|
a |
|
b/Calculate-Transforms.groovy |
|
|
1 |
/*** |
|
|
2 |
* See https://github.com/MarkZaidi/QuPath-Image-Alignment/blob/main/Calculate-Transforms.groovy for most up-to-date version. |
|
|
3 |
* Please link to github repo when referencing code in forums, as the code will be continually updated. |
|
|
4 |
* |
|
|
5 |
* Script to align 2 or more images in the project with different pixel sizes, using either intensities or annotations. |
|
|
6 |
* Run from any image in a project containing all sets of images that require alignment |
|
|
7 |
* Writes the affine transform to an object inside the Affine subfolder of your project folder. |
|
|
8 |
* Also grabs the detection objects from the template image. Can change this to annotation objects. |
|
|
9 |
* Usage: |
|
|
10 |
* - Load in all sets of images to be aligned. Rename file names such that the only underscore (_) in the image name |
|
|
11 |
* separates the SlideID from stain. Example: N19-1107 30Gy M5_PANEL2.vsi |
|
|
12 |
* - Adjust the inputs specified under "Needed inputs", and run script (can run on any image, iterates over entire project) |
|
|
13 |
* - If script errors due to alignment failing to converge, set 'align_specific' to the SlideID of the image it failed on |
|
|
14 |
* - Set 'skip_image' to 1, rerun script to skip over the error-causing image |
|
|
15 |
* - Set 'skip_image' to 0, and either adjust 'AutoAlignPixelSize' or draw tissue annotations on all stains of images in list |
|
|
16 |
* - run script, verify all moving images contain a transform file located in the 'Affine' folder |
|
|
17 |
* |
|
|
18 |
* Needed inputs: |
|
|
19 |
* - registrationType : Set as "AFFINE" for translations, rotations, scaling, and sheering. Set as "RIGID" for only translations and rotations. |
|
|
20 |
* - refStain : Set to stain name of image to align all subsequent images to |
|
|
21 |
* - wsiExt : file name extension |
|
|
22 |
* - align_specific : see above, set to null for first run through |
|
|
23 |
* - AutoAlignPixelSize : downsample factor when calculating the transform. Greater values result in faster calculation, but may impact quality |
|
|
24 |
* - skip_image see above, value doesn't matter if align_specific is null |
|
|
25 |
* |
|
|
26 |
* |
|
|
27 |
* Script largely adapted from Sara McArdle's callable implementation of QuPath's Interactive Image Alignment, and Yau Mun Lim's method |
|
|
28 |
* of matching reference (static) and overlay (moving) images based on file names. |
|
|
29 |
* |
|
|
30 |
*/ |
|
|
31 |
|
|
|
32 |
import qupath.lib.objects.PathCellObject |
|
|
33 |
import qupath.lib.objects.PathDetectionObject |
|
|
34 |
import qupath.lib.objects.PathObject |
|
|
35 |
import qupath.lib.objects.PathObjects |
|
|
36 |
import qupath.lib.objects.PathTileObject |
|
|
37 |
import qupath.lib.objects.classes.PathClassFactory |
|
|
38 |
import qupath.lib.roi.RoiTools |
|
|
39 |
import qupath.lib.roi.interfaces.ROI |
|
|
40 |
|
|
|
41 |
import java.awt.geom.AffineTransform |
|
|
42 |
import javafx.scene.transform.Affine |
|
|
43 |
import qupath.lib.images.servers.ImageServer |
|
|
44 |
|
|
|
45 |
import java.awt.Graphics2D |
|
|
46 |
import java.awt.Transparency |
|
|
47 |
import java.awt.color.ColorSpace |
|
|
48 |
import java.awt.image.BufferedImage |
|
|
49 |
|
|
|
50 |
import org.bytedeco.opencv.global.opencv_core; |
|
|
51 |
import org.bytedeco.opencv.opencv_core.Mat; |
|
|
52 |
import org.bytedeco.opencv.opencv_core.TermCriteria; |
|
|
53 |
import org.bytedeco.opencv.global.opencv_video; |
|
|
54 |
import org.bytedeco.javacpp.indexer.FloatIndexer; |
|
|
55 |
import org.bytedeco.javacpp.indexer.Indexer; |
|
|
56 |
|
|
|
57 |
import qupath.lib.gui.dialogs.Dialogs; |
|
|
58 |
import qupath.lib.images.servers.PixelCalibration; |
|
|
59 |
|
|
|
60 |
import qupath.lib.regions.RegionRequest; |
|
|
61 |
import qupath.opencv.tools.OpenCVTools |
|
|
62 |
|
|
|
63 |
import java.awt.image.ComponentColorModel |
|
|
64 |
import java.awt.image.DataBuffer |
|
|
65 |
|
|
|
66 |
import static qupath.lib.gui.scripting.QPEx.*; |
|
|
67 |
|
|
|
68 |
// Variables to set |
|
|
69 |
////////////////////////////////// |
|
|
70 |
String registrationType="AFFINE" //Specify as "RIGID" or "AFFINE" |
|
|
71 |
String refStain = "PTEN" //stain to use as reference image (all images will be aligned to this) |
|
|
72 |
String wsiExt = ".ndpi" //image name extension |
|
|
73 |
//def align_specific=['N19-1107 30Gy M5']//If auto-align on intensity fails, put the image(s) that it fails on here |
|
|
74 |
def AutoAlignPixelSize = 30 //downsample factor for calculating transform (tform). Does not affect scaling of output image |
|
|
75 |
align_specific=null //When referencing an image, just include the slide name (stuff before _) |
|
|
76 |
skip_image=0 // If 1, skips the images defined by 'align_specific'. If 0, skips all but image(s) in 'align_specific' |
|
|
77 |
//Experimental features |
|
|
78 |
use_single_channel=0 // Use a single channel from each image for alignment (set to channel number to use). Set to 0 to use all channels. |
|
|
79 |
iterations=5 // Number of times to iteratively calculate the transformation |
|
|
80 |
mov_rotation=180 // rotation to apply to ALL moving images before calculating alignment. Strongly recommend ensuring proper orientation before loading into QuPath. |
|
|
81 |
decrement_factor=1.1 // if iterations>1, by what factor to decrease AutoAlignPixelSize (increasing resolution of alignment). Set to 1 to leave AutoAlignPixelSize unchanged across iterations. |
|
|
82 |
|
|
|
83 |
///////////////////////////////// |
|
|
84 |
|
|
|
85 |
|
|
|
86 |
//Lim's code for file name matching |
|
|
87 |
// Get list of all images in project |
|
|
88 |
def projectImageList = getProject().getImageList() |
|
|
89 |
|
|
|
90 |
// Create empty lists |
|
|
91 |
def imageNameList = [] |
|
|
92 |
def slideIDList = [] |
|
|
93 |
def stainList = [] |
|
|
94 |
def missingList = [] |
|
|
95 |
|
|
|
96 |
// Split image file names to desired variables and add to previously created lists |
|
|
97 |
for (entry in projectImageList) { |
|
|
98 |
def name = entry.getImageName() |
|
|
99 |
def (imageName, imageExt) = name.split('\\.') |
|
|
100 |
def (slideID, stain) = imageName.split('_') |
|
|
101 |
imageNameList << imageName |
|
|
102 |
slideIDList << slideID |
|
|
103 |
stainList << stain |
|
|
104 |
} |
|
|
105 |
|
|
|
106 |
// Remove duplicate entries from lists |
|
|
107 |
slideIDList = slideIDList.unique() |
|
|
108 |
stainList = stainList.unique() |
|
|
109 |
print (slideIDList) |
|
|
110 |
print (align_specific) |
|
|
111 |
// Remove specific entries if causing alignment to not converge |
|
|
112 |
if (align_specific != null) |
|
|
113 |
if (skip_image == 1) |
|
|
114 |
slideIDList.removeAll(align_specific) |
|
|
115 |
else |
|
|
116 |
slideIDList.retainAll(align_specific) |
|
|
117 |
|
|
|
118 |
|
|
|
119 |
if (stainList.size() == 1) { |
|
|
120 |
print 'Only one stain detected. Target slides may not be loaded.' |
|
|
121 |
return |
|
|
122 |
} |
|
|
123 |
|
|
|
124 |
// Create Affine folder to put transformation matrix files |
|
|
125 |
path = buildFilePath(PROJECT_BASE_DIR, 'Affine') |
|
|
126 |
mkdirs(path) |
|
|
127 |
|
|
|
128 |
// Process all combinations of slide IDs, tissue blocks, and stains based on reference stain slide onto target slides |
|
|
129 |
for (slide in slideIDList) { |
|
|
130 |
for (stain in stainList) { |
|
|
131 |
if (stain != refStain) { |
|
|
132 |
refFileName = slide + "_" + refStain + wsiExt |
|
|
133 |
targetFileName = slide + "_" + stain + wsiExt |
|
|
134 |
path = buildFilePath(PROJECT_BASE_DIR, 'Affine', targetFileName) |
|
|
135 |
|
|
|
136 |
def refImage = projectImageList.find {it.getImageName() == refFileName} |
|
|
137 |
def targetImage = projectImageList.find {it.getImageName() == targetFileName} |
|
|
138 |
if (refImage == null) { |
|
|
139 |
print 'Reference slide ' + refFileName + ' missing!' |
|
|
140 |
missingList << refFileName |
|
|
141 |
continue |
|
|
142 |
} |
|
|
143 |
if (targetImage == null) { |
|
|
144 |
print 'Target slide ' + targetFileName + ' missing!' |
|
|
145 |
missingList << targetFileName |
|
|
146 |
continue |
|
|
147 |
} |
|
|
148 |
println("Aligning reference " + refFileName + " to target " + targetFileName) |
|
|
149 |
//McArdle's code for image alignment |
|
|
150 |
ImageServer<BufferedImage> serverBase = refImage.readImageData().getServer() |
|
|
151 |
ImageServer<BufferedImage> serverOverlay = targetImage.readImageData().getServer() |
|
|
152 |
def static_img_name = refFileName |
|
|
153 |
def moving_img_name = targetFileName |
|
|
154 |
def project_name = getProject() |
|
|
155 |
def entry_name_static = project_name.getImageList().find { it.getImageName() == static_img_name } |
|
|
156 |
def entry_name_moving = project_name.getImageList().find { it.getImageName() == moving_img_name } |
|
|
157 |
|
|
|
158 |
def serverBaseMark = entry_name_static.readImageData() |
|
|
159 |
def serverOverlayMark = entry_name_moving.readImageData() |
|
|
160 |
Affine affine=[] |
|
|
161 |
|
|
|
162 |
|
|
|
163 |
mov_width=serverOverlayMark.getServer().getWidth() |
|
|
164 |
mov_height=serverOverlayMark.getServer().getHeight() |
|
|
165 |
affine.prependRotation(mov_rotation,mov_width/2,mov_height/2) |
|
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
|
169 |
for(int i = 0;i<iterations;i++) { |
|
|
170 |
//Perform the alignment. If no annotations present, use intensity. If annotations present, use area |
|
|
171 |
print("autoalignpixelsize:" + AutoAlignPixelSize) |
|
|
172 |
if (serverBaseMark.hierarchy.nObjects() > 0 || serverOverlayMark.hierarchy.nObjects() > 0) |
|
|
173 |
autoAlignPrep(AutoAlignPixelSize, "AREA", serverBaseMark, serverOverlayMark, affine, registrationType, use_single_channel) |
|
|
174 |
else |
|
|
175 |
autoAlignPrep(AutoAlignPixelSize, "notAREA", serverBaseMark, serverOverlayMark, affine, registrationType, use_single_channel) |
|
|
176 |
AutoAlignPixelSize/=decrement_factor |
|
|
177 |
if (AutoAlignPixelSize<1){ |
|
|
178 |
AutoAlignPixelSize=1 |
|
|
179 |
} |
|
|
180 |
} |
|
|
181 |
|
|
|
182 |
def matrix = [] |
|
|
183 |
|
|
|
184 |
|
|
|
185 |
matrix << affine.getMxx() |
|
|
186 |
matrix << affine.getMxy() |
|
|
187 |
matrix << affine.getTx() |
|
|
188 |
matrix << affine.getMyx() |
|
|
189 |
matrix << affine.getMyy() |
|
|
190 |
matrix << affine.getTy() |
|
|
191 |
|
|
|
192 |
new File(path).withObjectOutputStream { |
|
|
193 |
it.writeObject(matrix) |
|
|
194 |
} |
|
|
195 |
} |
|
|
196 |
} |
|
|
197 |
} |
|
|
198 |
|
|
|
199 |
if (missingList.isEmpty() == true) { |
|
|
200 |
print 'Done!' |
|
|
201 |
} else { |
|
|
202 |
missingList = missingList.unique() |
|
|
203 |
print 'Done! Missing slides: ' + missingList |
|
|
204 |
} |
|
|
205 |
|
|
|
206 |
|
|
|
207 |
/*Subfunctions taken from here: |
|
|
208 |
https://github.com/qupath/qupath/blob/a1465014c458d510336993802efb08f440b50cc1/qupath-experimental/src/main/java/qupath/lib/gui/align/ImageAlignmentPane.java |
|
|
209 |
*/ |
|
|
210 |
|
|
|
211 |
//creates an image server using the actual images (for intensity-based alignment) or a labeled image server (for annotation-based). |
|
|
212 |
double autoAlignPrep(double requestedPixelSizeMicrons, String alignmentMethod, ImageData<BufferedImage> imageDataBase, ImageData<BufferedImage> imageDataSelected, Affine affine,String registrationType, int use_single_channel) throws IOException { |
|
|
213 |
ImageServer<BufferedImage> serverBase, serverSelected; |
|
|
214 |
|
|
|
215 |
if (alignmentMethod == 'AREA') { |
|
|
216 |
logger.debug("Image alignment using area annotations"); |
|
|
217 |
Map<PathClass, Integer> labels = new LinkedHashMap<>(); |
|
|
218 |
int label = 1; |
|
|
219 |
labels.put(PathClassFactory.getPathClassUnclassified(), label++); |
|
|
220 |
for (def annotation : imageDataBase.getHierarchy().getAnnotationObjects()) { |
|
|
221 |
def pathClass = annotation.getPathClass(); |
|
|
222 |
if (pathClass != null && !labels.containsKey(pathClass)) |
|
|
223 |
labels.put(pathClass, label++); |
|
|
224 |
} |
|
|
225 |
for (def annotation : imageDataSelected.getHierarchy().getAnnotationObjects()) { |
|
|
226 |
def pathClass = annotation.getPathClass(); |
|
|
227 |
if (pathClass != null && !labels.containsKey(pathClass)) |
|
|
228 |
labels.put(pathClass, label++); |
|
|
229 |
} |
|
|
230 |
|
|
|
231 |
double downsampleBase = requestedPixelSizeMicrons / imageDataBase.getServer().getPixelCalibration().getAveragedPixelSize().doubleValue(); |
|
|
232 |
serverBase = new LabeledImageServer.Builder(imageDataBase) |
|
|
233 |
.backgroundLabel(0) |
|
|
234 |
.addLabels(labels) |
|
|
235 |
.downsample(downsampleBase) |
|
|
236 |
.build(); |
|
|
237 |
|
|
|
238 |
double downsampleSelected = requestedPixelSizeMicrons / imageDataSelected.getServer().getPixelCalibration().getAveragedPixelSize().doubleValue(); |
|
|
239 |
serverSelected = new LabeledImageServer.Builder(imageDataSelected) |
|
|
240 |
.backgroundLabel(0) |
|
|
241 |
.addLabels(labels) |
|
|
242 |
.downsample(downsampleSelected) |
|
|
243 |
.build(); |
|
|
244 |
//disable single channel alignment when working with Area annotations, unsure what bugs it can cause |
|
|
245 |
use_single_channel=0 |
|
|
246 |
} else { |
|
|
247 |
// Default - just use intensities |
|
|
248 |
logger.debug("Image alignment using intensities"); |
|
|
249 |
serverBase = imageDataBase.getServer(); |
|
|
250 |
serverSelected = imageDataSelected.getServer(); |
|
|
251 |
} |
|
|
252 |
|
|
|
253 |
scaleFactor=autoAlign(serverBase, serverSelected, registrationType, affine, requestedPixelSizeMicrons,use_single_channel); |
|
|
254 |
return scaleFactor |
|
|
255 |
} |
|
|
256 |
|
|
|
257 |
double autoAlign(ImageServer<BufferedImage> serverBase, ImageServer<BufferedImage> serverOverlay, String regionstrationType, Affine affine, double requestedPixelSizeMicrons, use_single_channel) { |
|
|
258 |
PixelCalibration calBase = serverBase.getPixelCalibration() |
|
|
259 |
double pixelSizeBase = calBase.getAveragedPixelSizeMicrons() |
|
|
260 |
double downsampleBase = 1 |
|
|
261 |
if (!Double.isFinite(pixelSizeBase)) { |
|
|
262 |
// while (serverBase.getWidth() / downsampleBase > 2000) |
|
|
263 |
// downsampleBase++; |
|
|
264 |
// logger.warn("Pixel size is unavailable! Default downsample value of {} will be used", downsampleBase) |
|
|
265 |
pixelSizeBase=50 |
|
|
266 |
downsampleBase = requestedPixelSizeMicrons / pixelSizeBase |
|
|
267 |
} else { |
|
|
268 |
downsampleBase = requestedPixelSizeMicrons / pixelSizeBase |
|
|
269 |
} |
|
|
270 |
|
|
|
271 |
PixelCalibration calOverlay = serverOverlay.getPixelCalibration() |
|
|
272 |
double pixelSizeOverlay = calOverlay.getAveragedPixelSizeMicrons() |
|
|
273 |
double downsampleOverlay = 1 |
|
|
274 |
if (!Double.isFinite(pixelSizeOverlay)) { |
|
|
275 |
// while (serverBase.getWidth() / downsampleOverlay > 2000) |
|
|
276 |
// downsampleOverlay++; |
|
|
277 |
// logger.warn("Pixel size is unavailable! Default downsample value of {} will be used", downsampleOverlay) |
|
|
278 |
pixelSizeOverlay=50 |
|
|
279 |
downsampleOverlay = requestedPixelSizeMicrons / pixelSizeOverlay |
|
|
280 |
} else { |
|
|
281 |
downsampleOverlay = requestedPixelSizeMicrons / pixelSizeOverlay |
|
|
282 |
} |
|
|
283 |
|
|
|
284 |
double scaleFactor=downsampleBase/downsampleOverlay |
|
|
285 |
|
|
|
286 |
BufferedImage imgBase = serverBase.readBufferedImage(RegionRequest.createInstance(serverBase.getPath(), downsampleBase, 0, 0, serverBase.getWidth(), serverBase.getHeight())) |
|
|
287 |
BufferedImage imgOverlay = serverOverlay.readBufferedImage(RegionRequest.createInstance(serverOverlay.getPath(), downsampleOverlay, 0, 0, serverOverlay.getWidth(), serverOverlay.getHeight())) |
|
|
288 |
|
|
|
289 |
//Determine whether to calculate intensity-based alignment using all channels or a single channel |
|
|
290 |
Mat matBase |
|
|
291 |
Mat matOverlay |
|
|
292 |
if (use_single_channel==0) { |
|
|
293 |
//print 'using all channels' |
|
|
294 |
imgBase = ensureGrayScale(imgBase) |
|
|
295 |
imgOverlay = ensureGrayScale(imgOverlay) |
|
|
296 |
matBase = OpenCVTools.imageToMat(imgBase) |
|
|
297 |
matOverlay = OpenCVTools.imageToMat(imgOverlay) |
|
|
298 |
|
|
|
299 |
} else { |
|
|
300 |
|
|
|
301 |
matBase = OpenCVTools.imageToMat(imgBase) |
|
|
302 |
matOverlay = OpenCVTools.imageToMat(imgOverlay) |
|
|
303 |
int channel = use_single_channel-1 |
|
|
304 |
//print ('using channel ' + channel) |
|
|
305 |
matBase = OpenCVTools.splitChannels(matBase)[channel] |
|
|
306 |
matOverlay = OpenCVTools.splitChannels(matOverlay)[channel] |
|
|
307 |
//use this to preview how the channel looks |
|
|
308 |
//OpenCVTools.matToImagePlus('Channel:' + channel.toString(), matBase).show() |
|
|
309 |
} |
|
|
310 |
|
|
|
311 |
|
|
|
312 |
/////pete code block///// |
|
|
313 |
|
|
|
314 |
//// New bit |
|
|
315 |
// int channel = 2 |
|
|
316 |
// matBase = OpenCVTools.splitChannels(matBase)[channel] |
|
|
317 |
// matOverlay = OpenCVTools.splitChannels(matOverlay)[channel] |
|
|
318 |
// ///end pete code block/// |
|
|
319 |
|
|
|
320 |
Mat matTransform = Mat.eye(2, 3, opencv_core.CV_32F).asMat() |
|
|
321 |
// Initialize using existing transform |
|
|
322 |
// affine.setToTransform(mxx, mxy, tx, myx, myy, ty) |
|
|
323 |
try { |
|
|
324 |
FloatIndexer indexer = matTransform.createIndexer() |
|
|
325 |
indexer.put(0, 0, (float)affine.getMxx()) |
|
|
326 |
indexer.put(0, 1, (float)affine.getMxy()) |
|
|
327 |
indexer.put(0, 2, (float)(affine.getTx() / downsampleBase)) |
|
|
328 |
indexer.put(1, 0, (float)affine.getMyx()) |
|
|
329 |
indexer.put(1, 1, (float)affine.getMyy()) |
|
|
330 |
indexer.put(1, 2, (float)(affine.getTy() / downsampleBase)) |
|
|
331 |
// System.err.println(indexer) |
|
|
332 |
} catch (Exception e) { |
|
|
333 |
logger.error("Error closing indexer", e) |
|
|
334 |
} |
|
|
335 |
|
|
|
336 |
TermCriteria termCrit = new TermCriteria(TermCriteria.COUNT, 100, 0.0001) |
|
|
337 |
|
|
|
338 |
try { |
|
|
339 |
int motion |
|
|
340 |
switch (regionstrationType) { |
|
|
341 |
case "AFFINE": |
|
|
342 |
motion = opencv_video.MOTION_AFFINE |
|
|
343 |
break |
|
|
344 |
case "RIGID": |
|
|
345 |
motion = opencv_video.MOTION_EUCLIDEAN |
|
|
346 |
break |
|
|
347 |
default: |
|
|
348 |
logger.warn("Unknown registraton type {} - will use {}", regionstrationType, RegistrationType.AFFINE) |
|
|
349 |
motion = opencv_video.MOTION_AFFINE |
|
|
350 |
break |
|
|
351 |
} |
|
|
352 |
double result = opencv_video.findTransformECC(matBase, matOverlay, matTransform, motion, termCrit, null) |
|
|
353 |
logger.info("Transformation result: {}", result) |
|
|
354 |
} catch (Exception e) { |
|
|
355 |
Dialogs.showErrorNotification("Estimate transform", "Unable to estimated transform - result did not converge") |
|
|
356 |
logger.error("Unable to estimate transform", e) |
|
|
357 |
return |
|
|
358 |
} |
|
|
359 |
|
|
|
360 |
// To use the following function, images need to be the same size |
|
|
361 |
// def matTransform = opencv_video.estimateRigidTransform(matBase, matOverlay, false); |
|
|
362 |
Indexer indexer = matTransform.createIndexer() |
|
|
363 |
affine.setToTransform( |
|
|
364 |
indexer.getDouble(0, 0), |
|
|
365 |
indexer.getDouble(0, 1), |
|
|
366 |
indexer.getDouble(0, 2) * downsampleBase, |
|
|
367 |
indexer.getDouble(1, 0), |
|
|
368 |
indexer.getDouble(1, 1), |
|
|
369 |
indexer.getDouble(1, 2) * downsampleBase |
|
|
370 |
) |
|
|
371 |
indexer.release() |
|
|
372 |
|
|
|
373 |
matBase.release() |
|
|
374 |
matOverlay.release() |
|
|
375 |
matTransform.release() |
|
|
376 |
|
|
|
377 |
return scaleFactor |
|
|
378 |
} |
|
|
379 |
|
|
|
380 |
//to gather detection objects instead of annotation, change line ~250 to def pathObjects = otherHierarchy.getDetectionObjects() |
|
|
381 |
def GatherObjects(boolean deleteExisting, boolean createInverse, File f){ |
|
|
382 |
f.withObjectInputStream { |
|
|
383 |
matrix = it.readObject() |
|
|
384 |
|
|
|
385 |
// Get the project & the requested image name |
|
|
386 |
def project = getProject() |
|
|
387 |
def entry = project.getImageList().find {it.getImageName()+".aff" == f.getName()} |
|
|
388 |
if (entry == null) { |
|
|
389 |
print 'Could not find image with name ' + f.getName() |
|
|
390 |
return |
|
|
391 |
} |
|
|
392 |
|
|
|
393 |
def otherHierarchy = entry.readHierarchy() |
|
|
394 |
def pathObjects = otherHierarchy.getDetectionObjects() //OR getAnnotationObjects() |
|
|
395 |
|
|
|
396 |
// Define the transformation matrix |
|
|
397 |
def transform = new AffineTransform( |
|
|
398 |
matrix[0], matrix[3], matrix[1], |
|
|
399 |
matrix[4], matrix[2], matrix[5] |
|
|
400 |
) |
|
|
401 |
if (createInverse) |
|
|
402 |
transform = transform.createInverse() |
|
|
403 |
|
|
|
404 |
if (deleteExisting) |
|
|
405 |
clearAllObjects() |
|
|
406 |
|
|
|
407 |
def newObjects = [] |
|
|
408 |
for (pathObject in pathObjects) { |
|
|
409 |
newObjects << transformObject(pathObject, transform) |
|
|
410 |
} |
|
|
411 |
addObjects(newObjects) |
|
|
412 |
} |
|
|
413 |
} |
|
|
414 |
|
|
|
415 |
//other subfunctions |
|
|
416 |
|
|
|
417 |
PathObject transformObject(PathObject pathObject, AffineTransform transform) { |
|
|
418 |
// Create a new object with the converted ROI |
|
|
419 |
def roi = pathObject.getROI() |
|
|
420 |
def roi2 = transformROI(roi, transform) |
|
|
421 |
def newObject = null |
|
|
422 |
if (pathObject instanceof PathCellObject) { |
|
|
423 |
def nucleusROI = pathObject.getNucleusROI() |
|
|
424 |
if (nucleusROI == null) |
|
|
425 |
newObject = PathObjects.createCellObject(roi2, pathObject.getPathClass(), pathObject.getMeasurementList()) |
|
|
426 |
else |
|
|
427 |
newObject = PathObjects.createCellObject(roi2, transformROI(nucleusROI, transform), pathObject.getPathClass(), pathObject.getMeasurementList()) |
|
|
428 |
} else if (pathObject instanceof PathTileObject) { |
|
|
429 |
newObject = PathObjects.createTileObject(roi2, pathObject.getPathClass(), pathObject.getMeasurementList()) |
|
|
430 |
} else if (pathObject instanceof PathDetectionObject) { |
|
|
431 |
newObject = PathObjects.createDetectionObject(roi2, pathObject.getPathClass(), pathObject.getMeasurementList()) |
|
|
432 |
newObject.setName(pathObject.getName()) |
|
|
433 |
} else { |
|
|
434 |
newObject = PathObjects.createAnnotationObject(roi2, pathObject.getPathClass(), pathObject.getMeasurementList()) |
|
|
435 |
newObject.setName(pathObject.getName()) |
|
|
436 |
} |
|
|
437 |
// Handle child objects |
|
|
438 |
if (pathObject.hasChildren()) { |
|
|
439 |
newObject.addPathObjects(pathObject.getChildObjects().collect({transformObject(it, transform)})) |
|
|
440 |
} |
|
|
441 |
return newObject |
|
|
442 |
} |
|
|
443 |
|
|
|
444 |
ROI transformROI(ROI roi, AffineTransform transform) { |
|
|
445 |
def shape = RoiTools.getShape(roi) // Should be able to use roi.getShape() - but there's currently a bug in it for rectangles/ellipses! |
|
|
446 |
shape2 = transform.createTransformedShape(shape) |
|
|
447 |
return RoiTools.getShapeROI(shape2, roi.getImagePlane(), 0.5) |
|
|
448 |
} |
|
|
449 |
|
|
|
450 |
static BufferedImage ensureGrayScale(BufferedImage img) { |
|
|
451 |
if (img.getType() == BufferedImage.TYPE_BYTE_GRAY) |
|
|
452 |
return img |
|
|
453 |
if (img.getType() == BufferedImage.TYPE_BYTE_INDEXED) { |
|
|
454 |
ColorSpace cs = ColorSpace.getInstance(ColorSpace.CS_GRAY) |
|
|
455 |
def colorModel = new ComponentColorModel(cs, 8 as int[], false, true, |
|
|
456 |
Transparency.OPAQUE, |
|
|
457 |
DataBuffer.TYPE_BYTE) |
|
|
458 |
return new BufferedImage(colorModel, img.getRaster(), false, null) |
|
|
459 |
} |
|
|
460 |
BufferedImage imgGray = new BufferedImage(img.getWidth(), img.getHeight(), BufferedImage.TYPE_BYTE_GRAY) |
|
|
461 |
Graphics2D g2d = imgGray.createGraphics() |
|
|
462 |
g2d.drawImage(img, 0, 0, null) |
|
|
463 |
g2d.dispose() |
|
|
464 |
return imgGray |
|
|
465 |
} |