[27c943]: / docs / _modules / pathflowai / losses.html

Download this file

497 lines (333 with data), 61.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>pathflowai.losses &mdash; PathFlowAI 0.1 documentation</title>
<script type="text/javascript" src="../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> PathFlowAI
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<!-- Local TOC -->
<div class="local-toc"></div>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">PathFlowAI</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html">Docs</a> &raquo;</li>
<li><a href="../index.html">Module code</a> &raquo;</li>
<li>pathflowai.losses</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for pathflowai.losses</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">losses.py</span>
<span class="sd">=======================</span>
<span class="sd">Some additional loss functions that can be called using the pipeline, some of which still to be implemented.</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">torch</span><span class="o">,</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="k">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">Iterable</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Set</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">TypeVar</span><span class="p">,</span> <span class="n">Union</span>
<span class="kn">from</span> <span class="nn">torch</span> <span class="k">import</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">einsum</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="kn">from</span> <span class="nn">scipy.ndimage</span> <span class="k">import</span> <span class="n">distance_transform_edt</span> <span class="k">as</span> <span class="n">distance</span>
<span class="kn">from</span> <span class="nn">torch</span> <span class="k">import</span> <span class="n">nn</span>
<div class="viewcode-block" id="assert_"><a class="viewcode-back" href="../../index.html#pathflowai.losses.assert_">[docs]</a><span class="k">def</span> <span class="nf">assert_</span><span class="p">(</span><span class="n">condition</span><span class="p">,</span> <span class="n">message</span><span class="o">=</span><span class="s1">&#39;&#39;</span><span class="p">,</span> <span class="n">exception_type</span><span class="o">=</span><span class="ne">AssertionError</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/inferno-pytorch/inferno/0561e8a95cde6bfc5e10a3609841b7b0ca5b03ca/inferno/utils/exceptions.py</span>
<span class="sd"> Like assert, but with arbitrary exception types.&quot;&quot;&quot;</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">condition</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">exception_type</span><span class="p">(</span><span class="n">message</span><span class="p">)</span></div>
<div class="viewcode-block" id="ShapeError"><a class="viewcode-back" href="../../index.html#pathflowai.losses.ShapeError">[docs]</a><span class="k">class</span> <span class="nc">ShapeError</span><span class="p">(</span><span class="ne">ValueError</span><span class="p">):</span> <span class="c1"># &quot;&quot;&quot;https://raw.githubusercontent.com/inferno-pytorch/inferno/0561e8a95cde6bfc5e10a3609841b7b0ca5b03ca/inferno/utils/exceptions.py&quot;&quot;&quot;</span>
<span class="k">pass</span></div>
<div class="viewcode-block" id="flatten_samples"><a class="viewcode-back" href="../../index.html#pathflowai.losses.flatten_samples">[docs]</a><span class="k">def</span> <span class="nf">flatten_samples</span><span class="p">(</span><span class="n">input_</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> https://raw.githubusercontent.com/inferno-pytorch/inferno/0561e8a95cde6bfc5e10a3609841b7b0ca5b03ca/inferno/utils/torch_utils.py</span>
<span class="sd"> Flattens a tensor or a variable such that the channel axis is first and the sample axis</span>
<span class="sd"> is second. The shapes are transformed as follows:</span>
<span class="sd"> (N, C, H, W) --&gt; (C, N * H * W)</span>
<span class="sd"> (N, C, D, H, W) --&gt; (C, N * D * H * W)</span>
<span class="sd"> (N, C) --&gt; (C, N)</span>
<span class="sd"> The input must be atleast 2d.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">assert_</span><span class="p">(</span><span class="n">input_</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">&gt;=</span> <span class="mi">2</span><span class="p">,</span>
<span class="s2">&quot;Tensor or variable must be atleast 2D. Got one of dim </span><span class="si">{}</span><span class="s2">.&quot;</span>
<span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">input_</span><span class="o">.</span><span class="n">dim</span><span class="p">()),</span>
<span class="n">ShapeError</span><span class="p">)</span>
<span class="c1"># Get number of channels</span>
<span class="n">num_channels</span> <span class="o">=</span> <span class="n">input_</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># Permute the channel axis to first</span>
<span class="n">permute_axes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">input_</span><span class="o">.</span><span class="n">dim</span><span class="p">()))</span>
<span class="n">permute_axes</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># For input shape (say) NCHW, this should have the shape CNHW</span>
<span class="n">permuted</span> <span class="o">=</span> <span class="n">input_</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="o">*</span><span class="n">permute_axes</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="c1"># Now flatten out all but the first axis and return</span>
<span class="n">flattened</span> <span class="o">=</span> <span class="n">permuted</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">num_channels</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">flattened</span></div>
<div class="viewcode-block" id="GeneralizedDiceLoss"><a class="viewcode-back" href="../../index.html#pathflowai.losses.GeneralizedDiceLoss">[docs]</a><span class="k">class</span> <span class="nc">GeneralizedDiceLoss</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> https://raw.githubusercontent.com/inferno-pytorch/inferno/0561e8a95cde6bfc5e10a3609841b7b0ca5b03ca/inferno/extensions/criteria/set_similarity_measures.py</span>
<span class="sd"> Computes the scalar Generalized Dice Loss defined in https://arxiv.org/abs/1707.03237</span>
<span class="sd"> This version works for multiple classes and expects predictions for every class (e.g. softmax output) and</span>
<span class="sd"> one-hot targets for every class.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">channelwise</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-6</span><span class="p">,</span> <span class="n">add_softmax</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">GeneralizedDiceLoss</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">&#39;weight&#39;</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">channelwise</span> <span class="o">=</span> <span class="n">channelwise</span>
<span class="bp">self</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
<span class="bp">self</span><span class="o">.</span><span class="n">add_softmax</span> <span class="o">=</span> <span class="n">add_softmax</span>
<div class="viewcode-block" id="GeneralizedDiceLoss.forward"><a class="viewcode-back" href="../../index.html#pathflowai.losses.GeneralizedDiceLoss.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> input: torch.FloatTensor or torch.cuda.FloatTensor</span>
<span class="sd"> target: torch.FloatTensor or torch.cuda.FloatTensor</span>
<span class="sd"> Expected shape of the inputs:</span>
<span class="sd"> - if not channelwise: (batch_size, nb_classes, ...)</span>
<span class="sd"> - if channelwise: (batch_size, nb_channels, nb_classes, ...)</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">()</span> <span class="o">==</span> <span class="n">target</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">add_softmax</span><span class="p">:</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">channelwise</span><span class="p">:</span>
<span class="c1"># Flatten input and target to have the shape (nb_classes, N),</span>
<span class="c1"># where N is the number of samples</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">flatten_samples</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">target</span> <span class="o">=</span> <span class="n">flatten_samples</span><span class="p">(</span><span class="n">target</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">()</span>
<span class="c1"># Find classes weights:</span>
<span class="n">sum_targets</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">class_weigths</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="n">sum_targets</span> <span class="o">*</span> <span class="n">sum_targets</span><span class="p">)</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
<span class="c1"># Compute generalized Dice loss:</span>
<span class="n">numer</span> <span class="o">=</span> <span class="p">((</span><span class="nb">input</span> <span class="o">*</span> <span class="n">target</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">class_weigths</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
<span class="n">denom</span> <span class="o">=</span> <span class="p">((</span><span class="nb">input</span> <span class="o">+</span> <span class="n">target</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">class_weigths</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
<span class="n">loss</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">-</span> <span class="mf">2.</span> <span class="o">*</span> <span class="n">numer</span> <span class="o">/</span> <span class="n">denom</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">flatten_and_preserve_channels</span><span class="p">(</span><span class="n">tensor</span><span class="p">):</span>
<span class="n">tensor_dim</span> <span class="o">=</span> <span class="n">tensor</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span>
<span class="k">assert</span> <span class="n">tensor_dim</span> <span class="o">&gt;=</span> <span class="mi">3</span>
<span class="n">num_channels</span> <span class="o">=</span> <span class="n">tensor</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">num_classes</span> <span class="o">=</span> <span class="n">tensor</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="c1"># Permute the channel axis to first</span>
<span class="n">permute_axes</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">tensor_dim</span><span class="p">))</span>
<span class="n">permute_axes</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">permute_axes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">permuted</span> <span class="o">=</span> <span class="n">tensor</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="o">*</span><span class="n">permute_axes</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="n">flattened</span> <span class="o">=</span> <span class="n">permuted</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">num_channels</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">flattened</span>
<span class="c1"># Flatten input and target to have the shape (nb_channels, nb_classes, N)</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">flatten_and_preserve_channels</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">target</span> <span class="o">=</span> <span class="n">flatten_and_preserve_channels</span><span class="p">(</span><span class="n">target</span><span class="p">)</span>
<span class="c1"># Find classes weights:</span>
<span class="n">sum_targets</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">class_weigths</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">/</span> <span class="p">(</span><span class="n">sum_targets</span> <span class="o">*</span> <span class="n">sum_targets</span><span class="p">)</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
<span class="c1"># Compute generalized Dice loss:</span>
<span class="n">numer</span> <span class="o">=</span> <span class="p">((</span><span class="nb">input</span> <span class="o">*</span> <span class="n">target</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">class_weigths</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">denom</span> <span class="o">=</span> <span class="p">((</span><span class="nb">input</span> <span class="o">+</span> <span class="n">target</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">class_weigths</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">channelwise_loss</span> <span class="o">=</span> <span class="mf">1.</span> <span class="o">-</span> <span class="mf">2.</span> <span class="o">*</span> <span class="n">numer</span> <span class="o">/</span> <span class="n">denom</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span><span class="nb">min</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="n">channelwise_loss</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span>
<span class="n">channelwise_loss</span> <span class="o">=</span> <span class="n">channelwise_loss</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">size</span><span class="p">()</span> <span class="o">==</span> <span class="n">channelwise_loss</span><span class="o">.</span><span class="n">size</span><span class="p">(),</span>\
<span class="sd">&quot;&quot;&quot;`weight` should have shape (nb_channels, ),</span>
<span class="sd"> `target` should have shape (batch_size, nb_channels, nb_classes, ...)&quot;&quot;&quot;</span>
<span class="c1"># Apply channel weights:</span>
<span class="n">channelwise_loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span> <span class="o">*</span> <span class="n">channelwise_loss</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">channelwise_loss</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
<span class="k">return</span> <span class="n">loss</span></div></div>
<div class="viewcode-block" id="FocalLoss"><a class="viewcode-back" href="../../index.html#pathflowai.losses.FocalLoss">[docs]</a><span class="k">class</span> <span class="nc">FocalLoss</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span> <span class="c1"># add boundary loss</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> # https://raw.githubusercontent.com/Hsuxu/Loss_ToolBox-PyTorch/master/FocalLoss/FocalLoss.py</span>
<span class="sd"> This is a implementation of Focal Loss with smooth label cross entropy supported which is proposed in</span>
<span class="sd"> &#39;Focal Loss for Dense Object Detection. (https://arxiv.org/abs/1708.02002)&#39;</span>
<span class="sd"> Focal_Loss= -1*alpha*(1-pt)*log(pt)</span>
<span class="sd"> :param num_class:</span>
<span class="sd"> :param alpha: (tensor) 3D or 4D the scalar factor for this criterion</span>
<span class="sd"> :param gamma: (float,double) gamma &gt; 0 reduces the relative loss for well-classified examples (p&gt;0.5) putting more</span>
<span class="sd"> focus on hard misclassified example</span>
<span class="sd"> :param smooth: (float,double) smooth value when cross entropy</span>
<span class="sd"> :param balance_index: (int) balance class index, should be specific when alpha is float</span>
<span class="sd"> :param size_average: (bool, optional) By default, the losses are averaged over each loss element in the batch.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num_class</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">gamma</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">balance_index</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="n">smooth</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">size_average</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">FocalLoss</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">num_class</span> <span class="o">=</span> <span class="n">num_class</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="n">alpha</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">gamma</span>
<span class="bp">self</span><span class="o">.</span><span class="n">smooth</span> <span class="o">=</span> <span class="n">smooth</span>
<span class="bp">self</span><span class="o">.</span><span class="n">size_average</span> <span class="o">=</span> <span class="n">size_average</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_class</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)):</span>
<span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_class</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">(</span><span class="n">alpha</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_class</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">,</span> <span class="nb">float</span><span class="p">):</span>
<span class="n">alpha</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_class</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">alpha</span> <span class="o">=</span> <span class="n">alpha</span> <span class="o">*</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span>
<span class="n">alpha</span><span class="p">[</span><span class="n">balance_index</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="n">alpha</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s1">&#39;Not support alpha type&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">smooth</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">smooth</span> <span class="o">&lt;</span> <span class="mi">0</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">smooth</span> <span class="o">&gt;</span> <span class="mf">1.0</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;smooth value should be in [0,1]&#39;</span><span class="p">)</span>
<div class="viewcode-block" id="FocalLoss.forward"><a class="viewcode-back" href="../../index.html#pathflowai.losses.FocalLoss.forward">[docs]</a> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">logit</span><span class="p">,</span> <span class="n">target</span><span class="p">):</span>
<span class="c1"># logit = F.softmax(input, dim=1)</span>
<span class="k">if</span> <span class="n">logit</span><span class="o">.</span><span class="n">dim</span><span class="p">()</span> <span class="o">&gt;</span> <span class="mi">2</span><span class="p">:</span>
<span class="c1"># N,C,d1,d2 -&gt; N,C,m (m=d1*d2*...)</span>
<span class="n">logit</span> <span class="o">=</span> <span class="n">logit</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">logit</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">logit</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">logit</span> <span class="o">=</span> <span class="n">logit</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="n">logit</span> <span class="o">=</span> <span class="n">logit</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">logit</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">))</span>
<span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="c1"># N = input.size(0)</span>
<span class="c1"># alpha = torch.ones(N, self.num_class)</span>
<span class="c1"># alpha = alpha * (1 - self.alpha)</span>
<span class="c1"># alpha = alpha.scatter_(1, target.long(), self.alpha)</span>
<span class="n">epsilon</span> <span class="o">=</span> <span class="mf">1e-10</span>
<span class="n">alpha</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span>
<span class="k">if</span> <span class="n">alpha</span><span class="o">.</span><span class="n">device</span> <span class="o">!=</span> <span class="nb">input</span><span class="o">.</span><span class="n">device</span><span class="p">:</span>
<span class="n">alpha</span> <span class="o">=</span> <span class="n">alpha</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">idx</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">long</span><span class="p">()</span>
<span class="n">one_hot_key</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">(</span><span class="n">target</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_class</span><span class="p">)</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
<span class="n">one_hot_key</span> <span class="o">=</span> <span class="n">one_hot_key</span><span class="o">.</span><span class="n">scatter_</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">idx</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">if</span> <span class="n">one_hot_key</span><span class="o">.</span><span class="n">device</span> <span class="o">!=</span> <span class="n">logit</span><span class="o">.</span><span class="n">device</span><span class="p">:</span>
<span class="n">one_hot_key</span> <span class="o">=</span> <span class="n">one_hot_key</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">logit</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">smooth</span><span class="p">:</span>
<span class="n">one_hot_key</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">clamp</span><span class="p">(</span>
<span class="n">one_hot_key</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">smooth</span><span class="o">/</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">num_class</span><span class="o">-</span><span class="mi">1</span><span class="p">),</span> <span class="mf">1.0</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">smooth</span><span class="p">)</span>
<span class="n">pt</span> <span class="o">=</span> <span class="p">(</span><span class="n">one_hot_key</span> <span class="o">*</span> <span class="n">logit</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">epsilon</span>
<span class="n">logpt</span> <span class="o">=</span> <span class="n">pt</span><span class="o">.</span><span class="n">log</span><span class="p">()</span>
<span class="n">gamma</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span>
<span class="n">alpha</span> <span class="o">=</span> <span class="n">alpha</span><span class="p">[</span><span class="n">idx</span><span class="p">]</span>
<span class="n">loss</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span> <span class="o">*</span> <span class="n">alpha</span> <span class="o">*</span> <span class="n">torch</span><span class="o">.</span><span class="n">pow</span><span class="p">((</span><span class="mi">1</span> <span class="o">-</span> <span class="n">pt</span><span class="p">),</span> <span class="n">gamma</span><span class="p">)</span> <span class="o">*</span> <span class="n">logpt</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">size_average</span><span class="p">:</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">loss</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">loss</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span>
<span class="k">return</span> <span class="n">loss</span></div></div>
<div class="viewcode-block" id="uniq"><a class="viewcode-back" href="../../index.html#pathflowai.losses.uniq">[docs]</a><span class="k">def</span> <span class="nf">uniq</span><span class="p">(</span><span class="n">a</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Set</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/utils.py&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">set</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">unique</span><span class="p">(</span><span class="n">a</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span><span class="o">.</span><span class="n">numpy</span><span class="p">())</span></div>
<div class="viewcode-block" id="sset"><a class="viewcode-back" href="../../index.html#pathflowai.losses.sset">[docs]</a><span class="k">def</span> <span class="nf">sset</span><span class="p">(</span><span class="n">a</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">sub</span><span class="p">:</span> <span class="n">Iterable</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/utils.py&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">uniq</span><span class="p">(</span><span class="n">a</span><span class="p">)</span><span class="o">.</span><span class="n">issubset</span><span class="p">(</span><span class="n">sub</span><span class="p">)</span></div>
<div class="viewcode-block" id="eq"><a class="viewcode-back" href="../../index.html#pathflowai.losses.eq">[docs]</a><span class="k">def</span> <span class="nf">eq</span><span class="p">(</span><span class="n">a</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/utils.py&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">eq</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span><span class="o">.</span><span class="n">all</span><span class="p">()</span></div>
<div class="viewcode-block" id="simplex"><a class="viewcode-back" href="../../index.html#pathflowai.losses.simplex">[docs]</a><span class="k">def</span> <span class="nf">simplex</span><span class="p">(</span><span class="n">t</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/utils.py&quot;&quot;&quot;</span>
<span class="n">_sum</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">_ones</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones_like</span><span class="p">(</span><span class="n">_sum</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">_sum</span><span class="p">,</span> <span class="n">_ones</span><span class="p">)</span></div>
<div class="viewcode-block" id="one_hot"><a class="viewcode-back" href="../../index.html#pathflowai.losses.one_hot">[docs]</a><span class="k">def</span> <span class="nf">one_hot</span><span class="p">(</span><span class="n">t</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/utils.py&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">simplex</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="n">axis</span><span class="p">)</span> <span class="ow">and</span> <span class="n">sset</span><span class="p">(</span><span class="n">t</span><span class="p">,</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span></div>
<div class="viewcode-block" id="class2one_hot"><a class="viewcode-back" href="../../index.html#pathflowai.losses.class2one_hot">[docs]</a><span class="k">def</span> <span class="nf">class2one_hot</span><span class="p">(</span><span class="n">seg</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">C</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/utils.py&quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">seg</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span> <span class="c1"># Only w, h, used by the dataloader</span>
<span class="n">seg</span> <span class="o">=</span> <span class="n">seg</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">sset</span><span class="p">(</span><span class="n">seg</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="n">C</span><span class="p">)))</span>
<span class="n">b</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">h</span> <span class="o">=</span> <span class="n">seg</span><span class="o">.</span><span class="n">shape</span> <span class="c1"># type: Tuple[int, int, int]</span>
<span class="n">res</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">([</span><span class="n">seg</span> <span class="o">==</span> <span class="n">c</span> <span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">C</span><span class="p">)],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">int32</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">res</span><span class="o">.</span><span class="n">shape</span> <span class="o">==</span> <span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">C</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">h</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">one_hot</span><span class="p">(</span><span class="n">res</span><span class="p">)</span>
<span class="k">return</span> <span class="n">res</span></div>
<div class="viewcode-block" id="one_hot2dist"><a class="viewcode-back" href="../../index.html#pathflowai.losses.one_hot2dist">[docs]</a><span class="k">def</span> <span class="nf">one_hot2dist</span><span class="p">(</span><span class="n">seg</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">:</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/utils.py&quot;&quot;&quot;</span>
<span class="k">assert</span> <span class="n">one_hot</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">(</span><span class="n">seg</span><span class="p">),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">C</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">seg</span><span class="p">)</span>
<span class="n">res</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">seg</span><span class="p">)</span>
<span class="k">for</span> <span class="n">c</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">C</span><span class="p">):</span>
<span class="n">posmask</span> <span class="o">=</span> <span class="n">seg</span><span class="p">[</span><span class="n">c</span><span class="p">]</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">bool</span><span class="p">)</span>
<span class="k">if</span> <span class="n">posmask</span><span class="o">.</span><span class="n">any</span><span class="p">():</span>
<span class="n">negmask</span> <span class="o">=</span> <span class="o">~</span><span class="n">posmask</span>
<span class="n">res</span><span class="p">[</span><span class="n">c</span><span class="p">]</span> <span class="o">=</span> <span class="n">distance</span><span class="p">(</span><span class="n">negmask</span><span class="p">)</span> <span class="o">*</span> <span class="n">negmask</span> <span class="o">-</span> <span class="p">(</span><span class="n">distance</span><span class="p">(</span><span class="n">posmask</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">posmask</span>
<span class="k">return</span> <span class="n">res</span></div>
<div class="viewcode-block" id="SurfaceLoss"><a class="viewcode-back" href="../../index.html#pathflowai.losses.SurfaceLoss">[docs]</a><span class="k">class</span> <span class="nc">SurfaceLoss</span><span class="p">():</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/losses.py&quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="c1"># Self.idc is used to filter out some classes of the target mask. Use fancy indexing</span>
<span class="bp">self</span><span class="o">.</span><span class="n">idc</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;idc&quot;</span><span class="p">]</span>
<span class="nb">print</span><span class="p">(</span><span class="n">f</span><span class="s2">&quot;Initialized </span><span class="si">{self.__class__.__name__}</span><span class="s2"> with </span><span class="si">{kwargs}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">probs</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">dist_maps</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">_</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">simplex</span><span class="p">(</span><span class="n">probs</span><span class="p">)</span>
<span class="k">assert</span> <span class="ow">not</span> <span class="n">one_hot</span><span class="p">(</span><span class="n">dist_maps</span><span class="p">)</span>
<span class="n">pc</span> <span class="o">=</span> <span class="n">probs</span><span class="p">[:,</span> <span class="bp">self</span><span class="o">.</span><span class="n">idc</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">dc</span> <span class="o">=</span> <span class="n">dist_maps</span><span class="p">[:,</span> <span class="bp">self</span><span class="o">.</span><span class="n">idc</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">multipled</span> <span class="o">=</span> <span class="n">einsum</span><span class="p">(</span><span class="s2">&quot;bcwh,bcwh-&gt;bcwh&quot;</span><span class="p">,</span> <span class="n">pc</span><span class="p">,</span> <span class="n">dc</span><span class="p">)</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">multipled</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="k">return</span> <span class="n">loss</span></div>
<div class="viewcode-block" id="GeneralizedDice"><a class="viewcode-back" href="../../index.html#pathflowai.losses.GeneralizedDice">[docs]</a><span class="k">class</span> <span class="nc">GeneralizedDice</span><span class="p">():</span>
<span class="sd">&quot;&quot;&quot;https://raw.githubusercontent.com/LIVIAETS/surface-loss/master/losses.py&quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="c1"># Self.idc is used to filter out some classes of the target mask. Use fancy indexing</span>
<span class="bp">self</span><span class="o">.</span><span class="n">idc</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">kwargs</span><span class="p">[</span><span class="s2">&quot;idc&quot;</span><span class="p">]</span>
<span class="nb">print</span><span class="p">(</span><span class="n">f</span><span class="s2">&quot;Initialized </span><span class="si">{self.__class__.__name__}</span><span class="s2"> with </span><span class="si">{kwargs}</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">probs</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">,</span> <span class="n">_</span><span class="p">:</span> <span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Tensor</span><span class="p">:</span>
<span class="k">assert</span> <span class="n">simplex</span><span class="p">(</span><span class="n">probs</span><span class="p">)</span> <span class="ow">and</span> <span class="n">simplex</span><span class="p">(</span><span class="n">target</span><span class="p">)</span>
<span class="n">pc</span> <span class="o">=</span> <span class="n">probs</span><span class="p">[:,</span> <span class="bp">self</span><span class="o">.</span><span class="n">idc</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">tc</span> <span class="o">=</span> <span class="n">target</span><span class="p">[:,</span> <span class="bp">self</span><span class="o">.</span><span class="n">idc</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">w</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">/</span> <span class="p">((</span><span class="n">einsum</span><span class="p">(</span><span class="s2">&quot;bcwh-&gt;bc&quot;</span><span class="p">,</span> <span class="n">tc</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span> <span class="o">+</span> <span class="mf">1e-10</span><span class="p">)</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">intersection</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="n">w</span> <span class="o">*</span> <span class="n">einsum</span><span class="p">(</span><span class="s2">&quot;bcwh,bcwh-&gt;bc&quot;</span><span class="p">,</span> <span class="n">pc</span><span class="p">,</span> <span class="n">tc</span><span class="p">)</span>
<span class="n">union</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="n">w</span> <span class="o">*</span> <span class="p">(</span><span class="n">einsum</span><span class="p">(</span><span class="s2">&quot;bcwh-&gt;bc&quot;</span><span class="p">,</span> <span class="n">pc</span><span class="p">)</span> <span class="o">+</span> <span class="n">einsum</span><span class="p">(</span><span class="s2">&quot;bcwh-&gt;bc&quot;</span><span class="p">,</span> <span class="n">tc</span><span class="p">))</span>
<span class="n">divided</span><span class="p">:</span> <span class="n">Tensor</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="mi">2</span> <span class="o">*</span> <span class="p">(</span><span class="n">einsum</span><span class="p">(</span><span class="s2">&quot;bc-&gt;b&quot;</span><span class="p">,</span> <span class="n">intersection</span><span class="p">)</span> <span class="o">+</span> <span class="mf">1e-10</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">einsum</span><span class="p">(</span><span class="s2">&quot;bc-&gt;b&quot;</span><span class="p">,</span> <span class="n">union</span><span class="p">)</span> <span class="o">+</span> <span class="mf">1e-10</span><span class="p">)</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">divided</span><span class="o">.</span><span class="n">mean</span><span class="p">()</span>
<span class="k">return</span> <span class="n">loss</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Joshua Levy
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>