|
a |
|
b/10x/reference/batch.py |
|
|
1 |
# -*- coding: utf-8 -*- |
|
|
2 |
# <nbformat>3.0</nbformat> |
|
|
3 |
|
|
|
4 |
# <codecell> |
|
|
5 |
|
|
|
6 |
import os |
|
|
7 |
|
|
|
8 |
import numpy as np |
|
|
9 |
|
|
|
10 |
import skimage as ski |
|
|
11 |
from skimage import io, filter, color, exposure, morphology, feature, draw, measure, transform |
|
|
12 |
|
|
|
13 |
from scipy.spatial import distance |
|
|
14 |
from scipy import ndimage |
|
|
15 |
|
|
|
16 |
import matplotlib |
|
|
17 |
%matplotlib inline |
|
|
18 |
import matplotlib.pyplot as plt |
|
|
19 |
import seaborn |
|
|
20 |
matplotlib.rcParams["figure.figsize"] = (16, 10) |
|
|
21 |
|
|
|
22 |
# <codecell> |
|
|
23 |
|
|
|
24 |
# Load filenames |
|
|
25 |
dirq = "/Users/qcaudron/repositories/Quantitative-Histology/10x/data/" |
|
|
26 |
files = [] |
|
|
27 |
for i in os.listdir(dirq) : |
|
|
28 |
if i.endswith(".jpg") : |
|
|
29 |
files.append(dirq + i) |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
offset = 1000 |
|
|
33 |
lengthscale = 301 |
|
|
34 |
A = io.imread(files[4]) |
|
|
35 |
|
|
|
36 |
|
|
|
37 |
# Things to measure for each image |
|
|
38 |
in_count = [] |
|
|
39 |
out_count = [] |
|
|
40 |
in_size = [] |
|
|
41 |
out_size = [] |
|
|
42 |
in_area_density = [] |
|
|
43 |
out_area_density = [] |
|
|
44 |
in_point_density = [] |
|
|
45 |
out_point_density = [] |
|
|
46 |
var_point_density = [] |
|
|
47 |
cov_point_density = [] |
|
|
48 |
var_area_density = [] |
|
|
49 |
cov_area_density = [] |
|
|
50 |
fs_area = [] |
|
|
51 |
pairwise = [] |
|
|
52 |
|
|
|
53 |
|
|
|
54 |
image = exposure.equalize_adapthist(A) |
|
|
55 |
io.imshow(image) |
|
|
56 |
plt.grid(False) |
|
|
57 |
|
|
|
58 |
# <codecell> |
|
|
59 |
|
|
|
60 |
# Process for nuclei |
|
|
61 |
|
|
|
62 |
binary = filter.threshold_adaptive(exposure.adjust_sigmoid(A[:, :, 0], cutoff=0.4, gain = 30), 301).astype(bool) |
|
|
63 |
clean = morphology.binary_closing(binary, morphology.disk(3)).astype(bool) |
|
|
64 |
clean = morphology.remove_small_objects(clean, 200) |
|
|
65 |
clean = morphology.remove_small_objects( (1-clean).astype(bool), 200) |
|
|
66 |
|
|
|
67 |
io.imshow(clean) |
|
|
68 |
plt.grid(False) |
|
|
69 |
|
|
|
70 |
# <codecell> |
|
|
71 |
|
|
|
72 |
# Find contour of inflammatory zone |
|
|
73 |
|
|
|
74 |
local_density = filter.gaussian_filter(clean, 61) |
|
|
75 |
local_density -= local_density.min() |
|
|
76 |
local_density /= local_density.max() |
|
|
77 |
|
|
|
78 |
ent = filter.gaussian_filter(filter.rank.entropy(local_density, morphology.disk(3)), 75) |
|
|
79 |
ent -= ent.min() |
|
|
80 |
ent /= ent.max() |
|
|
81 |
|
|
|
82 |
info = ent * (1 + local_density) |
|
|
83 |
|
|
|
84 |
bw = (info) > filter.threshold_otsu(info) |
|
|
85 |
|
|
|
86 |
C = measure.find_contours(bw, 0.5) |
|
|
87 |
centroid = [] |
|
|
88 |
vals = [] |
|
|
89 |
|
|
|
90 |
for c in C : |
|
|
91 |
centroid.append(np.linalg.norm([c[:, 1].mean() - bw.shape[1] / 2, c[:, 0].mean() - bw.shape[0] / 2])) |
|
|
92 |
vals.append(local_density.T[c.astype(int)].sum()) |
|
|
93 |
|
|
|
94 |
cent = C[np.argmin(centroid / np.array(vals))] |
|
|
95 |
path = matplotlib.path.Path(cent) |
|
|
96 |
|
|
|
97 |
io.imshow(image) |
|
|
98 |
plt.plot(cent[:, 1], cent[:, 0], lw=5, c="k", alpha = 0.7) |
|
|
99 |
plt.grid(False) |
|
|
100 |
|
|
|
101 |
# <codecell> |
|
|
102 |
|
|
|
103 |
# Segmentation |
|
|
104 |
|
|
|
105 |
distance = ndimage.distance_transform_edt(clean) |
|
|
106 |
peaks = feature.peak_local_max(distance, indices=False, labels = clean) |
|
|
107 |
markers = ndimage.label(peaks)[0] |
|
|
108 |
labels = morphology.watershed(-distance, markers, mask=clean) |
|
|
109 |
|
|
|
110 |
io.imshow(labels, interpolation = "nearest", cmap = plt.cm.spectral) |
|
|
111 |
plt.grid(False) |
|
|
112 |
|
|
|
113 |
# <codecell> |
|
|
114 |
|
|
|
115 |
# Properties of each nucleus |
|
|
116 |
nuclei = measure.regionprops(labels) |
|
|
117 |
contour = matplotlib.path.Path(cent, closed=True) |
|
|
118 |
|
|
|
119 |
incount = 0 |
|
|
120 |
outcount = 0 |
|
|
121 |
insize = [] |
|
|
122 |
outsize = [] |
|
|
123 |
outer_nuclei = [] |
|
|
124 |
|
|
|
125 |
# Number of nuclei, and their sizes, inside and outside the focus |
|
|
126 |
for n in nuclei : |
|
|
127 |
if contour.contains_point(n.centroid) : |
|
|
128 |
incount += 1 |
|
|
129 |
insize.append((labels == n.label).sum()) |
|
|
130 |
else : |
|
|
131 |
outcount += 1 |
|
|
132 |
outsize.append((labels == n.label).sum()) |
|
|
133 |
outer_nuclei.append(n) |
|
|
134 |
|
|
|
135 |
in_count.append(incount) |
|
|
136 |
out_count.append(outcount) |
|
|
137 |
in_size.append(np.mean(insize)) |
|
|
138 |
out_size.append(np.mean(outsize)) |
|
|
139 |
|
|
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
|
143 |
# Using the shoelace algorithm, compute the area of the focus |
|
|
144 |
x = path.vertices[:, 0] |
|
|
145 |
y = path.vertices[:, 1] |
|
|
146 |
x = np.append(x, path.vertices[0, 0]) |
|
|
147 |
y = np.append(y, path.vertices[0, 1]) |
|
|
148 |
fsarea = np.abs(np.sum(x[:-1] * y[1:] - x[1:] * y[:-1])) / (2. * 3456 * 5184) |
|
|
149 |
fs_area.append(fsarea) |
|
|
150 |
|
|
|
151 |
# <codecell> |
|
|
152 |
|
|
|
153 |
# Area densities inside and outside the focus |
|
|
154 |
in_area_density.append(incount * np.mean(insize) / fsarea) |
|
|
155 |
out_area_density.append(outcount * np.mean(outsize) / (1. - fsarea)) |
|
|
156 |
|
|
|
157 |
# Point densities inside and outside the focus |
|
|
158 |
in_point_density.append(incount / fsarea) |
|
|
159 |
out_point_density.append(outcount / (1. - fsarea)) |
|
|
160 |
|
|
|
161 |
# <codecell> |
|
|
162 |
|
|
|
163 |
# Variance and CoV of outside the focus |
|
|
164 |
mask = np.zeros_like(clean) |
|
|
165 |
for c in cent : |
|
|
166 |
mask[int(np.round(c[0])), int(np.round(c[1]))] = 1 |
|
|
167 |
mask = ndimage.binary_fill_holes(ndimage.maximum_filter(mask, 35)) |
|
|
168 |
|
|
|
169 |
areadensity = filter.gaussian_filter(clean, 51) |
|
|
170 |
var_area_density.append(np.var(areadensity[mask == 0])) |
|
|
171 |
cov_area_density.append(np.std(areadensity[mask == 0] / np.mean(areadensity[mask == 0]))) |
|
|
172 |
|
|
|
173 |
pointdensity = np.zeros_like(clean) |
|
|
174 |
for n in nuclei : |
|
|
175 |
pointdensity[int(np.round(n.centroid[0])), int(np.round(n.centroid[1]))] = 1 |
|
|
176 |
pointdensity = filter.gaussian_filter(pointdensity, 51) |
|
|
177 |
|
|
|
178 |
var_point_density.append(np.var(pointdensity[mask == 0])) |
|
|
179 |
cov_point_density.append(np.std(pointdensity[mask == 0] / np.mean(pointdensity[mask == 0]))) |
|
|
180 |
|
|
|
181 |
# <codecell> |
|
|
182 |
|
|
|
183 |
# Pairwise distances between nuclei outside the focal area |
|
|
184 |
distances = distance.squareform(distance.pdist([n.centroid for n in outer_nuclei])) |
|
|
185 |
|
|
|
186 |
for i in range(len(distances)) : |
|
|
187 |
distances[i, i] = np.inf |
|
|
188 |
|
|
|
189 |
pairwise.append(np.min(distances, axis=0).mean()) |
|
|
190 |
|
|
|
191 |
# <codecell> |
|
|
192 |
|
|
|
193 |
print in_count |
|
|
194 |
print out_count |
|
|
195 |
print in_size |
|
|
196 |
print out_size |
|
|
197 |
print in_area_density |
|
|
198 |
print out_area_density |
|
|
199 |
print in_point_density |
|
|
200 |
print out_point_density |
|
|
201 |
print var_point_density |
|
|
202 |
print cov_point_density |
|
|
203 |
print var_area_density |
|
|
204 |
print cov_area_density |
|
|
205 |
print fs_area |
|
|
206 |
|