|
a |
|
b/scripts/Overlay.py |
|
|
1 |
from PyQt5.QtCore import QThread, pyqtSignal |
|
|
2 |
from skimage import color |
|
|
3 |
import numpy as np |
|
|
4 |
from natsort import natsorted |
|
|
5 |
import os |
|
|
6 |
from PIL import Image |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
|
|
|
10 |
class Overlay(QThread): |
|
|
11 |
info = pyqtSignal(str) |
|
|
12 |
countChanged = pyqtSignal(int) |
|
|
13 |
figures = pyqtSignal() |
|
|
14 |
maxcuts = pyqtSignal(int) |
|
|
15 |
|
|
|
16 |
def __init__(self, path, save=False): |
|
|
17 |
super().__init__() |
|
|
18 |
self.inputpath = path |
|
|
19 |
self.save = save |
|
|
20 |
self.threshold = None |
|
|
21 |
|
|
|
22 |
def run(self, debug=False): |
|
|
23 |
files = [f for f in natsorted(os.listdir(self.inputpath)) if not f.endswith("Overlay.png")] |
|
|
24 |
self.maxcuts.emit(len([f for f in files if f.endswith('.png')])) |
|
|
25 |
i = 0 |
|
|
26 |
for file in files: |
|
|
27 |
if file.endswith('.png'): |
|
|
28 |
self.info.emit("Preparing "+file) |
|
|
29 |
print(file) |
|
|
30 |
|
|
|
31 |
image = np.array(Image.open(self.inputpath+os.sep+file))[:, :, :3] |
|
|
32 |
|
|
|
33 |
# image = mpimg.imread(self.inputpath+os.sep+file)[:,:,:3] |
|
|
34 |
self.info.emit("Reading " + file) |
|
|
35 |
self.current_image = image[::10, ::10] |
|
|
36 |
self.figures.emit() |
|
|
37 |
self.overlay(image,filename=file, debug=debug, save=self.save) |
|
|
38 |
self.countChanged.emit(int(i)) # EMIT the loading bar |
|
|
39 |
self.info.emit(file + " Overlay Done") |
|
|
40 |
i += 1 |
|
|
41 |
self.info.emit("All Overlays Saved - ready") |
|
|
42 |
|
|
|
43 |
def overlay(self, image, filename, debug=False, save=False): |
|
|
44 |
|
|
|
45 |
img_hsv = color.rgb2hsv(image) |
|
|
46 |
img_hue = img_hsv[:, :, 0] |
|
|
47 |
image_sat = img_hsv[:, :, 1] |
|
|
48 |
hue = np.logical_and(img_hue > 0.02, img_hue < 0.10) # BROWN PIXELS BETWEEN 0.02 and 0.10 |
|
|
49 |
self.info.emit("Preparing thresholds for " + filename) |
|
|
50 |
if self.threshold: |
|
|
51 |
mask = np.logical_and(hue, image_sat > self.threshold) |
|
|
52 |
else: |
|
|
53 |
print("normal threshold") |
|
|
54 |
mask = np.logical_and(hue, image_sat > 0.79) |
|
|
55 |
mask = mask.astype(int) |
|
|
56 |
self.current_image = mask[::10, ::10] |
|
|
57 |
self.figures.emit() |
|
|
58 |
self.info.emit("Creating overlay for " + filename) |
|
|
59 |
alpha = 0.9 |
|
|
60 |
imbw = color.rgb2gray(image) |
|
|
61 |
rows, cols = imbw.shape |
|
|
62 |
# Construct a colour image to superimpose |
|
|
63 |
color_mask = np.zeros((rows, cols, 3)) |
|
|
64 |
color_mask[:, :, 1] = mask # Change to 0,1,2, for rgb |
|
|
65 |
# Construct RGB version of grey-level image |
|
|
66 |
img_color = np.dstack((imbw, imbw, imbw)) |
|
|
67 |
img_hsv = color.rgb2hsv(img_color) |
|
|
68 |
color_mask_hsv = color.rgb2hsv(color_mask) |
|
|
69 |
img_hsv[..., 0] = color_mask_hsv[..., 0] |
|
|
70 |
img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha |
|
|
71 |
self.info.emit("Converting to RGB " + filename) |
|
|
72 |
img_masked = color.hsv2rgb(img_hsv) |
|
|
73 |
# TODO : emit this fig nicely |
|
|
74 |
# self.current_image = img_masked[img_masked.shape[0]-200:img_masked.shape[0]+200, |
|
|
75 |
# img_masked.shape[0]-200:img_masked.shape[0]+200] |
|
|
76 |
# self.figures.emit() |
|
|
77 |
print("displaying output") |
|
|
78 |
self.info.emit("Saving " + filename) |
|
|
79 |
|
|
|
80 |
imagesave = Image.fromarray((img_masked * 255).astype(np.uint8)) |
|
|
81 |
imagesave.save(self.inputpath+os.sep+filename+'_Overlay.png') |
|
|
82 |
|
|
|
83 |
# mpimg.imsave(self.inputpath+os.sep+filename+'_Overlay.png', img_masked) |