from typing import Any, Dict, Optional, Sequence, Tuple, Union
import numpy as np
from nptyping import NDArray, Shape
from scipy.sparse import triu
from sortedcontainers import SortedDict
from tqdm import tqdm
from .object_api import Tree, UGraph
from .types import Edge, Node
class AgglomerativeClustering:
r"""
Object used to hierarchically cluster nodes on a graph. Clustering greedily chooses
to merge linked nodes that have minimum distance/strength ratio. Strength between
2 nodes is initially 1 for every edge and 0 when there is no edge, then when 2 nodes
are merged the strength of a newly formed link between the new node and another node
is the weighted (by node population) average of the strengths between the 2 old
nodes and the other node. This algorithm uses centroid linkage clustering (UPGMC).
Args:
compute_all: whether to initially compute all distances between nodes regardless
of there linkage.
"""
def __init__(self, compute_all: bool = False):
self.compute_all = compute_all
def init_graph(
self,
G: UGraph,
feats: Union[Dict[Node, NDArray[Shape["*"], Any]], Sequence[str]],
weights: Optional[Union[Dict[Edge, float], str]] = None,
):
r"""
Initialize main graph attributes (adjacency matrix, n_nodes and features) using
a graph object, a list of features and a list of weights.
Args:
G: graph to cluster nodes on.
feats: either a dictionary that maps nodes to their corresponding feature
vectors or a sequence of property names that will be used as features.
weights: either a dictionary that maps edges to their corresponding weight
or a property name that will be used as weight. If `None` is passed,
weights are computed using euclidian distances between feature vectors.
"""
self.A = triu(G.A, format="csr").astype(np.float32)
self.n_nodes = G.n_nodes
if isinstance(feats, dict):
feats = [feats[node] for node in G.nodes]
self.feats = np.stack(feats)
else:
self.feats = []
for node in G.nodes:
self.feats.append([G.nodeprops[feat][node] for feat in feats])
self.feats = np.array(self.feats)
if weights is None:
ii, jj = self.A.nonzero()
dists = ((feats[ii] - feats[jj]) ** 2).sum(1)
self.A[ii, jj] = dists
elif isinstance(weights, dict):
for (n1, n2) in weights:
i, j = sorted((G.nodes.index(n1), G.nodes.index(n2)))
self.A[i, j] = weights[n1, n2] ** 2
else:
for (n1, n2) in G.edges:
i, j = sorted((G.nodes.index(n1), G.nodes.index(n2)))
self.A[i, j] = G.edgeprops[str][(n1, n2)] ** 2
def reset(self):
"""
Reset the algorithm attributes. Populations are initiated to 1 for every node,
strengths are initiated to 1 for every edge, dendrogram is emptied.
"""
self.populations_ = {k: 1 for k in range(self.n_nodes)}
ii, jj = self.A.nonzero()
self.centroids_ = {k: self.feats[k] for k in range(self.n_nodes)}
self.links_ = {
k: set(jj[ii == k].tolist() + ii[jj == k].tolist())
for k in range(self.n_nodes)
}
self.strengths_ = {(i, j): 1 for i, j in zip(ii, jj)}
if self.compute_all:
self.distances_ = {
(i, j): self.distance(i, j)
for i in range(self.n_nodes)
for j in range(i + 1, self.n_nodes)
}
else:
self.distances_ = {(i, j): self.distance(i, j) for i, j in zip(ii, jj)}
self.edges_ = SortedDict(
self.criterion, {(i, j): self.distances_[i, j] for i, j in zip(ii, jj)}
)
self.dendrogram_ = np.zeros((self.n_nodes - 1, 4))
def distance(self, i: int, j: int) -> float:
"""
Get squared distance between nodes `i` and `j`. If available in the adjacency
matrix or in the `distance` dictionary it is not recomputed.
Args:
i: first node.
j: second node.
Returns:
Squared euclidian distance between i and j.
"""
i, j = sorted((i, j))
try:
d = self.A[i, j]
except IndexError:
d = self.distances_.get((i, j), 0)
if not d:
d = ((self.centroids_[i] - self.centroids_[j]) ** 2).sum()
return d
def criterion(self, x: Tuple[int, int]) -> float:
"""
Criterion function used to find the next nodes to merge. Override it to use
another criterion.
Args:
x: tuple containg the two nodes to merge.
Returns:
Squared distance between the 2 nodes divided by link strength.
"""
i, j = x
return self.distances_[i, j] / self.strengths_[i, j]
def create_centroid_link(self, i, j, c, k):
"""
Create a new link between centroid `c` (that comes from merging nodes `i` and
`j`) and node `k`.
Args:
i: first merged node.
j: second merged node.
c: centroid of nodes `i` and `j`.
k: node linked to either `i` or `j` or both.
"""
if i == k or j == k:
return
ik, ki = sorted((i, k))
jk, kj = sorted((j, k))
ck, kc = sorted((c, k))
ij, ji = sorted((i, j))
pi = self.populations_[i]
pj = self.populations_[j]
ri = pi / (pi + pj)
rj = pj / (pi + pj)
try:
dik = self.distances_[ik, ki]
djk = self.distances_[jk, kj]
dij = self.distances_[ij, ji]
dck = ri * dik + rj * djk - ri * rj * dij
except KeyError:
dck = self.distance(c, k)
self.distances_[ck, kc] = dck
self.edges_.pop((ik, ki), 0)
self.edges_.pop((jk, kj), 0)
sik = self.strengths_.get((ik, ki), 0)
sjk = self.strengths_.get((jk, kj), 0)
if sik or sjk:
self.strengths_[ck, kc] = ri * sik + rj * sjk
self.edges_[ck, kc] = dck
self.links_[k].discard(i)
self.links_[k].discard(j)
self.links_[k].add(c)
self.links_[j].discard(k)
self.links_[c].add(k)
def add_link(self, i: int, j: int):
"""
Create a new link between 2 nodes.
Args:
i: first node.
j: second node.
"""
i, j = sorted((i, j))
dij = self.distance(i, j)
self.distances_[i, j] = dij
self.strengths_[i, j] = 1
self.edges_[i, j] = dij
self.links_[i].add(j)
self.links_[j].add(i)
def fit(
self,
G: UGraph,
feats: Union[Dict[Node, NDArray[Shape["*"], Any]], Sequence[str]],
weights: Optional[Union[Dict[Edge, float], str]] = None,
):
r"""
Fits on the given graph and completes the dendrogram. A dendrogram is an array
of size :math:`(n-1) \times 4` (whre :math:`n` is the number of nodes)
representing the successive merges of nodes. Each row gives the two merged
nodes, their distance and the size of the resulting cluster. Any new node
resulting from a merge takes the first available index (e.g., the first merge
corresponds to node :math:`n`).
Args:
G: graph to cluster nodes on.
feats: either a dictionary that maps nodes to their corresponding feature
vectors or a sequence of property names that will be used as features.
weights: either a dictionary that maps edges to their corresponding weight
or a property name that will be used as weight. If `None` is passed,
weights are computed using euclidian distances between feature vectors.
"""
self.init_graph(G, feats, weights)
self.reset()
c = self.n_nodes
for n in tqdm(range(self.n_nodes - 1), total=self.n_nodes - 1):
if not self.edges_:
cur_dendrogram = self.dendrogram_[:n]
missing = sorted(
[
k
for k in range(c)
if k not in cur_dendrogram[:, 0]
and k not in cur_dendrogram[:, 1]
]
)
for k, i in enumerate(missing):
for j in missing[k + 1 :]:
self.add_link(i, j)
(i, j), _ = self.edges_.popitem(0)
pi = self.populations_[i]
pj = self.populations_[j]
ri = pi / (pi + pj)
rj = pj / (pi + pj)
self.dendrogram_[n] = [i, j, self.criterion((i, j)), pi + pj]
self.centroids_[c] = ri * self.centroids_[i] + rj * self.centroids_[j]
self.populations_[c] = pi + pj
self.links_[c] = set()
while self.links_[i]:
k = self.links_[i].pop()
self.create_centroid_link(i, j, c, k)
while self.links_[j]:
k = self.links_[j].pop()
self.create_centroid_link(j, i, c, k)
self.links_.pop(i)
self.links_.pop(j)
c += 1
def fit_transform(
self,
G: UGraph,
feats: Union[Dict[Node, NDArray[Shape["*"], Any]], Sequence[str]],
weights: Optional[Union[Dict[Edge, float], str]] = None,
) -> Tree:
"""
Fits on the given graph and returns the hierarchical clustering tree.
Args:
G: graph to cluster nodes on.
feats: either a dictionary that maps nodes to their corresponding feature
vectors or a sequence of property names that will be used as features.
weights: either a dictionary that maps edges to their corresponding weight
or a property name that will be used as weight. If `None` is passed,
weights are computed using euclidian distances between feature vectors.
Returns:
The tree that describes the hierarchical clustering procedure.
"""
self.fit(G, feats, weights)
children = []
parents = []
nodes = list(range(G.n_nodes))
if isinstance(weights, str):
key = weights
else:
key = "weight"
edgeprops = {key: {}}
if isinstance(feats, dict):
n_feats = next(iter(feats)).shape
nodeprops = {
k: {n: feats[node][k] for n, node in enumerate(G.nodes)}
for k in range(n_feats)
}
else:
nodeprops = {
feat: {n: G.nodeprops[feat][node] for n, node in enumerate(G.nodes)}
for feat in feats
}
nodeprops["population"] = {n: 1 for n in range(G.n_nodes)}
for k, row in enumerate(self.dendrogram_):
n = k + self.n_nodes
n1, n2 = row[:2]
children[n] = [n1, n2]
parents[n1] = n
parents[n2] = n
nodes.append(n)
if isinstance(feats, dict):
for k, centroid in enumerate(self.centroids_[n]):
nodeprops[k][n] = centroid
else:
for k, feat in enumerate(feats):
nodeprops[feat][n] = self.centroids_[n, k]
edgeprops[key][n, n1] = self.distance(n, n1) ** 0.5
edgeprops[key][n, n2] = self.distance(n, n2) ** 0.5
nodeprops["population"][n] = self.populations_[n]
return Tree(nodes, parents, children, nodeprops, edgeprops)