--- a +++ b/experimental/get_counts.py @@ -0,0 +1,73 @@ +import brambox as bb +import os +from os.path import join, basename +from pathflowai.utils import load_sql_df, npy2da, df2sql +import skimage +import dask, dask.array as da, pandas as pd, numpy as np +import argparse +from scipy import ndimage +from scipy.ndimage.measurements import label +import pickle +from dask.distributed import Client +from multiprocessing import Pool +from functools import reduce + +def count_cells(m, num_classes=3): + lbls,n_lbl=label(m) + obj_labels=np.zeros(num_classes) + for i in range(1,num_classes+1): + obj_labels[i-1]=len(np.unique(lbls[m==i].flatten())) + return obj_labels + +if __name__=='__main__': + p=argparse.ArgumentParser() + p.add_argument('--num_classes',default=4,type=int) + p.add_argument('--patch_size',default=512,type=int) + p.add_argument('--n_workers',default=40,type=int) + p.add_argument('--p_sample',default=0.7,type=float) + p.add_argument('--input_dir',default='inputs',type=str) + p.add_argument('--patch_info_file',default='cell_info.db',type=str) + p.add_argument('--reference_mask',default='reference_mask.npy',type=str) + #c=Client() + # add mode to just use own extracted boudning boxes or from seg, maybe from histomicstk + + args=p.parse_args() + num_classes=args.num_classes + n_workers=args.n_workers + input_dir=args.input_dir + patch_info_file=args.patch_info_file + patch_size=args.patch_size + np.random.seed(42) + reference_mask=args.reference_mask + + patch_info=load_sql_df(patch_info_file, patch_size) + IDs=patch_info['ID'].unique() + #slides = {slide:da.from_zarr(join(input_dir,'{}.zarr'.format(slide))) for slide in IDs} + masks = {mask:npy2da(join(input_dir,'{}_mask.npy'.format(mask))) for mask in IDs} + + def process_chunk(patch_info_sub): + patch_info_sub=patch_info_sub.reset_index(drop=True) + counts=[] + for i in range(patch_info_sub.shape[0]): + #print(i) + patch=patch_info_sub.iloc[i] + ID,x,y,patch_size2=patch[['ID','x','y','patch_size']].tolist() + m=masks[ID][x:x+patch_size2,y:y+patch_size2] + counts.append(dask.delayed(count_cells)(m, num_classes=num_classes)) + + return dask.compute(*counts,scheduler='threading') + + patch_info_subs=np.array_split(patch_info,n_workers) + + p=Pool(n_workers) + + counts=reduce(lambda x,y:x+y,p.map(process_chunk,patch_info_subs)) + + #bbox_dfs=dask.compute(*bbox_dfs,scheduler='processes') + + counts=pd.DataFrame(np.vstack(counts)) + + patch_info=pd.concat([patch_info[['ID','x','y','patch_size','annotation']].reset_index(drop=True),counts.reset_index(drop=True)],axis=1).reset_index() + print(patch_info) + + df2sql(patch_info, 'counts_test.db', patch_size, mode='replace')