Core components of PathologyGo, the AI assistance system designed for histopathological inference.
Dependency
Dockerized TensorFlow Serving
Quick Start
This code is easy to implement. Just change the path to your data repo:
from utils import config
GPU_LIST = config.INFERENCE_GPUS
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join('{0}'.format(n) for n in GPU_LIST)
from inference import Inference
if __name__ == '__main__':
pg = Inference(data_dir='/path/to/data/', data_list='/path/to/list',
class_num=2, result_dir='./result', use_level=1)
pg.run()
You may configure all the model-specific parameters in utils/config.py
.
Example
Use the CAMELYON16 test dataset as an example,
the data path should be /data/CAMELYON/
, and the content of the data list is
001.tif
002.tif
...
The predicted heatmaps will be written to ./result
.
DIY Notes
You may use other exported models. You can change the model name for TensorFlow Serving in utils/config.py
. Just remember to modify class_num
and use_level
.
Note that the default input / output tensor name should be input
/ output
.