[286bfb]: / src / wsi_datasets / wsi_survival.py

Download this file

262 lines (220 with data), 11.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from __future__ import print_function, division
import os
from os.path import join as j_
import torch
import numpy as np
import pandas as pd
import math
import re
import pdb
import pickle
import sys
from torch.utils.data import Dataset
import h5py
from .dataset_utils import apply_sampling
sys.path.append('../')
from utils.pandas_helper_funcs import df_sdir, series_diff
class WSISurvivalDataset(Dataset):
"""WSI Survival Dataset."""
def __init__(self,
df,
data_source,
target_transform=None,
sample_col='case_id',
slide_col='slide_id',
survival_time_col='os_survival_days',
censorship_col='os_censorship',
n_label_bins=4,
label_bins=None,
bag_size=0,
include_surv_t0=True,
**kwargs):
"""
Args:
"""
self.data_source = []
for src in data_source:
assert os.path.basename(src) in ['feats_h5', 'feats_pt']
self.use_h5 = True if os.path.basename(src) == 'feats_h5' else False
self.data_source.append(src)
self.data_df = df
assert 'Unnamed: 0' not in self.data_df.columns
self.sample_col = sample_col
self.slide_col = slide_col
self.target_col = survival_time_col
self.survival_time_col = survival_time_col
self.censorship_col = censorship_col
self.include_surv_t0 = include_surv_t0
is_nan_censorship = self.data_df[self.censorship_col].isna()
if sum(is_nan_censorship) > 0:
print('# of NaNs in Censorship col, dropping:', sum(is_nan_censorship))
self.data_df = self.data_df[~is_nan_censorship]
is_nan_survival = self.data_df[self.survival_time_col].isna()
if sum(is_nan_survival) > 0:
print('# of NaNs in Survival time col, dropping:', sum(is_nan_survival))
self.data_df = self.data_df[~is_nan_survival]
if (self.data_df[self.survival_time_col] < 0).sum() > 0 and (not self.include_surv_t0):
self.data_df = self.data_df[self.data_df[self.survival_time_col] > 0]
censorship_vals = self.data_df[self.censorship_col].value_counts().index
if set(censorship_vals) != set([0,1]):
print('Censorship values must be binary integers, found:', censorship_vals)
sys.exit()
self.target_transform = target_transform
self.n_label_bins = n_label_bins
self.label_bins = None
self.bag_size = bag_size
self.validate_survival_dataset()
self.idx2sample_df = pd.DataFrame({'sample_id': self.data_df[sample_col].astype(str).unique()})
self.set_feat_paths_in_df()
self.data_df.index = self.data_df[sample_col].astype(str)
self.data_df.index.name = 'sample_id'
self.X = None
self.y = None
if 'disc_label' in self.data_df.columns:
self.data_df = self.data_df.drop('disc_label', axis=1)
if self.n_label_bins > 0:
disc_labels, label_bins = compute_discretization(df=self.data_df,
survival_time_col=self.survival_time_col,
censorship_col=self.censorship_col,
n_label_bins=self.n_label_bins,
label_bins=label_bins)
self.data_df = self.data_df.join(disc_labels)
self.label_bins = label_bins
self.target_col = disc_labels.name
assert self.data_df.index.nunique() == self.idx2sample_df.index.nunique()
self.survival_time_labels = []
self.censorship_labels = []
self.disc_labels = []
for idx in self.idx2sample_df.index:
survival_time, censorship, disc_label = self.get_labels(idx)
self.survival_time_labels.append(survival_time)
self.censorship_labels.append(censorship)
self.disc_labels.append(disc_label)
self.survival_time_labels = torch.tensor(self.survival_time_labels)
self.censorship_labels = torch.tensor(self.censorship_labels)
self.disc_labels = torch.tensor(self.disc_labels)
def __len__(self):
return len(self.idx2sample_df)
def set_feat_paths_in_df(self):
"""
Sets the feature path (for each slide id) in self.data_df. At the same time, checks that all slides
specified in the split (or slides for the cases specified in the split) exist within data source.
"""
self.feats_df = pd.concat([df_sdir(feats_dir, cols=['fpath', 'fname', self.slide_col]) for feats_dir in self.data_source]).drop(['fname'], axis=1).reset_index(drop=True)
missing_feats_in_split = series_diff(self.data_df[self.slide_col], self.feats_df[self.slide_col])
### Assertion to make sure that there are not any missing slides that were specified in your split csv file
try:
assert len(missing_feats_in_split) == 0
except:
print(f"Missing Features in Split:\n{missing_feats_in_split}")
sys.exit()
### Assertion to make sure that all slide ids to feature paths have a one-to-one mapping (no duplicated features).
try:
self.data_df = self.data_df.merge(self.feats_df, how='left', on=self.slide_col, validate='1:1')
assert self.feats_df[self.slide_col].duplicated().sum() == 0
except:
print("Features duplicated in data source(s). List of duplicated features (and their paths):")
print(self.feats_df[self.feats_df[self.slide_col].duplicated()].to_string())
sys.exit()
self.data_df = self.data_df[list(self.data_df.columns[-1:]) + list(self.data_df.columns[:-1])]
def validate_survival_dataset(self):
"""Validate that the survival dataset is valid."""
# check that each case_id has only one survival value
num_unique_surv_times = self.data_df.groupby(self.sample_col)[self.survival_time_col].unique().apply(len)
try:
assert (num_unique_surv_times == 1).all()
except AssertionError:
print('Each case_id must have only one unique survival value.')
raise
# check that all survival values are numeric
try:
assert not pd.to_numeric(self.data_df[self.survival_time_col], errors='coerce').isna().any()
except AssertionError:
print('Survival values must be numeric.')
raise
# check that all survival values are positive
try:
assert (self.data_df[self.survival_time_col] >= 0).all()
if not self.include_surv_t0:
assert (self.data_df[self.survival_time_col] > 0).all()
except AssertionError:
print('Survival values must be positive.')
raise
# check that all censorship values are binary integers
try:
assert self.data_df[self.censorship_col].isin([0, 1]).all()
except AssertionError:
print('Censorship values must be binary integers.')
raise
def get_sample_id(self, idx):
return self.idx2sample_df.loc[idx]['sample_id']
def get_feat_paths(self, idx):
feat_paths = self.data_df.loc[self.get_sample_id(idx), 'fpath']
if isinstance(feat_paths, str):
feat_paths = [feat_paths]
return feat_paths
def get_labels(self, idx):
labels = self.data_df.loc[self.get_sample_id(idx), [self.survival_time_col, self.censorship_col, self.target_col]]
if isinstance(labels, pd.Series):
labels = list(labels)
elif isinstance(labels, pd.DataFrame):
labels = list(labels.iloc[0])
return labels
def __getitem__from_emb__(self, idx):
out = {'img': self.X[idx],
'coords': [],
'survival_time': torch.tensor([self.survival_time_labels[idx]]),
'censorship': torch.tensor([self.censorship_labels[idx]]),
'label': torch.tensor([self.disc_labels[idx]])}
return out
def __getitem__(self, idx):
if self.X is not None:
return self.__getitem__from_emb__(idx)
survival_time, censorship, label = self.get_labels(idx)
# Read features (and coordinates, Optional) from pt/h5 file
all_features = []
all_coords = []
feat_paths = self.get_feat_paths(idx)
for feat_path in feat_paths:
if self.use_h5:
with h5py.File(feat_path, 'r') as f:
features = f['features'][:]
coords = f['coords'][:]
all_coords.append(coords)
else:
features = torch.load(feat_path)
if len(features.shape) > 2:
assert features.shape[0] == 1, f'{features.shape} is not compatible! It has to be (1, numOffeats, feat_dim) or (numOffeats, feat_dim)'
features = np.squeeze(features, axis=0)
all_features.append(features)
all_features = torch.from_numpy(np.concatenate(all_features, axis=0))
if len(all_coords) > 0:
all_coords = np.concatenate(all_coords, axis=0)
# apply sampling if needed, return attention mask if sampling is applied else None
all_features, all_coords, attn_mask = apply_sampling(self.bag_size, all_features, all_coords)
out = {'img': all_features,
'coords': all_coords,
'survival_time': torch.Tensor([survival_time]),
'censorship': torch.Tensor([censorship]),
'label': torch.Tensor([label])}
if attn_mask is not None:
out['attn_mask'] = attn_mask
return out
def get_label_bins(self):
return self.label_bins
def compute_discretization(df, survival_time_col='os_survival_days', censorship_col='os_censorship', n_label_bins=4, label_bins=None):
df = df[~df['case_id'].duplicated()] # make sure that we compute discretization on unique cases
if label_bins is not None:
assert len(label_bins) == n_label_bins + 1
q_bins = label_bins
else:
uncensored_df = df[df[censorship_col] == 0]
disc_labels, q_bins = pd.qcut(uncensored_df[survival_time_col], q=n_label_bins, retbins=True, labels=False)
q_bins[-1] = 1e6 # set rightmost edge to be infinite
q_bins[0] = -1e-6 # set leftmost edge to be 0
disc_labels, q_bins = pd.cut(df[survival_time_col], bins=q_bins,
retbins=True, labels=False,
include_lowest=True)
assert isinstance(disc_labels, pd.Series) and (disc_labels.index.name == df.index.name)
disc_labels.name = 'disc_label'
return disc_labels, q_bins