[15fc01]: / DnR / dnr.py

Download this file

430 lines (337 with data), 15.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
"""
We build our architecture on top of the ANs proposed in
@InProceedings{huang2018and,
title={Unsupervised Deep Learning by Neighbourhood Discovery},
author={Jiabo Huang, Qi Dong, Shaogang Gong and Xiatian Zhu},
booktitle={Proceedings of the International Conference on machine learning (ICML)},
year={2019},
}
The code is available online under https://github.com/Raymond-sci/AND
"""
from torch.autograd import Function
import os
import torchvision.models as models
import math
import torch
import torch.nn.functional as F
import torch.nn as nn
def resnet18(pretrained=False):
model = models.resnet18(pretrained=pretrained)
model.fc = Identity()
model.avgpool = Identity()
return model
def resnet34(pretrained=False):
model = models.resnet34(pretrained=pretrained)
model.fc = Identity()
model.avgpool = Identity()
return model
def resnet50(pretrained=False):
model = models.resnet50(pretrained=pretrained)
model.fc = Identity()
model.avgpool = Identity()
return model
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
class Backbone(nn.Module):
def __init__(self, name='resnet18', pretrained=True, freeze_all=False):
super(Backbone, self).__init__()
self.name = name
self.freeze_all = freeze_all
self.pretrained = pretrained
if name == 'resnet18':
self.backbone = resnet18(pretrained=self.pretrained)
if name == 'resnet34':
self.backbone = resnet34(pretrained=self.pretrained)
elif name == 'resnet50':
self.backbone = resnet50(pretrained=self.pretrained)
if self.freeze_all:
# List all layers (even inside sequential module)
layers = [module for module in self.backbone.modules() if type(module) != nn.Sequential]
for layer in layers:
if hasattr(layer, 'requires_grad_'):
layer.requires_grad_(False)
def forward(self, x):
return self.backbone(x)
class SimpleDecoder(nn.Module):
def __init__(self, hidden_dimension=512):
super(SimpleDecoder, self).__init__()
self.conv_up_5 = nn.Conv2d(hidden_dimension, hidden_dimension//2, 3, padding=1)
self.conv_up_4 = nn.Conv2d(hidden_dimension//2, hidden_dimension//4, 3, padding=1)
self.conv_up_3 = nn.Conv2d(hidden_dimension//4, hidden_dimension//8, 3, padding=1)
self.conv_up_2 = nn.Conv2d(hidden_dimension//8, hidden_dimension//16, 3, padding=1)
self.conv_up_1 = nn.Conv2d(hidden_dimension//16, hidden_dimension//32, 5, padding=2)
self.decoder = nn.Conv2d(hidden_dimension//32, 1, 5, padding=2)
def forward(self, z):
h = nn.ReLU()(self.conv_up_5(z))
h = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=False)(h)
h = nn.ReLU()(self.conv_up_4(h))
h = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=False)(h)
h = nn.ReLU()(self.conv_up_3(h))
h = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=False)(h)
h = nn.ReLU()(self.conv_up_2(h))
h = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=False)(h)
h = nn.ReLU()(self.conv_up_1(h))
h = nn.Upsample(scale_factor=2, mode='bicubic', align_corners=False)(h)
x_hat = nn.Sigmoid()(self.decoder(h))
return x_hat
class CAE_DNR(nn.Module):
def __init__(self, pretrained=True, n_channels=3, hidden_dimension=512, name = 'resnet18',npc_dimension = 256):
super(CAE_DNR, self).__init__()
self.n_channels = n_channels
self.name = name
self.encoder = Backbone(name= self.name, pretrained=pretrained, freeze_all=False)
if self.n_channels != self.encoder.backbone.conv1.in_channels:
conv1 = nn.Conv2d(2, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
data = self.encoder.backbone.conv1.weight.data[:, :2, :, :] # Better than nothing ... ?
self.encoder.backbone.conv1 = conv1
self.encoder.backbone.conv1.weight.data = data
self.fc = nn.Linear(hidden_dimension,npc_dimension)
self.relu = nn.ReLU(inplace=True)
self.hidden_dimension = hidden_dimension
self.decoder = SimpleDecoder(hidden_dimension=hidden_dimension)
def restore_model(self, paths):
for attr, path in paths.items():
self._load(attr=attr, path=path)
return self
def _load(self, attr, path):
if not os.path.exists(path):
print('Unknown path: {}'.format(path))
if not hasattr(self, attr):
print('No attribute: {}'.format(attr))
self.__getattr__(attr).load_state_dict(torch.load(path), strict=True)
return self
def forward(self, x, decode=False):
z = self.encode(x, pool=False)
zb = nn.AvgPool2d(2, 2)(z).squeeze(dim=3).squeeze(dim=2)
zp = self.fc(zb)
zp = self.relu(zp)
if decode:
x_hat = self.decoder(z)
else:
x_hat = None
return x_hat, zp, zb
def encode(self, x, pool=False):
h = self.encoder(x)
h = h.view((x.shape[0], -1, 2, 2))
if pool:
return nn.AvgPool2d(2, 2)(h).squeeze(dim=3).squeeze(dim=2)
else:
return h
def latent_variable(self, x_in, projectionHead):
_, zp, zb = self.forward(x_in, decode=True)
if projectionHead:
return zp
else:
return zb
class NonParametricClassifierOP(Function):
@staticmethod
def forward(self, x, y, memory, params):
T = params[0].item()
# inner product
out = torch.mm(x.data, memory.t())
out.div_(T) # batchSize * N
self.save_for_backward(x, memory, y, params)
return out
@staticmethod
def backward(self, gradOutput):
x, memory, y, params = self.saved_tensors
T = params[0].item()
momentum = params[1].item()
# add temperature
gradOutput.data.div_(T)
# gradient of linear
gradInput = torch.mm(gradOutput.data, memory)
gradInput.resize_as_(x)
# update the memory
weight_pos = memory.index_select(0, y.data.view(-1)).resize_as_(x)
weight_pos.mul_(momentum)
weight_pos.add_(torch.mul(x.data, 1 - momentum))
w_norm = weight_pos.pow(2).sum(1, keepdim=True).pow(0.5)
updated_weight = weight_pos.div(w_norm)
memory.index_copy_(0, y, updated_weight)
return gradInput, None, None, None, None
class NonParametricClassifier(nn.Module):
"""Non-parametric Classifier
Non-parametric Classifier from
"Unsupervised Feature Learning via Non-Parametric Instance Discrimination"
Extends:
nn.Module
"""
def __init__(self, inputSize, outputSize, T=0.05, momentum=0.5):
"""Non-parametric Classifier initial functin
Initial function for non-parametric classifier
Arguments:
inputSize {int} -- in-channels dims
outputSize {int} -- out-channels dims
Keyword Arguments:
T {int} -- distribution temperate (default: {0.05})
momentum {int} -- memory update momentum (default: {0.5})
"""
super(NonParametricClassifier, self).__init__()
self.nLem = outputSize
self.register_buffer('params', torch.tensor([T, momentum]))
stdv = 1. / math.sqrt(inputSize / 3)
self.register_buffer('memory', torch.rand(outputSize, inputSize).mul_(2 * stdv).add_(-stdv))
def forward(self, x, y):
out = NonParametricClassifierOP.apply(x, y, self.memory, self.params)
return out
class ANsDiscovery(nn.Module):
"""Discovery ANs
Discovery ANs according to current round, select_rate and most importantly,
all sample's corresponding entropy
"""
def __init__(self, nsamples):
"""Object used to discovery ANs
Discovery ANs according to the total amount of samples, ANs selection
rate, ANs size
Arguments:
nsamples {int} -- total number of sampels
select_rate {float} -- ANs selection rate
ans_size {int} -- ANs size
Keyword Arguments:
device {str} -- [description] (default: {'cpu'})
"""
super(ANsDiscovery, self).__init__()
# not going to use ``register_buffer'' as
# they are determined by configs
self.select_rate = 0.25
self.ANs_size = 1
# number of samples
self.register_buffer('samples_num', torch.tensor(nsamples))
# indexes list of anchor samples
self.register_buffer('anchor_indexes', torch.LongTensor(nsamples//2))
# indexes list of instance samples
self.register_buffer('instance_indexes', torch.arange(nsamples//2).long())
# anchor samples' and instance samples' position
self.register_buffer('position', -1 * torch.arange(nsamples).long() - 1)
# anchor samples' neighbours
self.register_buffer('neighbours', torch.LongTensor(nsamples//2, 1))
# each sample's entropy
self.register_buffer('entropy', torch.FloatTensor(nsamples))
# consistency
self.register_buffer('consistency', torch.tensor(0.))
def get_ANs_num(self, round):
"""Get number of ANs
Get number of ANs at target round according to the select rate
Arguments:
round {int} -- target round
Returns:
int -- number of ANs
"""
return int(self.samples_num.float() * self.select_rate * round)
def update(self, round, npc, cheat_labels=None):
"""Update ANs
Discovery new ANs and update `anchor_indexes`, `instance_indexes` and
`neighbours`
Arguments:
round {int} -- target round
npc {Module} -- non-parametric classifier
cheat_labels {list} -- used to compute consistency of chosen ANs only
Returns:
number -- [updated consistency]
"""
with torch.no_grad():
batch_size = 100
ANs_num = self.get_ANs_num(round)
features = npc.memory
for start in range(0, self.samples_num, batch_size):
end = start + batch_size
end = min(end, self.samples_num)
preds = F.softmax(npc(features[start:end], None), 1)
self.entropy[start:end] = -(preds * preds.log()).sum(1)
# get the anchor list and instance list according to the computed
# entropy
self.anchor_indexes = self.entropy.topk(ANs_num, largest=False)[1]
self.instance_indexes = (torch.ones_like(self.position)
.scatter_(0, self.anchor_indexes, 0)
.nonzero().view(-1))
anchor_entropy = self.entropy.index_select(0, self.anchor_indexes)
instance_entropy = self.entropy.index_select(0, self.instance_indexes)
# get position
# if the anchor sample x whose index is i while position is j, then
# sample x_i is the j-th anchor sample at current round
# if the instance sample x whose index is i while position is j, then
# sample x_i is the (-j-1)-th instance sample at current round
instance_cnt = 0
for i in range(self.samples_num):
# for anchor samples
if (i == self.anchor_indexes).any():
self.position[i] = (self.anchor_indexes == i).max(0)[1]
continue
# for instance samples
instance_cnt -= 1
self.position[i] = instance_cnt
anchor_features = features.index_select(0, self.anchor_indexes)
self.neighbours = (torch.LongTensor(ANs_num, self.ANs_size)
.to('cuda'))
for start in range(0, ANs_num, batch_size):
end = start + batch_size
end = min(end, ANs_num)
sims = torch.mm(anchor_features[start:end], features.t())
sims.scatter_(1, self.anchor_indexes[start:end].view(-1, 1), -1.)
_, self.neighbours[start:end] = (
sims.topk(self.ANs_size, largest=True, dim=1))
# if cheat labels is provided, then compute consistency
if cheat_labels is None:
return 0.
anchor_label = cheat_labels.index_select(0, self.anchor_indexes)
neighbour_label = cheat_labels.index_select(0,
self.neighbours.view(-1)).view_as(self.neighbours)
self.consistency = ((anchor_label.view(-1, 1) == neighbour_label)
.float().mean())
return self.consistency
class Criterion(nn.Module):
def __init__(self):
super(Criterion, self).__init__()
def calculate_loss(self, x, y, ANs):
batch_size, _ = x.shape
# split anchor and instance list
anchor_indexes, instance_indexes = self._split(y[:batch_size//2], ANs)
preds = F.softmax(x, 1)
l_ans = torch.tensor(0).cuda()
if anchor_indexes.size(0) > 0:
# compute loss for anchor samples
y_ans = y.index_select(0, anchor_indexes)
y_ans_p = y.index_select(0, anchor_indexes + batch_size//2)
y_ans_neighbour = ANs.position.index_select(0, y_ans)
neighbours = ANs.neighbours.index_select(0, y_ans_neighbour)
# p_i = \sum_{j \in \Omega_i} p_{i,j}
x_ans = preds.index_select(0, anchor_indexes)
x_ans_p = preds.index_select(0, anchor_indexes + batch_size//2)
x_ans_neighbour = x_ans.gather(1, neighbours).sum(1)
x_ans_p = x_ans_p.gather(1, y_ans_p.view(-1, 1)).view(-1)
x_ans = x_ans.gather(1, y_ans.view(-1, 1)).view(-1)
# sum all terms : self + sim + neighbors
# NLL: l = -log(p_i)
l_ans = -1 * torch.log(x_ans + x_ans_p + x_ans_neighbour).sum(0)
l_inst = torch.tensor(0).cuda()
if instance_indexes.size(0) > 0:
# compute loss for instance samples
y_inst = y.index_select(0, instance_indexes)
y_inst_p = y.index_select(0, instance_indexes + batch_size//2)
x_inst = preds.index_select(0, instance_indexes)
x_inst_p = preds.index_select(0, instance_indexes + batch_size//2)
# p_i = p_{i, i}
x_inst = x_inst.gather(1, y_inst.view(-1, 1))
x_inst_p = x_inst_p.gather(1, y_inst_p.view(-1, 1))
# NLL: l = -log(p_i)
l_inst = -1 * torch.log(x_inst + x_inst_p).sum(0)
return l_inst / batch_size, l_ans / batch_size
def _split(self, y, ANs):
pos = ANs.position.index_select(0, y.view(-1))
return (pos >= 0).nonzero().view(-1), (pos < 0).nonzero().view(-1)
def forward(self, x_out, index, npc, ANs_discovery, x_hat, zp):
z_n = torch.div(zp, torch.norm(zp+1e-12, p=2, dim=1, keepdim=True))
outputs = npc(z_n, index) # For each image get similarity with neighbour
loss_inst, loss_ans = self.calculate_loss(outputs, index, ANs_discovery)
loss = loss_inst + loss_ans
l_loss = {'loss': loss, 'loss_inst': loss_inst, 'loss_ans': loss_ans}
if x_hat is not None:
loss_mse = nn.MSELoss()(x_hat, x_out)
loss = loss + loss_mse
l_loss['loss_mse'] = loss_mse
l_loss['loss'] = loss
return l_loss