[15fc01]: / DnR / run_dnr.py

Download this file

234 lines (201 with data), 10.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import argparse
import io
from tqdm import tqdm
from torch.utils.data import DataLoader,random_split
from dnr import CAE_DNR, NonParametricClassifier, ANsDiscovery, Criterion
import torchvision
from torchvision import transforms
import torch.optim as optim
import torch
from utils import get_lr,log
from torch.utils.tensorboard import SummaryWriter
import logging
import numpy as np
import time
import webdataset as wds
import torch.nn as nn
def latentVariable_func(model, data_loader, save_folder, norm, projectionHead):
model.eval()
loss = None
tqdm_iterator = tqdm(data_loader, desc='val')
latentVariables = []
indices = []
for batch_idx, data in enumerate(tqdm_iterator):
data = data[0]
data_in = data['image_he'].cuda().float()
index = data['idx_overall']
# calculate loss and metrics
with torch.no_grad():
latent_variable_batch = model.latent_variable(data_in,projectionHead)
# latent_variable_batch = model.module.latent_variable(data_in,projectionHead)
if norm:
latent_variable_batch = torch.div(latent_variable_batch, torch.norm(latent_variable_batch+1e-12, p=2, dim=1, keepdim=True))
if batch_idx==0:
latentVariables = latent_variable_batch.cpu().detach().numpy()
indices = index.cpu().detach().numpy()
else:
latentVariables = np.concatenate((latentVariables,latent_variable_batch.cpu().detach().numpy()),axis=0)
indices = np.concatenate((indices,index.cpu().detach().numpy()),axis=0)
np.save(save_folder+'latentVariables.npy',latentVariables)
np.save(save_folder+'indices.npy',indices)
return latentVariables, indices
def model_func(model, optimizer, data_loader, batch_num, npc, ANs_discovery, criterion, round, n_samples, epoch, tb_writer, save_folder,save_log_interval=100,save_checkpoint_epoch_interval=1):
model.train()
loss = None
tqdm_iterator = tqdm(data_loader, desc='train')
for batch_idx, data in enumerate(tqdm_iterator):
data = data[0]
data_in = data['image_he'].cuda().float()
data_out = data['image'].cuda().float()
index = data['idx_overall'].cuda().long()
if 'image_pairs' in data:
data_in_p = data['image_pairs_he'].cuda().float()
data_out_p = data['image_pairs'].cuda().float()
index_p = data['idx_overall'].cuda().long() + n_samples
data_in = torch.cat((data_in, data_in_p), 0)
data_out = torch.cat((data_out, data_out_p), 0)
index = torch.cat((index, index_p), 0)
optimizer.zero_grad()
x_hat, zp, zb = model(data_in,decode = True)
# calculate loss and metrics
res = criterion(data_out, index, npc, ANs_discovery, x_hat, zp)
# Parse new loss and add to old one
_loss = dict([(k, v.item()) for k, v in res.items()])
loss = dict([(k, loss[k]+_loss[k]) for k in loss]) if loss is not None else _loss
tqdm_iterator.set_postfix(dict([(k, v/(batch_idx+1)) for k, v in loss.items()]))
# backward pass
res['loss'].backward()
# step
current_lr = get_lr(optimizer)
log.info(
'Round: {}, Batch: [{}] [{}/{}], lr: {}, bach_loss_avg: '\
.format(round, epoch, batch_idx, batch_num, current_lr)+tqdm_iterator.postfix)
optimizer.step()
if batch_idx != 0 and (epoch*batch_num+batch_idx+1) % save_log_interval == 0:
num=(epoch*batch_num+batch_idx+1)//save_log_interval
temploss_interval=dict([(k, v/(batch_idx+1)) for k, v in loss.items()])
tb_writer.add_scalar('train/loss_interval'+'Round{}'.format(round), temploss_interval['loss'],num)
tb_writer.add_scalar('train/loss_inst_interval'+'Round{}'.format(round), temploss_interval['loss_inst'], num)
tb_writer.add_scalar('train/loss_ans_interval'+'Round{}'.format(round), temploss_interval['loss_ans'], num)
tb_writer.add_scalar('train/loss_mse_interval'+'Round{}'.format(round), temploss_interval['loss_mse'], num)
log.info(
'Round: {}, Epoch: {}, epoch_loss: '.format(round, epoch)+tqdm_iterator.postfix)
temploss = dict([(k, v/batch_num) for k, v in loss.items()])
tb_writer.add_scalar('train/loss'+'Round{}'.format(round), temploss['loss'], epoch)
tb_writer.add_scalar('train/loss_inst'+'Round{}'.format(round), temploss['loss_inst'], epoch)
tb_writer.add_scalar('train/loss_ans'+'Round{}'.format(round), temploss['loss_ans'], epoch)
tb_writer.add_scalar('train/loss_mse'+'Round{}'.format(round), temploss['loss_mse'], epoch)
if (epoch+1) % save_checkpoint_epoch_interval == 0:
model_save_path = '{}_round_{}_epoch_{}.pth.tar'.format(save_folder, round, epoch)
model_save_dir = os.path.dirname(model_save_path)
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
log.info('Save checkpoints: Round = {} epoch = {}'.format(round, epoch))
torch.save({
'round':round,
'epoch': epoch,
'model_state_dict': model.state_dict(),
'model_npc_state_dict': npc.state_dict(),
'model_ans_state_dict': ANs_discovery.state_dict(),
'optimizer': optimizer.state_dict()
},
model_save_path)
def identity(x):
return x
def transform(x):
x = x.item()
keys = ['image_he','image','image_pairs_he','image_pairs']
for key in keys:
data = x[key]
if not torch.is_tensor(data):
x[key] = transforms.functional.to_tensor(data)
return x
def npy_allow_pickle_decoder(value):
import numpy.lib.format
stream = io.BytesIO(value)
return numpy.lib.format.read_array(stream,allow_pickle=True)
def main():
parser = argparse.ArgumentParser(description='Run DnR')
parser.add_argument('--output', dest='output', type=str,
default='./trainedModels/', help='Output path')
parser.add_argument('--db', dest='db', type=str,
default='./Shards/', help='Path to database')
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--n_channels', default=2, type=int)
parser.add_argument('--max_round', default=4, type=int)
parser.add_argument('--max_epoch', default=25, type=int)
parser.add_argument('--name', type=str,default='resnet18', help='backbone')
parser.add_argument('--len_allDataset', default=1547467, type=int, help='number of training samples')
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--phase', default='train',type=str,help='train or test')
parser.add_argument('--trained_model', type=str,
default='./trainedModels/GPU/ResNet18_25rounds/DataParallel_model_3_24.pth/', help='Path to trained models')
args = parser.parse_args()
name=args.name
data_train_dir=list(args.db+'IPFCTDatasetDnR64-{:06d}.tar'.format(i) for i in range(0,155))
drop_last = False
pin_memory = True
if name =='resnet18' or name =='resnet34':
hidden_dimension =512
npc_dimension = 128
elif name =='resnet50':
hidden_dimension = 2048
npc_dimension = 512
tb_writer = SummaryWriter()
batch_num = args.len_allDataset//args.batch_size
ds_train = (
wds.WebDataset(data_train_dir)
.shuffle(5000)
.decode(wds.handle_extension(".npy", npy_allow_pickle_decoder))
.to_tuple("npy","metadata.pyd")
.map_tuple(transform,identity)
)
dl_train = wds.WebLoader(
dataset=ds_train,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
drop_last=drop_last,
pin_memory=pin_memory
)
log.info('Build model with n_channels: {} ...'.format(args.n_channels))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.phase == 'train':
model = nn.DataParallel(CAE_DNR(pretrained=True, n_channels=args.n_channels, hidden_dimension=hidden_dimension, name=name, npc_dimension = npc_dimension)).to(device)
npc = NonParametricClassifier(npc_dimension, 2*args.len_allDataset).to(device)
ANs_discovery = ANsDiscovery(2*args.len_allDataset).to(device)
criterion = Criterion()
optimizer = optim.Adam(model.parameters(), lr=1e-4, betas=(0.9, 0.999))
model_save = os.path.join(args.output, '{}_model'.format(model.__class__.__name__))
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
start_round = 0 # start for iter 0 or last checkpoint iter
round = start_round
# At each round we increase the entropy threshold to select NN
while round < args.max_round:
# variables are initialized to different value in the first round
is_first_round = True if round == start_round else False
if not is_first_round:
ANs_discovery.update(round, npc, None)
# start to train for an epoch
epoch = start_epoch if is_first_round else 0
while epoch < args.max_epoch:
log.info('Round: {}/{}, epoch: {}/{}'.format(round, args.max_round, epoch, args.max_epoch))
# 1. Train model (1 epoch)
model_func(model=model, optimizer=optimizer, data_loader=dl_train,
batch_num=batch_num,npc=npc, ANs_discovery=ANs_discovery, criterion=criterion,
round=round, n_samples=args.len_allDataset,epoch=epoch,tb_writer=tb_writer,save_folder = args.output)
# if epoch != 0 and (epoch+1) % 5 == 0:
# torch.save(model, model_save+"_{}_{}.pth".format(round, epoch))
# torch.save(npc, model_save+"_npc_{}_{}.pth".format(round, epoch))
# torch.save(ANs_discovery, model_save+"_ans_{}_{}.pth".format(round, epoch))
epoch += 1
# log best accuracy after each iteration
round += 1
tb_writer.flush()
tb_writer.close()
else:
model=torch.load(args.trained_model)
latentVariable_func(model=model, data_loader=dl_train, save_folder = args.output, norm=True, projectionHead=True)
if __name__ == '__main__':
main()