[e9500f]: / pathflowai / __pycache__ / schedulers.cpython-36.pyc

Download this file

72 lines (67 with data), 5.2 kB

3

%¸A]
ã@sHdZddlZddlZddlmZGdd„dejjjƒZGdd„dƒZ	dS)z`
schedulers.py
=======================
Modulates the learning rate during the training process.
éN)Ú
ExponentialLRcsFeZdZdZd‡fdd„	Zdd„Zd	d
„Zedd„ƒZd
d„Z	‡Z
S)ÚCosineAnnealingWithRestartsLRa¬Set the learning rate of each parameter group using a cosine annealing
	schedule, where :math:`\eta_{max}` is set to the initial lr and
	:math:`T_{cur}` is the number of epochs since the last restart in SGDR:
	 .. math::
		 \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 +
		\cos(\frac{T_{cur}}{T_{max}}\pi))
	 When last_epoch=-1, sets initial lr as lr.
	 It has been proposed in
	`SGDR: Stochastic Gradient Descent with Warm Restarts`_. This implements
	the cosine annealing part of SGDR, the restarts and number of iterations multiplier.
	 Args:
		optimizer (Optimizer): Wrapped optimizer.
		T_max (int): Maximum number of iterations.
		T_mult (float): Multiply T_max by this number after each restart. Default: 1.
		eta_min (float): Minimum learning rate. Default: 0.
		last_epoch (int): The index of last epoch. Default: -1.
	 .. _SGDR\: Stochastic Gradient Descent with Warm Restarts:
		https://arxiv.org/abs/1608.03983
	réçð?cs<||_||_||_||_d|_d|_||_tƒj||ƒdS)Nr)	ÚT_maxÚT_multÚ
restart_everyÚeta_minÚrestartsÚrestarted_atÚalphaÚsuperÚ__init__)ÚselfÚ	optimizerrr	Ú
last_epochrZalpha_decay)Ú	__class__©úF/Users/joshualevy/Documents/GitHub/PathFlowAI/pathflowai/schedulers.pyrsz&CosineAnnealingWithRestartsLR.__init__cCs0|jd7_tt|j|jƒƒ|_|j|_dS)Nr)r
ÚintÚroundrrrr)rrrrÚrestart(sz%CosineAnnealingWithRestartsLR.restartcCs<|j|j|j||jdtjtj|j|jƒdS)Nré)r	rr
ÚmathÚcosÚpiÚstep_nr)rÚbase_lrrrrÚcosine-sz$CosineAnnealingWithRestartsLR.cosinecCs|j|jS)N)rr)rrrrr0sz$CosineAnnealingWithRestartsLR.step_ncs(ˆjˆjkrˆjƒ‡fdd„ˆjDƒS)Ncsg|]}ˆj|ƒ‘qSr)r)Ú.0r)rrrú
<listcomp>7sz8CosineAnnealingWithRestartsLR.get_lr.<locals>.<listcomp>)rrrÚbase_lrs)rr)rrÚget_lr4sz$CosineAnnealingWithRestartsLR.get_lréÿÿÿÿ)rr#rr)Ú__name__Ú
__module__Ú__qualname__Ú__doc__rrrÚpropertyrr"Ú
__classcell__rr)rrr
s
rc@s<eZdZdZdeddddddfd	d
„Zdd„Zd
d„ZdS)Ú	ScheduleraAScheduler class that modulates learning rate of torch optimizers over epochs.

	Parameters
	----------
	optimizer : type
		torch.Optimizer object
	opts : type
		Options of setting the learning rate scheduler, see default.

	Attributes
	----------
	schedulers : type
		Different types of schedulers to choose from.
	scheduler_step_fn : type
		How scheduler updates learning rate.
	initial_lr : type
		Initial set learning rate.
	scheduler_choice : type
		What scheduler type was chosen.
	scheduler : type
		Scheduler object chosen that will more directly update optimizer LR.

	NÚnullgà?é
gH¯¼šò×j>r)Ú	schedulerÚlr_scheduler_decayrr	rcsx‡fdd„dd„‡fdd„dœ|_dd„dd„dd„d	œ|_|jd
d|_ˆd|_|dk	rn|j|j|ƒnd|_dS)
Ncst|ˆdƒS)Nr.)r)r)ÚoptsrrÚ<lambda>Rsz$Scheduler.__init__.<locals>.<lambda>cSsdS)Nr)rrrrr0Sscst|ˆdˆddˆddS)Nrr	rr)rr	rrr#)r)r)r/rrr0Ts)Úexpr+Ú
warm_restartscSs|jƒS)N)Ústep)r-rrrr0UscSs|jƒS)N)r3)r-rrrr0VscSsdS)Nr)r-rrrr0Ws)r1r2r+rÚlrr-)Z
schedulersÚscheduler_step_fnÚparam_groupsÚ
initial_lrÚscheduler_choicer-)rrr/r)r/rrQs

zScheduler.__init__cCs|j|j|jƒdS)zUpdate optimizer learning rateN)r5r8r-)rrrrr3\szScheduler.stepcCs&|jdkr|jn|jjjdd}|S)zyReturn current learning rate.

        Returns
        -------
        float
            Current learning rate.

        r+rr4)r8r7r-rr6)rr4rrrr"`s	"zScheduler.get_lr)r$r%r&r'Údictrr3r"rrrrr*9sr*)
r'ÚtorchrZtorch.optim.lr_schedulerrÚoptimÚlr_schedulerÚ_LRSchedulerrr*rrrrÚ<module>s
/