[27c943]: / docs / _modules / pathflowai / datasets.html

Download this file

674 lines (503 with data), 86.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>pathflowai.datasets &mdash; PathFlowAI 0.1 documentation</title>
<script type="text/javascript" src="../../_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../_static/jquery.js"></script>
<script type="text/javascript" src="../../_static/underscore.js"></script>
<script type="text/javascript" src="../../_static/doctools.js"></script>
<script type="text/javascript" src="../../_static/language_data.js"></script>
<script async="async" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> PathFlowAI
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<!-- Local TOC -->
<div class="local-toc"></div>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">PathFlowAI</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html">Docs</a> &raquo;</li>
<li><a href="../index.html">Module code</a> &raquo;</li>
<li>pathflowai.datasets</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<h1>Source code for pathflowai.datasets</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">datasets.py</span>
<span class="sd">=======================</span>
<span class="sd">Houses the DynamicImageDataset class, also functions to help with image color channel normalization, transformers, etc..</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">from</span> <span class="nn">torchvision</span> <span class="k">import</span> <span class="n">transforms</span>
<span class="kn">import</span> <span class="nn">os</span>
<span class="kn">import</span> <span class="nn">dask</span>
<span class="c1">#from dask.distributed import Client; Client()</span>
<span class="kn">import</span> <span class="nn">dask.array</span> <span class="k">as</span> <span class="nn">da</span><span class="o">,</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span><span class="o">,</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">pathflowai.utils</span> <span class="k">import</span> <span class="o">*</span>
<span class="kn">import</span> <span class="nn">pysnooper</span>
<span class="kn">import</span> <span class="nn">nonechucks</span> <span class="k">as</span> <span class="nn">nc</span>
<span class="kn">from</span> <span class="nn">torch.utils.data</span> <span class="k">import</span> <span class="n">Dataset</span><span class="p">,</span> <span class="n">DataLoader</span>
<span class="kn">import</span> <span class="nn">random</span>
<span class="kn">import</span> <span class="nn">albumentations</span> <span class="k">as</span> <span class="nn">alb</span>
<span class="kn">import</span> <span class="nn">copy</span>
<span class="kn">from</span> <span class="nn">albumentations</span> <span class="k">import</span> <span class="n">pytorch</span> <span class="k">as</span> <span class="n">albtorch</span>
<span class="kn">from</span> <span class="nn">sklearn.preprocessing</span> <span class="k">import</span> <span class="n">LabelBinarizer</span>
<span class="kn">from</span> <span class="nn">sklearn.utils.class_weight</span> <span class="k">import</span> <span class="n">compute_class_weight</span>
<span class="kn">from</span> <span class="nn">pathflowai.losses</span> <span class="k">import</span> <span class="n">class2one_hot</span>
<div class="viewcode-block" id="RandomRotate90"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.RandomRotate90">[docs]</a><span class="k">def</span> <span class="nf">RandomRotate90</span><span class="p">():</span>
<span class="sd">&quot;&quot;&quot;Transformer for random 90 degree rotation image.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> function</span>
<span class="sd"> Transformer function for operation.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="p">(</span><span class="k">lambda</span> <span class="n">img</span><span class="p">:</span> <span class="n">img</span><span class="o">.</span><span class="n">rotate</span><span class="p">(</span><span class="n">random</span><span class="o">.</span><span class="n">sample</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">90</span><span class="p">,</span> <span class="mi">180</span><span class="p">,</span> <span class="mi">270</span><span class="p">],</span> <span class="n">k</span><span class="o">=</span><span class="mi">1</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span></div>
<div class="viewcode-block" id="get_data_transforms"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.get_data_transforms">[docs]</a><span class="k">def</span> <span class="nf">get_data_transforms</span><span class="p">(</span><span class="n">patch_size</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="p">[],</span> <span class="n">std</span><span class="o">=</span><span class="p">[],</span> <span class="n">resize</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">transform_platform</span><span class="o">=</span><span class="s1">&#39;torch&#39;</span><span class="p">,</span> <span class="n">elastic</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Get data transformers for training test and validation sets.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> patch_size:int</span>
<span class="sd"> Original patch size being transformed.</span>
<span class="sd"> mean:list of float</span>
<span class="sd"> Mean RGB</span>
<span class="sd"> std:list of float</span>
<span class="sd"> Std RGB</span>
<span class="sd"> resize:int</span>
<span class="sd"> Which patch size to resize to.</span>
<span class="sd"> transform_platform:str</span>
<span class="sd"> Use pytorch or albumentation transforms.</span>
<span class="sd"> elastic:bool</span>
<span class="sd"> Whether to add elastic deformations from albumentations.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> dict</span>
<span class="sd"> Transformers.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">data_transforms</span> <span class="o">=</span> <span class="p">{</span> <span class="s1">&#39;torch&#39;</span><span class="p">:</span> <span class="p">{</span>
<span class="s1">&#39;train&#39;</span><span class="p">:</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToPILImage</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">Resize</span><span class="p">((</span><span class="n">patch_size</span><span class="p">,</span><span class="n">patch_size</span><span class="p">)),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">patch_size</span><span class="p">),</span> <span class="c1"># if not resize else</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ColorJitter</span><span class="p">(</span><span class="n">brightness</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">contrast</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">saturation</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">hue</span><span class="o">=</span><span class="mf">0.5</span><span class="p">),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">RandomHorizontalFlip</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">RandomVerticalFlip</span><span class="p">(),</span>
<span class="n">RandomRotate90</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">(</span><span class="n">mean</span> <span class="k">if</span> <span class="n">mean</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">],</span> <span class="n">std</span> <span class="k">if</span> <span class="n">std</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">])</span> <span class="c1">#mean and standard deviations for lung adenocarcinoma resection slides</span>
<span class="p">]),</span>
<span class="s1">&#39;val&#39;</span><span class="p">:</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToPILImage</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">Resize</span><span class="p">((</span><span class="n">patch_size</span><span class="p">,</span><span class="n">patch_size</span><span class="p">)),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">patch_size</span><span class="p">),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">(</span><span class="n">mean</span> <span class="k">if</span> <span class="n">mean</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">],</span> <span class="n">std</span> <span class="k">if</span> <span class="n">std</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">])</span>
<span class="p">]),</span>
<span class="s1">&#39;test&#39;</span><span class="p">:</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToPILImage</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">Resize</span><span class="p">((</span><span class="n">patch_size</span><span class="p">,</span><span class="n">patch_size</span><span class="p">)),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">patch_size</span><span class="p">),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">(</span><span class="n">mean</span> <span class="k">if</span> <span class="n">mean</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">],</span> <span class="n">std</span> <span class="k">if</span> <span class="n">std</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">])</span>
<span class="p">]),</span>
<span class="s1">&#39;pass&#39;</span><span class="p">:</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToPILImage</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">patch_size</span><span class="p">),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="p">])</span>
<span class="p">},</span>
<span class="s1">&#39;albumentations&#39;</span><span class="p">:{</span>
<span class="s1">&#39;train&#39;</span><span class="p">:</span><span class="n">alb</span><span class="o">.</span><span class="n">core</span><span class="o">.</span><span class="n">composition</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">Resize</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">),</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">)</span>
<span class="p">]</span><span class="o">+</span><span class="p">([</span><span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">Flip</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="mf">0.5</span><span class="p">),</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">Transpose</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="mf">0.5</span><span class="p">),</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">ShiftScaleRotate</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)]</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">elastic</span> <span class="k">else</span> <span class="p">[</span><span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">RandomRotate90</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="mf">0.5</span><span class="p">),</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">ElasticTransform</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="mf">0.5</span><span class="p">)])</span><span class="o">+</span><span class="p">[</span><span class="n">albtorch</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="nb">dict</span><span class="p">(</span><span class="n">mean</span><span class="o">=</span><span class="n">mean</span> <span class="k">if</span> <span class="n">mean</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">],</span> <span class="n">std</span><span class="o">=</span><span class="n">std</span> <span class="k">if</span> <span class="n">std</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">]))]</span>
<span class="p">),</span>
<span class="s1">&#39;val&#39;</span><span class="p">:</span><span class="n">alb</span><span class="o">.</span><span class="n">core</span><span class="o">.</span><span class="n">composition</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">Resize</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">),</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">),</span>
<span class="n">albtorch</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="nb">dict</span><span class="p">(</span><span class="n">mean</span><span class="o">=</span><span class="n">mean</span> <span class="k">if</span> <span class="n">mean</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">],</span> <span class="n">std</span><span class="o">=</span><span class="n">std</span> <span class="k">if</span> <span class="n">std</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">]))</span>
<span class="p">]),</span>
<span class="s1">&#39;test&#39;</span><span class="p">:</span><span class="n">alb</span><span class="o">.</span><span class="n">core</span><span class="o">.</span><span class="n">composition</span><span class="o">.</span><span class="n">Compose</span><span class="p">([</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">Resize</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">),</span>
<span class="n">alb</span><span class="o">.</span><span class="n">augmentations</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">CenterCrop</span><span class="p">(</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">),</span>
<span class="n">albtorch</span><span class="o">.</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(</span><span class="n">normalize</span><span class="o">=</span><span class="nb">dict</span><span class="p">(</span><span class="n">mean</span><span class="o">=</span><span class="n">mean</span> <span class="k">if</span> <span class="n">mean</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">],</span> <span class="n">std</span><span class="o">=</span><span class="n">std</span> <span class="k">if</span> <span class="n">std</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="p">[</span><span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">,</span> <span class="mf">0.15</span><span class="p">]))</span>
<span class="p">])</span>
<span class="p">}}</span>
<span class="k">return</span> <span class="n">data_transforms</span><span class="p">[</span><span class="n">transform_platform</span><span class="p">]</span></div>
<div class="viewcode-block" id="create_transforms"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.create_transforms">[docs]</a><span class="k">def</span> <span class="nf">create_transforms</span><span class="p">(</span><span class="n">mean</span><span class="p">,</span> <span class="n">std</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Create transformers.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> mean:list</span>
<span class="sd"> See get_data_transforms.</span>
<span class="sd"> std:list</span>
<span class="sd"> See get_data_transforms.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> dict</span>
<span class="sd"> Transformers.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="n">get_data_transforms</span><span class="p">(</span><span class="n">patch_size</span> <span class="o">=</span> <span class="mi">224</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="n">mean</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">std</span><span class="p">,</span> <span class="n">resize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span></div>
<div class="viewcode-block" id="get_normalizer"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.get_normalizer">[docs]</a><span class="k">def</span> <span class="nf">get_normalizer</span><span class="p">(</span><span class="n">normalization_file</span><span class="p">,</span> <span class="n">dataset_opts</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Find mean and standard deviation of images in batches.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> normalization_file:str</span>
<span class="sd"> File to store normalization information.</span>
<span class="sd"> dataset_opts:type</span>
<span class="sd"> Dictionary storing information to create DynamicDataset class.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> dict</span>
<span class="sd"> Stores RGB mean, stdev.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">os</span><span class="o">.</span><span class="n">path</span><span class="o">.</span><span class="n">exists</span><span class="p">(</span><span class="n">normalization_file</span><span class="p">):</span>
<span class="n">norm_dict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">normalization_file</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">norm_dict</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;normalization_file&#39;</span><span class="p">:</span><span class="n">normalization_file</span><span class="p">}</span>
<span class="k">if</span> <span class="s1">&#39;normalization_file&#39;</span> <span class="ow">in</span> <span class="n">norm_dict</span><span class="p">:</span>
<span class="n">transformers</span> <span class="o">=</span> <span class="n">get_data_transforms</span><span class="p">(</span><span class="n">patch_size</span> <span class="o">=</span> <span class="mi">224</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="p">[],</span> <span class="n">std</span><span class="o">=</span><span class="p">[],</span> <span class="n">resize</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">transform_platform</span><span class="o">=</span><span class="s1">&#39;torch&#39;</span><span class="p">)</span>
<span class="n">dataset_opts</span><span class="p">[</span><span class="s1">&#39;transformers&#39;</span><span class="p">]</span><span class="o">=</span><span class="n">transformers</span>
<span class="c1">#print(dict(pos_annotation_class=pos_annotation_class, segmentation=segmentation, patch_size=patch_size, fix_names=fix_names, other_annotations=other_annotations))</span>
<span class="n">dataset</span> <span class="o">=</span> <span class="n">DynamicImageDataset</span><span class="p">(</span><span class="o">**</span><span class="n">dataset_opts</span><span class="p">)</span><span class="c1">#nc.SafeDataset(DynamicImageDataset(**dataset_opts))</span>
<span class="k">if</span> <span class="n">dataset_opts</span><span class="p">[</span><span class="s1">&#39;classify_annotations&#39;</span><span class="p">]:</span>
<span class="n">dataset</span><span class="o">.</span><span class="n">binarize_annotations</span><span class="p">()</span>
<span class="n">dataloader</span> <span class="o">=</span> <span class="n">DataLoader</span><span class="p">(</span><span class="n">dataset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">128</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
<span class="n">all_mean</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">],</span><span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span><span class="c1">#[]</span>
<span class="n">all_std</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">,</span><span class="mf">0.</span><span class="p">],</span><span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span>
<span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">():</span>
<span class="n">all_mean</span><span class="o">=</span><span class="n">all_mean</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">all_std</span><span class="o">=</span><span class="n">all_std</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,(</span><span class="n">X</span><span class="p">,</span><span class="n">_</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">dataloader</span><span class="p">):</span> <span class="c1"># x,3,224,224</span>
<span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">():</span>
<span class="n">X</span><span class="o">=</span><span class="n">X</span><span class="o">.</span><span class="n">cuda</span><span class="p">()</span>
<span class="n">all_mean</span> <span class="o">+=</span> <span class="n">torch</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span>
<span class="n">all_std</span> <span class="o">+=</span> <span class="n">torch</span><span class="o">.</span><span class="n">std</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">3</span><span class="p">))</span>
<span class="n">N</span><span class="o">=</span><span class="n">i</span><span class="o">+</span><span class="mi">1</span>
<span class="n">all_mean</span> <span class="o">/=</span> <span class="nb">float</span><span class="p">(</span><span class="n">N</span><span class="p">)</span> <span class="c1">#(np.array(all_mean).mean(axis=0)).tolist()</span>
<span class="n">all_std</span> <span class="o">/=</span> <span class="nb">float</span><span class="p">(</span><span class="n">N</span><span class="p">)</span> <span class="c1">#(np.array(all_std).mean(axis=0)).tolist()</span>
<span class="n">all_mean</span> <span class="o">=</span> <span class="n">all_mean</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="n">all_std</span> <span class="o">=</span> <span class="n">all_std</span><span class="o">.</span><span class="n">detach</span><span class="p">()</span><span class="o">.</span><span class="n">cpu</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="n">torch</span><span class="o">.</span><span class="n">save</span><span class="p">(</span><span class="nb">dict</span><span class="p">(</span><span class="n">mean</span><span class="o">=</span><span class="n">all_mean</span><span class="p">,</span><span class="n">std</span><span class="o">=</span><span class="n">all_std</span><span class="p">),</span><span class="n">norm_dict</span><span class="p">[</span><span class="s1">&#39;normalization_file&#39;</span><span class="p">])</span>
<span class="n">norm_dict</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">norm_dict</span><span class="p">[</span><span class="s1">&#39;normalization_file&#39;</span><span class="p">])</span>
<span class="k">return</span> <span class="n">norm_dict</span></div>
<div class="viewcode-block" id="segmentation_transform"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.segmentation_transform">[docs]</a><span class="k">def</span> <span class="nf">segmentation_transform</span><span class="p">(</span><span class="n">img</span><span class="p">,</span><span class="n">mask</span><span class="p">,</span> <span class="n">transformer</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Run albumentations and return an image and its segmentation mask.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> img:array</span>
<span class="sd"> Image as array</span>
<span class="sd"> mask:array</span>
<span class="sd"> Categorical pixel by pixel.</span>
<span class="sd"> transformer :</span>
<span class="sd"> Transformation object.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> tuple arrays</span>
<span class="sd"> Image and mask array.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">res</span><span class="o">=</span><span class="n">transformer</span><span class="p">(</span><span class="kc">True</span><span class="p">,</span> <span class="n">image</span><span class="o">=</span><span class="n">img</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="c1">#res_mask_shape = res[&#39;mask&#39;].size()</span>
<span class="k">return</span> <span class="n">res</span><span class="p">[</span><span class="s1">&#39;image&#39;</span><span class="p">],</span> <span class="n">res</span><span class="p">[</span><span class="s1">&#39;mask&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">long</span><span class="p">()</span><span class="c1">#.view(res_mask_shape[0],res_mask_shape[1],res_mask_shape[2])</span></div>
<div class="viewcode-block" id="DynamicImageDataset"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.DynamicImageDataset">[docs]</a><span class="k">class</span> <span class="nc">DynamicImageDataset</span><span class="p">(</span><span class="n">Dataset</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Generate image dataset that accesses images and annotations via dask.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> dataset_df:dataframe</span>
<span class="sd"> Dataframe with WSI, which set it is in (train/test/val) and corresponding WSI labels if applicable.</span>
<span class="sd"> set:str</span>
<span class="sd"> Whether train, test, val or pass (normalization) set.</span>
<span class="sd"> patch_info_file:str</span>
<span class="sd"> SQL db with positional and annotation information on each slide.</span>
<span class="sd"> transformers:dict</span>
<span class="sd"> Contains transformers to apply on images.</span>
<span class="sd"> input_dir:str</span>
<span class="sd"> Directory where images comes from.</span>
<span class="sd"> target_names:list/str</span>
<span class="sd"> Names of initial targets, which may be modified.</span>
<span class="sd"> pos_annotation_class:str</span>
<span class="sd"> If selected and predicting on WSI, this class is labeled as a positive from the WSI, while the other classes are not.</span>
<span class="sd"> other_annotations:list</span>
<span class="sd"> Other annotations to consider from patch info db.</span>
<span class="sd"> segmentation:bool</span>
<span class="sd"> Conducting segmentation task?</span>
<span class="sd"> patch_size:int</span>
<span class="sd"> Patch size.</span>
<span class="sd"> fix_names:bool</span>
<span class="sd"> Whether to change the names of dataset_df.</span>
<span class="sd"> target_segmentation_class:list</span>
<span class="sd"> Now can be used for classification as well, matched with two below options, samples images only from this class. Can specify this and below two options multiple times.</span>
<span class="sd"> target_threshold:list</span>
<span class="sd"> Sampled only if above this threshold of occurence in the patches.</span>
<span class="sd"> oversampling_factor:list</span>
<span class="sd"> Over sample them at this amount.</span>
<span class="sd"> n_segmentation_classes:int</span>
<span class="sd"> Number classes to segment.</span>
<span class="sd"> gdl:bool</span>
<span class="sd"> Using generalized dice loss?</span>
<span class="sd"> mt_bce:bool</span>
<span class="sd"> For multi-target prediction tasks.</span>
<span class="sd"> classify_annotations:bool</span>
<span class="sd"> For classifying annotations.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="c1"># when building transformers, need a resize patch size to make patches 224 by 224</span>
<span class="c1">#@pysnooper.snoop(&#39;init_data.log&#39;)</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span><span class="n">dataset_df</span><span class="p">,</span> <span class="nb">set</span><span class="p">,</span> <span class="n">patch_info_file</span><span class="p">,</span> <span class="n">transformers</span><span class="p">,</span> <span class="n">input_dir</span><span class="p">,</span> <span class="n">target_names</span><span class="p">,</span> <span class="n">pos_annotation_class</span><span class="p">,</span> <span class="n">other_annotations</span><span class="o">=</span><span class="p">[],</span> <span class="n">segmentation</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">patch_size</span><span class="o">=</span><span class="mi">224</span><span class="p">,</span> <span class="n">fix_names</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">target_segmentation_class</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="n">target_threshold</span><span class="o">=</span><span class="mf">0.</span><span class="p">,</span> <span class="n">oversampling_factor</span><span class="o">=</span><span class="mf">1.</span><span class="p">,</span> <span class="n">n_segmentation_classes</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span> <span class="n">gdl</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">mt_bce</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">classify_annotations</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="c1">#print(&#39;check&#39;,classify_annotations)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="o">=</span><span class="n">transformers</span><span class="p">[</span><span class="nb">set</span><span class="p">]</span>
<span class="n">original_set</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="nb">set</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">set</span><span class="o">==</span><span class="s1">&#39;pass&#39;</span><span class="p">:</span>
<span class="nb">set</span><span class="o">=</span><span class="s1">&#39;train&#39;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="n">target_names</span>
<span class="bp">self</span><span class="o">.</span><span class="n">mt_bce</span><span class="o">=</span><span class="n">mt_bce</span>
<span class="bp">self</span><span class="o">.</span><span class="n">set</span> <span class="o">=</span> <span class="nb">set</span>
<span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span> <span class="o">=</span> <span class="n">segmentation</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span><span class="o">==</span><span class="mi">1</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="n">original_set</span> <span class="o">==</span> <span class="s1">&#39;pass&#39;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform_fn</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">:</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="mf">1.</span><span class="p">,</span><span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform_fn</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">:</span> <span class="n">segmentation_transform</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="s1">&#39;p&#39;</span> <span class="ow">in</span> <span class="nb">dir</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform_fn</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">:</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="p">(</span><span class="kc">True</span><span class="p">,</span> <span class="n">image</span><span class="o">=</span><span class="n">x</span><span class="p">)[</span><span class="s1">&#39;image&#39;</span><span class="p">],</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">())</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transform_fn</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">:</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformer</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">torch</span><span class="o">.</span><span class="n">from_numpy</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">())</span>
<span class="bp">self</span><span class="o">.</span><span class="n">image_set</span> <span class="o">=</span> <span class="n">dataset_df</span><span class="p">[</span><span class="n">dataset_df</span><span class="p">[</span><span class="s1">&#39;set&#39;</span><span class="p">]</span><span class="o">==</span><span class="nb">set</span><span class="p">]</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="o">=</span><span class="s1">&#39;target&#39;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">image_set</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span> <span class="o">=</span> <span class="mf">1.</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span> <span class="ow">and</span> <span class="n">fix_names</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">image_set</span><span class="o">.</span><span class="n">loc</span><span class="p">[:,</span><span class="s1">&#39;ID&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">image_set</span><span class="p">[</span><span class="s1">&#39;ID&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">fix_name</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">slide_info</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">image_set</span><span class="o">.</span><span class="n">set_index</span><span class="p">(</span><span class="s1">&#39;ID&#39;</span><span class="p">)</span><span class="o">.</span><span class="n">loc</span><span class="p">[:,</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">])</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mt_bce</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="p">:</span>
<span class="k">if</span> <span class="n">pos_annotation_class</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="p">[</span><span class="n">pos_annotation_class</span><span class="p">]</span><span class="o">+</span><span class="nb">list</span><span class="p">(</span><span class="n">other_annotations</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="kc">None</span>
<span class="nb">print</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span>
<span class="n">IDs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">slide_info</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="n">pi_dict</span><span class="o">=</span><span class="nb">dict</span><span class="p">(</span><span class="n">input_info_db</span><span class="o">=</span><span class="n">patch_info_file</span><span class="p">,</span> <span class="n">slide_labels</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">slide_info</span><span class="p">,</span> <span class="n">pos_annotation_class</span><span class="o">=</span><span class="n">pos_annotation_class</span><span class="p">,</span> <span class="n">patch_size</span><span class="o">=</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">segmentation</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="p">,</span> <span class="n">other_annotations</span><span class="o">=</span><span class="n">other_annotations</span><span class="p">,</span> <span class="n">target_segmentation_class</span><span class="o">=</span><span class="n">target_segmentation_class</span><span class="p">,</span> <span class="n">target_threshold</span><span class="o">=</span><span class="n">target_threshold</span><span class="p">,</span> <span class="n">classify_annotations</span><span class="o">=</span><span class="n">classify_annotations</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span> <span class="o">=</span> <span class="n">modify_patch_info</span><span class="p">(</span><span class="o">**</span><span class="n">pi_dict</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span> <span class="ow">and</span> <span class="n">original_set</span><span class="o">!=</span><span class="s1">&#39;pass&#39;</span><span class="p">:</span>
<span class="c1">#IDs = self.patch_info[&#39;ID&#39;].unique()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">segmentation_maps</span> <span class="o">=</span> <span class="p">{</span><span class="n">slide</span><span class="p">:</span><span class="n">da</span><span class="o">.</span><span class="n">from_array</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">join</span><span class="p">(</span><span class="n">input_dir</span><span class="p">,</span><span class="s1">&#39;</span><span class="si">{}</span><span class="s1">_mask.npy&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">slide</span><span class="p">)),</span><span class="n">mmap_mode</span><span class="o">=</span><span class="s1">&#39;r+&#39;</span><span class="p">))</span> <span class="k">for</span> <span class="n">slide</span> <span class="ow">in</span> <span class="n">IDs</span><span class="p">}</span>
<span class="bp">self</span><span class="o">.</span><span class="n">slides</span> <span class="o">=</span> <span class="p">{</span><span class="n">slide</span><span class="p">:</span><span class="n">da</span><span class="o">.</span><span class="n">from_zarr</span><span class="p">(</span><span class="n">join</span><span class="p">(</span><span class="n">input_dir</span><span class="p">,</span><span class="s1">&#39;</span><span class="si">{}</span><span class="s1">.zarr&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">slide</span><span class="p">)))</span> <span class="k">for</span> <span class="n">slide</span> <span class="ow">in</span> <span class="n">IDs</span><span class="p">}</span>
<span class="c1">#print(self.slide_info)</span>
<span class="k">if</span> <span class="n">original_set</span> <span class="o">==</span><span class="s1">&#39;pass&#39;</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="o">=</span><span class="kc">False</span>
<span class="c1">#print(self.patch_info[self.targets].unique())</span>
<span class="k">if</span> <span class="n">oversampling_factor</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">]</span><span class="o">*</span><span class="nb">int</span><span class="p">(</span><span class="n">oversampling_factor</span><span class="p">),</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">reset_index</span><span class="p">(</span><span class="n">drop</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">oversampling_factor</span> <span class="o">&lt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="n">frac</span><span class="o">=</span><span class="n">oversampling_factor</span><span class="p">)</span><span class="o">.</span><span class="n">reset_index</span><span class="p">(</span><span class="n">drop</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">length</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">n_segmentation_classes</span> <span class="o">=</span> <span class="n">n_segmentation_classes</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gdl</span><span class="o">=</span><span class="n">gdl</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span> <span class="k">else</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">binarized</span><span class="o">=</span><span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">classify_annotations</span><span class="o">=</span><span class="n">classify_annotations</span>
<span class="nb">print</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span>
<div class="viewcode-block" id="DynamicImageDataset.concat"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.DynamicImageDataset.concat">[docs]</a> <span class="k">def</span> <span class="nf">concat</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">other_dataset</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Concatenate this dataset with others. Updates its own internal attributes.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> other_dataset:DynamicImageDataset</span>
<span class="sd"> Other image dataset.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">,</span> <span class="n">other_dataset</span><span class="o">.</span><span class="n">patch_info</span><span class="p">],</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">reset_index</span><span class="p">(</span><span class="n">drop</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">length</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">segmentation_maps</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">other_dataset</span><span class="o">.</span><span class="n">segmentation_maps</span><span class="p">)</span></div>
<span class="c1">#print(self.segmentation_maps.keys())</span>
<div class="viewcode-block" id="DynamicImageDataset.retain_ID"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.DynamicImageDataset.retain_ID">[docs]</a> <span class="k">def</span> <span class="nf">retain_ID</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ID</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Reduce the sample set to just images from one ID.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> ID:str</span>
<span class="sd"> Basename/ID to predict on.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> self</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">loc</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="s1">&#39;ID&#39;</span><span class="p">]</span><span class="o">==</span><span class="n">ID</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">length</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="k">return</span> <span class="bp">self</span></div>
<div class="viewcode-block" id="DynamicImageDataset.split_by_ID"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.DynamicImageDataset.split_by_ID">[docs]</a> <span class="k">def</span> <span class="nf">split_by_ID</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Generator similar to groupby, but splits up by ID, generates (ID,data) using retain_ID.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> generator</span>
<span class="sd"> ID, DynamicDataset</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">for</span> <span class="n">ID</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="s1">&#39;ID&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">unique</span><span class="p">():</span>
<span class="n">new_dataset</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span>
<span class="k">yield</span> <span class="n">ID</span><span class="p">,</span> <span class="n">new_dataset</span><span class="o">.</span><span class="n">retain_ID</span><span class="p">(</span><span class="n">ID</span><span class="p">)</span></div>
<div class="viewcode-block" id="DynamicImageDataset.get_class_weights"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.DynamicImageDataset.get_class_weights">[docs]</a> <span class="k">def</span> <span class="nf">get_class_weights</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">i</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span><span class="c1">#[0,1]</span>
<span class="sd">&quot;&quot;&quot;Weight loss function with weights inversely proportional to the class appearence.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> i:int</span>
<span class="sd"> If multi-target, class used for weighting.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> self</span>
<span class="sd"> Dataset.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="p">:</span>
<span class="n">weights</span><span class="o">=</span><span class="mf">1.</span><span class="o">/</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="nb">list</span><span class="p">(</span><span class="nb">map</span><span class="p">(</span><span class="nb">str</span><span class="p">,</span><span class="nb">list</span><span class="p">(</span><span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">n_segmentation_classes</span><span class="p">))))]</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">mt_bce</span><span class="p">:</span>
<span class="n">weights</span><span class="o">=</span><span class="mf">1.</span><span class="o">/</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="n">weights</span><span class="o">=</span><span class="n">weights</span><span class="o">/</span><span class="nb">sum</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">binarized</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span><span class="o">&gt;</span><span class="mi">1</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">,</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">elif</span> <span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span><span class="o">!=</span><span class="nb">type</span><span class="p">(</span><span class="s1">&#39;&#39;</span><span class="p">)):</span>
<span class="n">y</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">[</span><span class="n">i</span><span class="p">]]</span>
<span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="o">.</span><span class="n">values</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">int</span><span class="p">)</span><span class="o">.</span><span class="n">flatten</span><span class="p">()</span>
<span class="n">weights</span><span class="o">=</span><span class="n">compute_class_weight</span><span class="p">(</span><span class="n">class_weight</span><span class="o">=</span><span class="s1">&#39;balanced&#39;</span><span class="p">,</span><span class="n">classes</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">unique</span><span class="p">(</span><span class="n">y</span><span class="p">),</span><span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="p">)</span>
<span class="k">return</span> <span class="n">weights</span></div>
<div class="viewcode-block" id="DynamicImageDataset.binarize_annotations"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.DynamicImageDataset.binarize_annotations">[docs]</a> <span class="k">def</span> <span class="nf">binarize_annotations</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">binarizer</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">num_targets</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">binary_threshold</span><span class="o">=</span><span class="mf">0.</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Label binarize some annotations or threshold them if classifying slide annotations.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> binarizer:LabelBinarizer</span>
<span class="sd"> Binarizes the labels of a column(s)</span>
<span class="sd"> num_targets:int</span>
<span class="sd"> Number of desired targets to preidict on.</span>
<span class="sd"> binary_threshold:float</span>
<span class="sd"> Amount of annotation in patch before positive annotation.</span>
<span class="sd"> Returns</span>
<span class="sd"> -------</span>
<span class="sd"> binarizer</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">annotations</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="s1">&#39;annotation&#39;</span><span class="p">]</span>
<span class="n">annots</span><span class="o">=</span><span class="p">[</span><span class="n">annot</span> <span class="k">for</span> <span class="n">annot</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">iloc</span><span class="p">[:,</span><span class="mi">6</span><span class="p">:])</span> <span class="k">if</span> <span class="n">annot</span> <span class="o">!=</span><span class="s1">&#39;area&#39;</span><span class="p">]</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">mt_bce</span> <span class="ow">and</span> <span class="n">num_targets</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">if</span> <span class="n">binarizer</span> <span class="o">==</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">binarizer</span> <span class="o">=</span> <span class="n">LabelBinarizer</span><span class="p">()</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">annotations</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">binarizer</span> <span class="o">=</span> <span class="n">copy</span><span class="o">.</span><span class="n">deepcopy</span><span class="p">(</span><span class="n">binarizer</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">binarizer</span><span class="o">.</span><span class="n">classes_</span>
<span class="n">annotation_labels</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">binarizer</span><span class="o">.</span><span class="n">transform</span><span class="p">(</span><span class="n">annotations</span><span class="p">),</span><span class="n">index</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">index</span><span class="p">,</span><span class="n">columns</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">float</span><span class="p">)</span>
<span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="n">annotation_labels</span><span class="p">):</span>
<span class="k">if</span> <span class="n">col</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">loc</span><span class="p">[:,</span><span class="n">col</span><span class="p">]</span><span class="o">=</span><span class="n">annotation_labels</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="o">=</span><span class="n">annotation_labels</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="o">.</span><span class="n">values</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">binarizer</span><span class="o">=</span><span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="o">=</span><span class="n">annots</span>
<span class="k">if</span> <span class="n">num_targets</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">targets</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span>
<span class="k">if</span> <span class="n">binary_threshold</span><span class="o">&gt;</span><span class="mf">0.</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">loc</span><span class="p">[:,</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span><span class="o">&gt;=</span><span class="n">binary_threshold</span><span class="p">)</span><span class="o">.</span><span class="n">values</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">)</span>
<span class="c1">#self.patch_info = pd.concat([self.patch_info,annotation_labels],axis=1)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">binarized</span><span class="o">=</span><span class="kc">True</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">binarizer</span></div>
<div class="viewcode-block" id="DynamicImageDataset.subsample"><a class="viewcode-back" href="../../index.html#pathflowai.datasets.DynamicImageDataset.subsample">[docs]</a> <span class="k">def</span> <span class="nf">subsample</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">p</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;Sample subset of dataset.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> p:float</span>
<span class="sd"> Fraction to subsample.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="mi">42</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">sample</span><span class="p">(</span><span class="n">frac</span><span class="o">=</span><span class="n">p</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">length</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span></div>
<span class="c1">#@pysnooper.snoop(&#39;get_item.log&#39;)</span>
<span class="k">def</span> <span class="nf">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">i</span><span class="p">):</span>
<span class="n">patch_info</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_info</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="n">ID</span> <span class="o">=</span> <span class="n">patch_info</span><span class="p">[</span><span class="s1">&#39;ID&#39;</span><span class="p">]</span>
<span class="n">targets</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span>
<span class="n">use_long</span><span class="o">=</span><span class="kc">False</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span><span class="p">:</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">patch_info</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">targets</span><span class="p">]</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">y</span><span class="p">,</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">):</span>
<span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="o">.</span><span class="n">values</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">float</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">binarized</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">mt_bce</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">y</span><span class="p">)</span><span class="o">&gt;</span><span class="mi">1</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">argmax</span><span class="p">())</span>
<span class="n">use_long</span><span class="o">=</span><span class="kc">True</span>
<span class="n">y</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">y</span><span class="o">.</span><span class="n">shape</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">xs</span> <span class="o">=</span> <span class="n">patch_info</span><span class="p">[</span><span class="s1">&#39;x&#39;</span><span class="p">]</span>
<span class="n">ys</span> <span class="o">=</span> <span class="n">patch_info</span><span class="p">[</span><span class="s1">&#39;y&#39;</span><span class="p">]</span>
<span class="n">patch_size</span> <span class="o">=</span> <span class="n">patch_info</span><span class="p">[</span><span class="s1">&#39;patch_size&#39;</span><span class="p">]</span>
<span class="n">y</span><span class="o">=</span><span class="p">(</span><span class="n">y</span> <span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span> <span class="k">else</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">segmentation_maps</span><span class="p">[</span><span class="n">ID</span><span class="p">][</span><span class="n">xs</span><span class="p">:</span><span class="n">xs</span><span class="o">+</span><span class="n">patch_size</span><span class="p">,</span><span class="n">ys</span><span class="p">:</span><span class="n">ys</span><span class="o">+</span><span class="n">patch_size</span><span class="p">]))</span>
<span class="n">image</span><span class="p">,</span> <span class="n">y</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">transform_fn</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">slides</span><span class="p">[</span><span class="n">ID</span><span class="p">][</span><span class="n">xs</span><span class="p">:</span><span class="n">xs</span><span class="o">+</span><span class="n">patch_size</span><span class="p">,</span><span class="n">ys</span><span class="p">:</span><span class="n">ys</span><span class="o">+</span><span class="n">patch_size</span><span class="p">,:</span><span class="mi">3</span><span class="p">]</span><span class="o">.</span><span class="n">compute</span><span class="p">()</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">uint8</span><span class="p">),</span> <span class="n">y</span><span class="p">)</span><span class="c1">#.unsqueeze(0) # transpose .transpose([1,0,2])</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">segmentation</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">mt_bce</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">classify_annotations</span> <span class="ow">and</span> <span class="n">use_long</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="n">y</span><span class="o">.</span><span class="n">long</span><span class="p">()</span>
<span class="c1">#image_size=image.size()</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">gdl</span><span class="p">:</span>
<span class="n">y</span><span class="o">=</span><span class="n">class2one_hot</span><span class="p">(</span><span class="n">y</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_segmentation_classes</span><span class="p">)</span>
<span class="c1"># y=one_hot2dist(y)</span>
<span class="k">return</span> <span class="n">image</span><span class="p">,</span> <span class="n">y</span>
<span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">length</span></div>
</pre></div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2019, Joshua Levy
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>