--- a +++ b/pathaia/util/management.py @@ -0,0 +1,400 @@ +""" +Helpful function to extract and organize data. + +It takes advantage of the common structure of pathaia projects to enable +datasets creation and experiment monitoring/evaluation. +""" + +import pandas as pd +import os +import warnings +from typing import Sequence, Tuple, Iterator, List +from .types import Patch, PathLike +from glob import glob +import numpy as np +from tensorflow.keras.applications import * +from tensorflow.keras.models import Model, Sequential +from tensorflow.keras.layers import GlobalAveragePooling2D +from ..datasets.data import get_tf_dataset +from tqdm import tqdm + + +class Error(Exception): + """ + Base of custom errors. + + ********************** + """ + + pass + + +class LevelNotFoundError(Error): + """ + Raise when trying to access unknown level. + + ********************************************* + """ + + pass + + +class EmptyProjectError(Error): + """ + Raise when trying to access unknown level. + + ********************************************* + """ + + pass + + +class SlideNotFoundError(Error): + """ + Raise when trying to access unknown level. + + ********************************************* + """ + + pass + + +class PatchesNotFoundError(Error): + """ + Raise when trying to access unknown level. + + ********************************************* + """ + + pass + + +class UnknownColumnError(Error): + """ + Raise when trying to access unknown level. + + ********************************************* + """ + + pass + + +def get_patch_csv_from_patch_folder(patch_folder: str) -> str: + """ + Give csv of patches given the slide patch folder. + + Check existence of the path and return absolute path of the csv. + + Args: + patch_folder: absolute path to a pathaia slide folder. + + Returns: + Absolute path of csv patch file. + + """ + if os.path.isdir(patch_folder): + patch_file = os.path.join(patch_folder, "patches.csv") + if os.path.exists(patch_file): + return patch_file + raise PatchesNotFoundError( + "Could not find extracted patches for the slide: {}".format( + patch_folder + ) + ) + raise SlideNotFoundError( + "Could not find a patch folder at: {}!!!".format(patch_folder) + ) + + +def get_patch_folders_in_project(project_folder: str) -> Iterator[PathLike]: + """ + Give pathaia slide folders from a pathaia project folder (direct subfolders). + + Check existence of the project and yield slide folders inside. + + Args: + project_folder: absolute path to a pathaia project folder. + exclude: a list of str to exclude from subfolders of the project. + Yields: + Absolute path to folder containing patches csv files. + + """ + for folder in glob(os.path.join(project_folder, '*')): + patch_file = os.path.join(folder, "patches.csv") + if os.path.exists(patch_file): + yield folder + else: + for f in get_patch_folders_in_project(folder): + yield f + + +def get_slide_file( + slide_folder: str, project_folder: str, patch_folder: str, + extensions: List[str] = ['.mrxs', '.svs'] +) -> str: + """ + Give the absolute path to a slide file. + + Get the slide absolute path if slide name and slide folder are provided. + + Args: + slide_folder: absolute path to a folder of WSIs. + project_folder: absolute path to a pathaia folder. + patch_folder: absolute path to a folder containing a 'patches.csv'. + Returns: + Absolute path of the WSI. + + """ + if not os.path.isdir(slide_folder): + raise SlideNotFoundError( + "Could not find a slide folder at: {}!!!".format(slide_folder) + ) + for ext in extensions: + slide = patch_folder.replace(project_folder, slide_folder) + ext + if os.path.exists(slide): + return slide + raise SlideNotFoundError( + "Could not find an {} slide file for: {} in {}!!!".format( + ext, slide, slide_folder + ) + ) + + +def read_patch_file( + patch_file: str, slide_path: str, column: str = None, level: int = None +) -> Iterator[Tuple[dict, str]]: + """ + Read a patch file. + + Read lines of the patch csv looking for 'column' label. + + Args: + patch_file: absolute path to a csv patch file. + level: pyramid level to query patches in the csv. + slide_path: absolute path to a slide file. + column: header of the column to use to label individual patches. + + Yields: + Position and label of patches (x, y, label). + + """ + df = pd.read_csv(patch_file) + if level is not None: + df = df[df["level"] == level] + if column not in df: + for _, row in df.iterrows(): + yield { + "x": row["x"], + "y": row["y"], + "dx": row["dx"], + "dy": row["dy"], + "id": row["id"], + "level": row["level"], + "slide_path": slide_path, + "slide": slide_path, + "slide_name": os.path.basename(slide_path) + }, None + else: + for _, row in df.iterrows(): + yield { + "x": row["x"], + "y": row["y"], + "dx": row["dx"], + "dy": row["dy"], + "id": row["id"], + "level": row["level"], + "slide_path": slide_path, + "slide": slide_path, + "slide_name": os.path.basename(slide_path) + }, row[column] + + +def write_slide_predictions( + slide_predictions: Iterator[Patch], slide_csv: str, column: str +): + """ + Write slide predictions in a pathaia slide csv. + + Args: + slide_predictions: iterator on patch dicts. + slide_csv: absolute path to a pathaia slide csv. + column: name of the prediction column to append in csv. + + """ + patch_df = pd.read_csv(slide_csv, sep=None, engine="python") + patch_df = patch_df.set_index("id") + for patch in slide_predictions: + idx = patch["id"] + pred = patch[column] + patch_df.loc[idx, column] = pred + patch_df.to_csv(slide_csv, index=False) + + +def descriptors_to_csv( + descriptors: List[Tuple], filename: str, patch_list: List[Patch] +): + """ + Write patch embeddings into a csv file. + + Args: + descriptors: list of + filename: + + """ + columns = ['id', 'level', 'x', 'y'] + descriptors = np.asarray(descriptors) + for i in range(descriptors.shape[1]): + columns.append(f'{i}') + descriptor_df = pd.DataFrame([], columns=columns) + for x in range(len(patch_list)): + data = {'id': patch_list[x]['id'], + 'level': patch_list[x]['level'], + 'x': patch_list[x]['x'], + 'y': patch_list[x]['y']} + for i in range(descriptors.shape[1]): + data[f'{i}'] = descriptors[x, i] + descriptor_df = descriptor_df.append(data, ignore_index=True) + descriptor_df.to_csv(filename, index=False) + + +class PathaiaHandler(object): + """ + A class to handle simple patch datasets. + + It usually computes the input of tf datasets proposed in pathaia.data. + + Args: + project_folder: absolute path to a pathaia project. + slide_folder: absolute path to a slide folder. + + """ + + def __init__(self, project_folder: str, slide_folder: str): + """Init PathaiaHandler.""" + self.slide_folder = slide_folder + self.project_folder = project_folder + + def _iter_slides(self) -> Iterator[Tuple[str, str]]: + """Yield slide folders with associated 'patches.csv'.""" + for folder in get_patch_folders_in_project(self.project_folder): + try: + slide_path = get_slide_file( + self.slide_folder, self.project_folder, folder + ) + patch_file = get_patch_csv_from_patch_folder(folder) + except ( + PatchesNotFoundError, UnknownColumnError, SlideNotFoundError + ) as e: + warnings.warn(str(e)) + yield slide_path, patch_file + + def random_split( + self, ratio: float = 0.3 + ) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]: + """ + Split whole slide dataset into training/validation. + + Args: + ratio: ratio of slides to keep for validation. + Returns: + Training and validation datasets. + + """ + slides = [] + for slide in self._iter_slides(): + slides.append(slide) + np.random.shuffle(slides) + validation = slides[0:int(ratio * len(slides))] + training = slides[int(ratio * len(slides))::] + return training, validation + + def list_patches( + self, level: int, dim: Tuple[int, int], + column: str = None, slides: Iterator = None + ) -> Tuple[List[Patch], List[str]]: + """ + Create labeled patch dataset. + + Args: + level: pyramid level to extract patches in csv. + dim: dimensions of the patches in pixels. + label: column header in csv to use as a category. + Returns: + List of patch dicts and list of labels. + + """ + patch_list = [] + labels = [] + slide_list = self._iter_slides() + if slides is not None: + slide_list = slides + for slide_path, patch_file in slide_list: + try: + # read patch file and get the right level + for patch, label in read_patch_file( + patch_file, slide_path, column, level + ): + patch_list.append(patch) + labels.append(label) + except ( + PatchesNotFoundError, UnknownColumnError, SlideNotFoundError + ) as e: + warnings.warn(str(e)) + return patch_list, labels + + def extract_features( + self, + model_name: str = 'ResNet50', + slides: Iterator = None, + patch_size: int = 224, + level: int = None, + layer: str = '', + batch_size: int = 128 + ): + """Extract features from patches with a model from keras applications.""" + models = { + 'ResNet50': { + 'model': resnet50.ResNet50, + 'module': resnet50 + } + } + preproc = models[model_name]['module'].preprocess_input + ModelClass = models[model_name]['model'] + model = ModelClass(weights='imagenet', include_top=False, + pooling='avg', + input_shape=(patch_size, patch_size, 3)) + if not layer == '': + layer_model = Model(inputs=model.input, + outputs=model.get_layer(layer).output) + model = Sequential() + model.add(layer_model) + model.add(GlobalAveragePooling2D()) + slide_list = self._iter_slides() + if slides is not None: + slide_list = slides + for slide_path, patch_file in tqdm(slide_list): + try: + patch_list = [] + label_list = [] + # read patch file and get the right level + for patch, _ in read_patch_file(patch_file, slide_path, + level=level): + patch_list.append(patch) + label_list.append(0) + except ( + PatchesNotFoundError, UnknownColumnError, SlideNotFoundError + ) as e: + warnings.warn(str(e)) + if len(patch_list) == 0: + # Raise error here + print(f'No patches for slide {slide_path}') + continue + patch_set = get_tf_dataset(patch_list, label_list, preproc, + batch_size=batch_size, + patch_size=patch_size, + training=False) + descriptors = model.predict(patch_set) + descriptor_csv = os.path.join( + os.path.dirname(patch_file), f'features_{model_name}.csv' + ) + descriptors_to_csv(descriptors, descriptor_csv, patch_list)