|
a |
|
b/Cluster-ViT/util/misc.py |
|
|
1 |
""" |
|
|
2 |
Misc functions, including distributed helpers. |
|
|
3 |
|
|
|
4 |
Mostly copy-paste from torchvision references. |
|
|
5 |
""" |
|
|
6 |
import os |
|
|
7 |
import subprocess |
|
|
8 |
import time |
|
|
9 |
from collections import defaultdict, deque |
|
|
10 |
import datetime |
|
|
11 |
import pickle |
|
|
12 |
from typing import Optional, List |
|
|
13 |
|
|
|
14 |
import torch |
|
|
15 |
import torch.distributed as dist |
|
|
16 |
from torch import Tensor |
|
|
17 |
|
|
|
18 |
# needed due to empty tensor bug in pytorch and torchvision 0.5 |
|
|
19 |
import torchvision |
|
|
20 |
if float(torchvision.__version__[:3]) < 0.7: |
|
|
21 |
from torchvision.ops import _new_empty_tensor |
|
|
22 |
from torchvision.ops.misc import _output_size |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
class SmoothedValue(object): |
|
|
26 |
"""Track a series of values and provide access to smoothed values over a |
|
|
27 |
window or the global series average. |
|
|
28 |
""" |
|
|
29 |
|
|
|
30 |
def __init__(self, window_size=20, fmt=None): |
|
|
31 |
if fmt is None: |
|
|
32 |
fmt = "{median:.4f} ({global_avg:.4f})" |
|
|
33 |
self.deque = deque(maxlen=window_size) |
|
|
34 |
self.total = 0.0 |
|
|
35 |
self.count = 0 |
|
|
36 |
self.fmt = fmt |
|
|
37 |
|
|
|
38 |
def update(self, value, n=1): |
|
|
39 |
self.deque.append(value) |
|
|
40 |
self.count += n |
|
|
41 |
self.total += value * n |
|
|
42 |
|
|
|
43 |
def synchronize_between_processes(self): |
|
|
44 |
""" |
|
|
45 |
Warning: does not synchronize the deque! |
|
|
46 |
""" |
|
|
47 |
if not is_dist_avail_and_initialized(): |
|
|
48 |
return |
|
|
49 |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') |
|
|
50 |
dist.barrier() |
|
|
51 |
dist.all_reduce(t) |
|
|
52 |
t = t.tolist() |
|
|
53 |
self.count = int(t[0]) |
|
|
54 |
self.total = t[1] |
|
|
55 |
|
|
|
56 |
@property |
|
|
57 |
def median(self): |
|
|
58 |
d = torch.tensor(list(self.deque)) |
|
|
59 |
return d.median().item() |
|
|
60 |
|
|
|
61 |
@property |
|
|
62 |
def avg(self): |
|
|
63 |
d = torch.tensor(list(self.deque), dtype=torch.float32) |
|
|
64 |
return d.mean().item() |
|
|
65 |
|
|
|
66 |
@property |
|
|
67 |
def global_avg(self): |
|
|
68 |
return self.total / self.count |
|
|
69 |
|
|
|
70 |
@property |
|
|
71 |
def max(self): |
|
|
72 |
return max(self.deque) |
|
|
73 |
|
|
|
74 |
@property |
|
|
75 |
def value(self): |
|
|
76 |
return self.deque[-1] |
|
|
77 |
|
|
|
78 |
def __str__(self): |
|
|
79 |
return self.fmt.format( |
|
|
80 |
median=self.median, |
|
|
81 |
avg=self.avg, |
|
|
82 |
global_avg=self.global_avg, |
|
|
83 |
max=self.max, |
|
|
84 |
value=self.value) |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
def all_gather(data): |
|
|
88 |
""" |
|
|
89 |
Run all_gather on arbitrary picklable data (not necessarily tensors) |
|
|
90 |
Args: |
|
|
91 |
data: any picklable object |
|
|
92 |
Returns: |
|
|
93 |
list[data]: list of data gathered from each rank |
|
|
94 |
""" |
|
|
95 |
world_size = get_world_size() |
|
|
96 |
if world_size == 1: |
|
|
97 |
return [data] |
|
|
98 |
|
|
|
99 |
# serialized to a Tensor |
|
|
100 |
buffer = pickle.dumps(data) |
|
|
101 |
storage = torch.ByteStorage.from_buffer(buffer) |
|
|
102 |
tensor = torch.ByteTensor(storage).to("cuda") |
|
|
103 |
|
|
|
104 |
# obtain Tensor size of each rank |
|
|
105 |
local_size = torch.tensor([tensor.numel()], device="cuda") |
|
|
106 |
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)] |
|
|
107 |
dist.all_gather(size_list, local_size) |
|
|
108 |
size_list = [int(size.item()) for size in size_list] |
|
|
109 |
max_size = max(size_list) |
|
|
110 |
|
|
|
111 |
# receiving Tensor from all ranks |
|
|
112 |
# we pad the tensor because torch all_gather does not support |
|
|
113 |
# gathering tensors of different shapes |
|
|
114 |
tensor_list = [] |
|
|
115 |
for _ in size_list: |
|
|
116 |
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda")) |
|
|
117 |
if local_size != max_size: |
|
|
118 |
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda") |
|
|
119 |
tensor = torch.cat((tensor, padding), dim=0) |
|
|
120 |
dist.all_gather(tensor_list, tensor) |
|
|
121 |
|
|
|
122 |
data_list = [] |
|
|
123 |
for size, tensor in zip(size_list, tensor_list): |
|
|
124 |
buffer = tensor.cpu().numpy().tobytes()[:size] |
|
|
125 |
data_list.append(pickle.loads(buffer)) |
|
|
126 |
|
|
|
127 |
return data_list |
|
|
128 |
|
|
|
129 |
|
|
|
130 |
def reduce_dict(input_dict, average=True): |
|
|
131 |
""" |
|
|
132 |
Args: |
|
|
133 |
input_dict (dict): all the values will be reduced |
|
|
134 |
average (bool): whether to do average or sum |
|
|
135 |
Reduce the values in the dictionary from all processes so that all processes |
|
|
136 |
have the averaged results. Returns a dict with the same fields as |
|
|
137 |
input_dict, after reduction. |
|
|
138 |
""" |
|
|
139 |
world_size = get_world_size() |
|
|
140 |
if world_size < 2: |
|
|
141 |
return input_dict |
|
|
142 |
with torch.no_grad(): |
|
|
143 |
names = [] |
|
|
144 |
values = [] |
|
|
145 |
# sort the keys so that they are consistent across processes |
|
|
146 |
for k in sorted(input_dict.keys()): |
|
|
147 |
names.append(k) |
|
|
148 |
values.append(input_dict[k]) |
|
|
149 |
values = torch.stack(values, dim=0) |
|
|
150 |
dist.all_reduce(values) |
|
|
151 |
if average: |
|
|
152 |
values /= world_size |
|
|
153 |
reduced_dict = {k: v for k, v in zip(names, values)} |
|
|
154 |
return reduced_dict |
|
|
155 |
|
|
|
156 |
|
|
|
157 |
class MetricLogger(object): |
|
|
158 |
def __init__(self, delimiter="\t"): |
|
|
159 |
self.meters = defaultdict(SmoothedValue) |
|
|
160 |
self.delimiter = delimiter |
|
|
161 |
|
|
|
162 |
def update(self, **kwargs): |
|
|
163 |
for k, v in kwargs.items(): |
|
|
164 |
if isinstance(v, torch.Tensor): |
|
|
165 |
v = v.item() |
|
|
166 |
assert isinstance(v, (float, int)) |
|
|
167 |
self.meters[k].update(v) |
|
|
168 |
|
|
|
169 |
def __getattr__(self, attr): |
|
|
170 |
if attr in self.meters: |
|
|
171 |
return self.meters[attr] |
|
|
172 |
if attr in self.__dict__: |
|
|
173 |
return self.__dict__[attr] |
|
|
174 |
raise AttributeError("'{}' object has no attribute '{}'".format( |
|
|
175 |
type(self).__name__, attr)) |
|
|
176 |
|
|
|
177 |
def __str__(self): |
|
|
178 |
loss_str = [] |
|
|
179 |
for name, meter in self.meters.items(): |
|
|
180 |
loss_str.append( |
|
|
181 |
"{}: {}".format(name, str(meter)) |
|
|
182 |
) |
|
|
183 |
return self.delimiter.join(loss_str) |
|
|
184 |
|
|
|
185 |
def synchronize_between_processes(self): |
|
|
186 |
for meter in self.meters.values(): |
|
|
187 |
meter.synchronize_between_processes() |
|
|
188 |
|
|
|
189 |
def add_meter(self, name, meter): |
|
|
190 |
self.meters[name] = meter |
|
|
191 |
|
|
|
192 |
def log_every(self, iterable, print_freq, header=None): |
|
|
193 |
i = 0 |
|
|
194 |
if not header: |
|
|
195 |
header = '' |
|
|
196 |
start_time = time.time() |
|
|
197 |
end = time.time() |
|
|
198 |
iter_time = SmoothedValue(fmt='{avg:.4f}') |
|
|
199 |
data_time = SmoothedValue(fmt='{avg:.4f}') |
|
|
200 |
space_fmt = ':' + str(len(str(len(iterable)))) + 'd' |
|
|
201 |
if torch.cuda.is_available(): |
|
|
202 |
log_msg = self.delimiter.join([ |
|
|
203 |
header, |
|
|
204 |
'[{0' + space_fmt + '}/{1}]', |
|
|
205 |
'eta: {eta}', |
|
|
206 |
'{meters}', |
|
|
207 |
'time: {time}', |
|
|
208 |
'data: {data}', |
|
|
209 |
'max mem: {memory:.0f}' |
|
|
210 |
]) |
|
|
211 |
else: |
|
|
212 |
log_msg = self.delimiter.join([ |
|
|
213 |
header, |
|
|
214 |
'[{0' + space_fmt + '}/{1}]', |
|
|
215 |
'eta: {eta}', |
|
|
216 |
'{meters}', |
|
|
217 |
'time: {time}', |
|
|
218 |
'data: {data}' |
|
|
219 |
]) |
|
|
220 |
MB = 1024.0 * 1024.0 |
|
|
221 |
|
|
|
222 |
for obj in enumerate(iterable): |
|
|
223 |
data_time.update(time.time() - end) |
|
|
224 |
yield obj |
|
|
225 |
iter_time.update(time.time() - end) |
|
|
226 |
if i % print_freq == 0 or i == len(iterable) - 1: |
|
|
227 |
eta_seconds = iter_time.global_avg * (len(iterable) - i) |
|
|
228 |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) |
|
|
229 |
if torch.cuda.is_available(): |
|
|
230 |
print(log_msg.format( |
|
|
231 |
i, len(iterable), eta=eta_string, |
|
|
232 |
meters=str(self), |
|
|
233 |
time=str(iter_time), data=str(data_time), |
|
|
234 |
memory=torch.cuda.max_memory_allocated() / MB)) |
|
|
235 |
else: |
|
|
236 |
print(log_msg.format( |
|
|
237 |
i, len(iterable), eta=eta_string, |
|
|
238 |
meters=str(self), |
|
|
239 |
time=str(iter_time), data=str(data_time))) |
|
|
240 |
i += 1 |
|
|
241 |
end = time.time() |
|
|
242 |
total_time = time.time() - start_time |
|
|
243 |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
|
244 |
print('{} Total time: {} ({:.4f} s / it)'.format( |
|
|
245 |
header, total_time_str, total_time / len(iterable))) |
|
|
246 |
|
|
|
247 |
|
|
|
248 |
def get_sha(): |
|
|
249 |
cwd = os.path.dirname(os.path.abspath(__file__)) |
|
|
250 |
|
|
|
251 |
def _run(command): |
|
|
252 |
return subprocess.check_output(command, cwd=cwd).decode('ascii').strip() |
|
|
253 |
sha = 'N/A' |
|
|
254 |
diff = "clean" |
|
|
255 |
branch = 'N/A' |
|
|
256 |
try: |
|
|
257 |
sha = _run(['git', 'rev-parse', 'HEAD']) |
|
|
258 |
subprocess.check_output(['git', 'diff'], cwd=cwd) |
|
|
259 |
diff = _run(['git', 'diff-index', 'HEAD']) |
|
|
260 |
diff = "has uncommited changes" if diff else "clean" |
|
|
261 |
branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD']) |
|
|
262 |
except Exception: |
|
|
263 |
pass |
|
|
264 |
message = f"sha: {sha}, status: {diff}, branch: {branch}" |
|
|
265 |
return message |
|
|
266 |
|
|
|
267 |
|
|
|
268 |
def collate_fn(batch): |
|
|
269 |
batch = list(zip(*batch)) |
|
|
270 |
batch[0] = nested_tensor_from_tensor_list(batch[0]) |
|
|
271 |
return tuple(batch) |
|
|
272 |
|
|
|
273 |
|
|
|
274 |
def _max_by_axis(the_list): |
|
|
275 |
# type: (List[List[int]]) -> List[int] |
|
|
276 |
maxes = the_list[0] |
|
|
277 |
for sublist in the_list[1:]: |
|
|
278 |
for index, item in enumerate(sublist): |
|
|
279 |
maxes[index] = max(maxes[index], item) |
|
|
280 |
return maxes |
|
|
281 |
|
|
|
282 |
|
|
|
283 |
class NestedTensor(object): |
|
|
284 |
def __init__(self, tensors, mask: Optional[Tensor]): |
|
|
285 |
self.tensors = tensors |
|
|
286 |
self.mask = mask |
|
|
287 |
|
|
|
288 |
def to(self, device): |
|
|
289 |
# type: (Device) -> NestedTensor # noqa |
|
|
290 |
cast_tensor = self.tensors.to(device) |
|
|
291 |
mask = self.mask |
|
|
292 |
if mask is not None: |
|
|
293 |
assert mask is not None |
|
|
294 |
cast_mask = mask.to(device) |
|
|
295 |
else: |
|
|
296 |
cast_mask = None |
|
|
297 |
return NestedTensor(cast_tensor, cast_mask) |
|
|
298 |
|
|
|
299 |
def decompose(self): |
|
|
300 |
return self.tensors, self.mask |
|
|
301 |
|
|
|
302 |
def __repr__(self): |
|
|
303 |
return str(self.tensors) |
|
|
304 |
|
|
|
305 |
|
|
|
306 |
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): |
|
|
307 |
# TODO make this more general |
|
|
308 |
if tensor_list[0].ndim == 3: |
|
|
309 |
if torchvision._is_tracing(): |
|
|
310 |
# nested_tensor_from_tensor_list() does not export well to ONNX |
|
|
311 |
# call _onnx_nested_tensor_from_tensor_list() instead |
|
|
312 |
return _onnx_nested_tensor_from_tensor_list(tensor_list) |
|
|
313 |
|
|
|
314 |
# TODO make it support different-sized images |
|
|
315 |
max_size = _max_by_axis([list(img.shape) for img in tensor_list]) |
|
|
316 |
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) |
|
|
317 |
batch_shape = [len(tensor_list)] + max_size |
|
|
318 |
b, c, h, w = batch_shape |
|
|
319 |
dtype = tensor_list[0].dtype |
|
|
320 |
device = tensor_list[0].device |
|
|
321 |
tensor = torch.zeros(batch_shape, dtype=dtype, device=device) |
|
|
322 |
mask = torch.ones((b, h, w), dtype=torch.bool, device=device) |
|
|
323 |
for img, pad_img, m in zip(tensor_list, tensor, mask): |
|
|
324 |
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) |
|
|
325 |
m[: img.shape[1], :img.shape[2]] = False |
|
|
326 |
else: |
|
|
327 |
raise ValueError('not supported') |
|
|
328 |
return NestedTensor(tensor, mask) |
|
|
329 |
|
|
|
330 |
|
|
|
331 |
# _onnx_nested_tensor_from_tensor_list() is an implementation of |
|
|
332 |
# nested_tensor_from_tensor_list() that is supported by ONNX tracing. |
|
|
333 |
@torch.jit.unused |
|
|
334 |
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: |
|
|
335 |
max_size = [] |
|
|
336 |
for i in range(tensor_list[0].dim()): |
|
|
337 |
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64) |
|
|
338 |
max_size.append(max_size_i) |
|
|
339 |
max_size = tuple(max_size) |
|
|
340 |
|
|
|
341 |
# work around for |
|
|
342 |
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) |
|
|
343 |
# m[: img.shape[1], :img.shape[2]] = False |
|
|
344 |
# which is not yet supported in onnx |
|
|
345 |
padded_imgs = [] |
|
|
346 |
padded_masks = [] |
|
|
347 |
for img in tensor_list: |
|
|
348 |
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] |
|
|
349 |
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) |
|
|
350 |
padded_imgs.append(padded_img) |
|
|
351 |
|
|
|
352 |
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) |
|
|
353 |
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) |
|
|
354 |
padded_masks.append(padded_mask.to(torch.bool)) |
|
|
355 |
|
|
|
356 |
tensor = torch.stack(padded_imgs) |
|
|
357 |
mask = torch.stack(padded_masks) |
|
|
358 |
|
|
|
359 |
return NestedTensor(tensor, mask=mask) |
|
|
360 |
|
|
|
361 |
|
|
|
362 |
def setup_for_distributed(is_master): |
|
|
363 |
""" |
|
|
364 |
This function disables printing when not in master process |
|
|
365 |
""" |
|
|
366 |
import builtins as __builtin__ |
|
|
367 |
builtin_print = __builtin__.print |
|
|
368 |
|
|
|
369 |
def print(*args, **kwargs): |
|
|
370 |
force = kwargs.pop('force', False) |
|
|
371 |
if is_master or force: |
|
|
372 |
builtin_print(*args, **kwargs) |
|
|
373 |
|
|
|
374 |
__builtin__.print = print |
|
|
375 |
|
|
|
376 |
|
|
|
377 |
def is_dist_avail_and_initialized(): |
|
|
378 |
if not dist.is_available(): |
|
|
379 |
return False |
|
|
380 |
if not dist.is_initialized(): |
|
|
381 |
return False |
|
|
382 |
return True |
|
|
383 |
|
|
|
384 |
|
|
|
385 |
def get_world_size(): |
|
|
386 |
if not is_dist_avail_and_initialized(): |
|
|
387 |
return 1 |
|
|
388 |
return dist.get_world_size() |
|
|
389 |
|
|
|
390 |
|
|
|
391 |
def get_rank(): |
|
|
392 |
if not is_dist_avail_and_initialized(): |
|
|
393 |
return 0 |
|
|
394 |
return dist.get_rank() |
|
|
395 |
|
|
|
396 |
|
|
|
397 |
def is_main_process(): |
|
|
398 |
return get_rank() == 0 |
|
|
399 |
|
|
|
400 |
|
|
|
401 |
def save_on_master(*args, **kwargs): |
|
|
402 |
if is_main_process(): |
|
|
403 |
torch.save(*args, **kwargs) |
|
|
404 |
|
|
|
405 |
|
|
|
406 |
def init_distributed_mode(args): |
|
|
407 |
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: |
|
|
408 |
args.rank = int(os.environ["RANK"]) |
|
|
409 |
args.world_size = int(os.environ['WORLD_SIZE']) |
|
|
410 |
args.gpu = int(os.environ['LOCAL_RANK']) |
|
|
411 |
elif 'SLURM_PROCID' in os.environ: |
|
|
412 |
args.rank = int(os.environ['SLURM_PROCID']) |
|
|
413 |
args.gpu = args.rank % torch.cuda.device_count() |
|
|
414 |
else: |
|
|
415 |
print('Not using distributed mode') |
|
|
416 |
args.distributed = False |
|
|
417 |
return |
|
|
418 |
|
|
|
419 |
args.distributed = True |
|
|
420 |
|
|
|
421 |
torch.cuda.set_device(args.gpu) |
|
|
422 |
args.dist_backend = 'nccl' |
|
|
423 |
print('| distributed init (rank {}): {}'.format( |
|
|
424 |
args.rank, args.dist_url), flush=True) |
|
|
425 |
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, |
|
|
426 |
world_size=args.world_size, rank=args.rank) |
|
|
427 |
torch.distributed.barrier() |
|
|
428 |
setup_for_distributed(args.rank == 0) |
|
|
429 |
|
|
|
430 |
|
|
|
431 |
@torch.no_grad() |
|
|
432 |
def accuracy(output, target, topk=(1,)): |
|
|
433 |
"""Computes the precision@k for the specified values of k""" |
|
|
434 |
if target.numel() == 0: |
|
|
435 |
return [torch.zeros([], device=output.device)] |
|
|
436 |
maxk = max(topk) |
|
|
437 |
batch_size = target.size(0) |
|
|
438 |
|
|
|
439 |
_, pred = output.topk(maxk, 1, True, True) |
|
|
440 |
pred = pred.t() |
|
|
441 |
correct = pred.eq(target.view(1, -1).expand_as(pred)) |
|
|
442 |
|
|
|
443 |
res = [] |
|
|
444 |
for k in topk: |
|
|
445 |
correct_k = correct[:k].view(-1).float().sum(0) |
|
|
446 |
res.append(correct_k.mul_(100.0 / batch_size)) |
|
|
447 |
return res |
|
|
448 |
|
|
|
449 |
|
|
|
450 |
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None): |
|
|
451 |
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor |
|
|
452 |
""" |
|
|
453 |
Equivalent to nn.functional.interpolate, but with support for empty batch sizes. |
|
|
454 |
This will eventually be supported natively by PyTorch, and this |
|
|
455 |
class can go away. |
|
|
456 |
""" |
|
|
457 |
if float(torchvision.__version__[:3]) < 0.7: |
|
|
458 |
if input.numel() > 0: |
|
|
459 |
return torch.nn.functional.interpolate( |
|
|
460 |
input, size, scale_factor, mode, align_corners |
|
|
461 |
) |
|
|
462 |
|
|
|
463 |
output_shape = _output_size(2, input, size, scale_factor) |
|
|
464 |
output_shape = list(input.shape[:-2]) + list(output_shape) |
|
|
465 |
return _new_empty_tensor(input, output_shape) |
|
|
466 |
else: |
|
|
467 |
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners) |