot(exposure.histogram(e)[1], exposure.histogram(e)[0]) |
|
|
82 |
|
|
|
83 |
# <codecell> |
|
|
84 |
|
|
|
85 |
io.imshow(filter.threshold_adaptive(e, 301, offset=0.025)) |
|
|
86 |
|
|
|
87 |
# <codecell> |
|
|
88 |
|
|
|
89 |
io.imshow(A) |
|
|
90 |
|
|
|
91 |
# <codecell> |
|
|
92 |
|
|
|
93 |
from skimage import data |
|
|
94 |
ihc = data.immunohistochemistry() |
|
|
95 |
ihc_hdx = color.separate_stains(ihc, color.hdx_from_rgb) |
|
|
96 |
ihc_rgb = color.combine_stains(ihc_hdx, color.rgb_from_hdx) |
|
|
97 |
|
|
|
98 |
io.imshow(ihc_hdx[:,:,0]) |
|
|
99 |
|
|
|
100 |
# <codecell> |
|
|
101 |
|
|
|
102 |
print [[0.644211, .835*0.716556, 0.266844], [0.092789, .835*0.954111, 0.283111], [0.00001, 0.00001, 0.00001]] |
|
|
103 |
io.imshow(color.separate_stains(A, |
|
|
104 |
np.linalg.inv([[0.644211, 0.716556, 0.266844], [0.092789, 0.954111, 0.283111], [0.00001, 0.00001, 0.00001]]))[:, :, 2]) |
|
|
105 |
|
|
|
106 |
|
|
|
107 |
|
|
|
108 |
# <codecell> |
|
|
109 |
|
|
|
110 |
qstain = np.array([[.26451728, .5205347, .81183386], [.9199094, .29797825, .25489032], [.28947765, .80015373, .5253158]]) |
|
|
111 |
qfrompaper = np.array([[0.644211, .835*0.716556, 0.266844], [0.092789, .835*0.954111, 0.283111], [0.75919851748933231, 0.085468001712004443, 0.92121791197468583]]) |
|
|
112 |
|
|
|
113 |
aa = io.imread("/Users/qcaudron/Desktop/he copy.jpg") |
|
|
114 |
ab = color.separate_stains(A, |
|
|
115 |
np.linalg.inv(qstain)) |
|
|
116 |
|
|
|
117 |
ac = color.combine_stains(ab, |
|
|
118 |
(qstain)) |
|
|
119 |
|
|
|
120 |
io.imshow(ab[1000:2000, :1000, 1]) |
|
|
121 |
#print np.max(ab[:,:,2]) |
|
|
122 |
|
|
|
123 |
# <codecell> |
|
|
124 |
|
|
|
125 |
np.sum(q**2, axis=1) |
|
|
126 |
|
|
|
127 |
# <codecell> |
|
|
128 |
|
|
|
129 |
|
|
|
130 |
# <codecell> |
|
|
131 |
|
|
|
132 |
print (color.rgb_from_hed) |
|
|
133 |
print color.hed_from_rgb |
|
|
134 |
|