<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>pathflowai.sampler — PathFlowAI 0.1 documentation</title>
<script type="text/javascript" src="../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> PathFlowAI
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<!-- Local TOC -->
<div class="local-toc"></div>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">PathFlowAI</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html">Docs</a> »</li>
<li><a href="../index.html">Module code</a> »</li>
<li>pathflowai.sampler</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for pathflowai.sampler</h1><div class="highlight"><pre>
<span></span><span class="sd">"""</span>
<span class="sd">sampler.py</span>
<span class="sd">=======================</span>
<span class="sd">Balanced sampling based on one of the columns of the patch information.</span>
<span class="sd">"""</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.utils.data</span>
<span class="kn">import</span> <span class="nn">torchvision</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<div class="viewcode-block" id="ImbalancedDatasetSampler"><a class="viewcode-back" href="../../index.html#pathflowai.sampler.ImbalancedDatasetSampler">[docs]</a><span class="k">class</span> <span class="nc">ImbalancedDatasetSampler</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">sampler</span><span class="o">.</span><span class="n">Sampler</span><span class="p">):</span>
<span class="sd">"""Samples elements randomly from a given list of indices for imbalanced dataset</span>
<span class="sd"> https://raw.githubusercontent.com/ufoym/imbalanced-dataset-sampler/master/sampler.py</span>
<span class="sd"> Arguments:</span>
<span class="sd"> indices (list, optional): a list of indices</span>
<span class="sd"> num_samples (int, optional): number of samples to draw</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">indices</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">num_samples</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="c1"># if indices is not provided,</span>
<span class="c1"># all elements in the dataset will be considered</span>
<span class="bp">self</span><span class="o">.</span><span class="n">indices</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">dataset</span><span class="p">)))</span> \
<span class="k">if</span> <span class="n">indices</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">indices</span>
<span class="bp">self</span><span class="o">.</span><span class="n">n_targets</span><span class="o">=</span><span class="nb">len</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span>
<span class="c1"># if num_samples is not provided,</span>
<span class="c1"># draw `len(indices)` samples in each iteration</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_samples</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">indices</span><span class="p">)</span> \
<span class="k">if</span> <span class="n">num_samples</span> <span class="ow">is</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">num_samples</span>
<span class="c1"># distribution of classes in the dataset</span>
<span class="n">label_to_count</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">for</span> <span class="n">idx</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">indices</span><span class="p">:</span>
<span class="n">label</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_get_label</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">idx</span><span class="p">)</span>
<span class="k">if</span> <span class="n">label</span> <span class="ow">in</span> <span class="n">label_to_count</span><span class="p">:</span>
<span class="n">label_to_count</span><span class="p">[</span><span class="n">label</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">label_to_count</span><span class="p">[</span><span class="n">label</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="c1"># weight for each sample</span>
<span class="n">weights</span> <span class="o">=</span> <span class="p">[</span><span class="mf">1.0</span> <span class="o">/</span> <span class="n">label_to_count</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">_get_label</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">idx</span><span class="p">)]</span>
<span class="k">for</span> <span class="n">idx</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">indices</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weights</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">DoubleTensor</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_get_label</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">,</span> <span class="n">idx</span><span class="p">):</span>
<span class="n">dataset_type</span> <span class="o">=</span> <span class="nb">type</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span>
<span class="k">if</span> <span class="n">dataset_type</span> <span class="ow">is</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">MNIST</span><span class="p">:</span>
<span class="k">return</span> <span class="n">dataset</span><span class="o">.</span><span class="n">train_labels</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="k">elif</span> <span class="n">dataset_type</span> <span class="ow">is</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">ImageFolder</span><span class="p">:</span>
<span class="k">return</span> <span class="n">dataset</span><span class="o">.</span><span class="n">imgs</span><span class="p">[</span><span class="n">idx</span><span class="p">][</span><span class="mi">1</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="n">dataset</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">idx</span><span class="p">][</span><span class="n">dataset</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_targets</span><span class="o">></span><span class="mi">1</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">y</span><span class="p">,(</span><span class="nb">list</span><span class="p">,</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)):</span>
<span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1">#print(y)</span>
<span class="k">return</span> <span class="nb">int</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__iter__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">indices</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">torch</span><span class="o">.</span><span class="n">multinomial</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weights</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_samples</span><span class="p">,</span> <span class="n">replacement</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_samples</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
© Copyright 2019, Joshua Levy
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>