--- a +++ b/scripts/DABanalysis.py @@ -0,0 +1,95 @@ +import numpy as np +import os +from natsort import natsorted +import pandas as pd +from skimage.color import rgb2hsv, rgb2gray +from skimage.filters import gaussian, threshold_triangle +from skimage.exposure import rescale_intensity +from PyQt5.QtCore import QThread, pyqtSignal +from PIL import Image + + +class DabAnalysis(QThread): + + maxcuts = pyqtSignal(int) + info = pyqtSignal(str) + countChanged = pyqtSignal(int) + figures = pyqtSignal() + activate = pyqtSignal(bool) + + def __init__(self, path, save=False): + super().__init__() + self.inputpath = path + self.save = save + self.threshold = None + + def run(self, debug=False): + self.activate.emit(False) + analysis = [] + files = [f for f in natsorted(os.listdir(self.inputpath)) if not f.endswith("Overlay.png")] + self.maxcuts.emit(len([f for f in files if f.endswith('.png')])) + i = 0 + for file in files: + if file.endswith('.png'): + self.info.emit("Analysing "+file) + print(file) + info = [] + image = np.array(Image.open(self.inputpath+os.sep+file))[:, :, :3] + self.current_image = image[::10, ::10] + self.figures.emit() + info.append(str(file)) + info.extend(self.QuantStain(image, filename=file, save=self.save)) + info.append(self.QuantCore(image, filename=file, save=self.save)) + analysis.append(info) + print(info) + self.countChanged.emit(int(i)+1) # EMIT the loading bar + self.info.emit(file + " analysed") + i += 1 + # TODO can make this more lightweight by removing pandas and using csv + df = pd.DataFrame(analysis, columns=('CoreName', 'AMTsignal', 'Mean_intensity', 'Standard_Dev_intensity', + 'AMTtissue')) + df['AFperAMTT'] = df['AMTsignal']/df['AMTtissue']*100 + df['Mean_Intensity_perAMTT'] = df['Mean_intensity'] / df['AMTtissue'] * 100 + df['SD_Intensity_perAMTT'] = df['Standard_Dev_intensity'] / df['AMTtissue'] * 100 + df.to_excel(self.inputpath+os.sep+'CoreAnalysis_'+str(df['CoreName'][0])[:-6]+'.xlsx') + self.info.emit("All Files Analysed - ready") + self.activate.emit(True) + + def QuantStain(self, image, filename, save=False): + img_hsv = rgb2hsv(image) + img_hue = img_hsv[:, :, 0] + image_sat = img_hsv[:, :, 1] + hue = np.logical_and(img_hue > 0.02, img_hue < 0.10) # BROWN PIXELS BETWEEN 0.02 and 0.10 + if self.threshold: + stain = np.logical_and(hue, image_sat > self.threshold) + else: + print("normal threshold") + stain = np.logical_and(hue, image_sat > 0.79) + # TODO : fix this - sent bug report to Github + self.current_image = stain[::10, ::10].astype(float) + self.figures.emit() + if save: + self.info.emit("Saving - " + filename+'_stain.tiff') + imagesave = Image.fromarray(stain) + imagesave.save(self.inputpath+os.sep+filename+'_stain.tiff') + stint = np.copy(image) + stint = rgb2gray(stint) + stint = rescale_intensity(stint, out_range=(0, 255)) + stint[stain == 0] = 0 # array with only the stained pixels + stint = np.ravel(stint) + stint = stint[stint != 0] + stint_mean = stint.mean() + stint_std = stint.std() + stained = np.sum(stain) + return stained, stint_mean, stint_std + + def QuantCore(self, image, filename, save=False): + image = gaussian(rgb2gray(image), sigma=2) + thresh = threshold_triangle(image[image > 0]) + binary = np.logical_and(image < thresh, image > 0) + wholeCore = np.sum(binary) + if save: + self.info.emit("Saving - " + filename + '_core.tiff') + imagesave = Image.fromarray(binary) + imagesave.save(self.inputpath+os.sep+filename + '_core.tiff') + return wholeCore