[286bfb]: / src / utils / utils.py

Download this file

306 lines (256 with data), 9.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import pdb
import math
import os
from os.path import join as j_
import pickle
import pandas as pd
import datetime
import torch
import numpy as np
import torch.nn as nn
from torch.utils.data import DataLoader, sampler
import torch.optim as optim
import logging
from transformers import (get_constant_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_cosine_schedule_with_warmup)
import re
def get_current_time():
now = datetime.datetime.now()
year = now.year % 100 # convert to 2-digit year
month = now.month
day = now.day
hour = now.hour
minute = now.minute
second = now.second
return f"{year:02d}-{month:02d}-{day:02d}-{hour:02d}-{minute:02d}-{second:02d}"
def extract_patching_info(s):
match = re.search(r"extracted_mag(\d+)x_patch(\d+)_fp", s)
mag, patch_size = -1, -1
if match:
mag = int(match.group(1))
patch_size = int(match.group(2))
return mag, patch_size
def parse_model_name(model_name, ckpt=None, inference_prec=None):
# 'extracted-vit_base_patch16_224.ibot.mgb100m20X_bs1024_cropadjust_opnorm_wd0.04_0012_fp16'
# get inference precision
if inference_prec is None:
inference_prec = 'fp32'
if model_name.endswith('_fp16'):
inference_prec = 'fp16'
model_name = model_name[:-len('_fp16')]
model_name = model_name.replace('extracted-', '')
parsed = model_name.split('.', maxsplit=2)
enc = model_name
algo = ''
exp = ''
if len(parsed) >= 3:
enc = parsed[0]
algo = parsed[1]
exp = '.'.join(parsed[2:])
# get ckpt
if ckpt is None:
exp_parsed = exp.split('.')
ckpt = exp_parsed[-1].split('_')[-1]
if ckpt.isnumeric():
ckpt = int(ckpt)
exp = '.'.join(exp_parsed[:-1]) + '_'.join(exp_parsed[-1].split('_')[:-1])
else:
ckpt = -1
else:
if str(ckpt).isnumeric():
ckpt = int(ckpt)
else:
ckpt = -1
return dict(pretrain_enc=enc,
pretrain_algo=algo,
pretrain_exp=exp,
pretrain_ckpt=ckpt,
inference_prec=inference_prec)
def merge_dict(main_dict, new_dict):
for k, v in new_dict.items():
if k not in main_dict:
main_dict[k] = []
main_dict[k].append(v)
return main_dict
def array2list(x):
if isinstance(x, np.ndarray):
return x.tolist()
return list(x)
def summarize_reulsts(results_dict, ignore_keys = ['folds']):
summary = {}
for k, v in results_dict.items():
if k in ignore_keys: continue
summary[f"{k}_avg"] = np.mean(v)
# summary[f"{k}_std"] = np.std(v)
return summary
def seed_torch(seed=7):
import random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if device.type == 'cuda':
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def read_splits(args, fold_idx=None):
splits_csvs = {}
split_names = args.split_names.split(',')
print(f"Using the following split names: {split_names}")
for split in split_names:
if fold_idx is not None:
split_path = j_(args.split_dir, f'{split}_{fold_idx}.csv')
else:
split_path = j_(args.split_dir, f'{split}.csv')
if os.path.isfile(split_path):
df = pd.read_csv(split_path)#.sample(frac=1, random_state=0).head(25).reset_index(drop=True)
assert 'Unnamed: 0' not in df.columns
splits_csvs[split] = df
return splits_csvs
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name='unk', fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def get_lr_scheduler(args, optimizer, dataloader):
scheduler_name = args.lr_scheduler
warmup_steps = args.warmup_steps
warmup_epochs = args.warmup_epochs
epochs = args.max_epochs if hasattr(args, 'max_epochs') else args.epochs
assert not (warmup_steps > 0 and warmup_epochs > 0), "Cannot have both warmup steps and epochs"
accum_steps = args.accum_steps
if warmup_steps > 0:
warmup_steps = warmup_steps
elif warmup_epochs > 0:
warmup_steps = warmup_epochs * (len(dataloader) // accum_steps)
else:
warmup_steps = 0
if scheduler_name=='constant':
lr_scheduler = get_constant_schedule_with_warmup(optimizer=optimizer,
num_warmup_steps=warmup_steps)
elif scheduler_name=='cosine':
lr_scheduler = get_cosine_schedule_with_warmup(optimizer=optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=(len(dataloader) // accum_steps * epochs),
)
elif scheduler_name=='linear':
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=warmup_steps,
num_training_steps=(len(dataloader) // accum_steps) * epochs,
)
return lr_scheduler
def get_optim(args, model=None, parameters=None):
def exclude(
n, p): return p.ndim < 2 or "bn" in n or "ln" in n or "bias" in n or 'logit_scale' in n
def include(n, p): return not exclude(n, p)
if parameters is None:
named_parameters = list(model.named_parameters())
gain_or_bias_params = [
p for n, p in named_parameters if exclude(n, p) and p.requires_grad]
rest_params = [p for n, p in named_parameters if include(
n, p) and p.requires_grad]
parameters = [
{"params": gain_or_bias_params, "weight_decay": 0.},
{"params": rest_params, "weight_decay": args.wd},
]
if args.opt == "adamW":
optimizer = optim.AdamW(parameters, lr=args.lr)
elif args.opt == 'sgd':
optimizer = optim.SGD(parameters, lr=args.lr, momentum=0.9)
elif args.opt == 'RAdam':
optimizer = optim.RAdam(parameters, lr=args.lr)
else:
raise NotImplementedError
return optimizer
def print_network(net):
num_params = 0
num_params_train = 0
logging.info(str(net))
# print(str(net))
for param in net.parameters():
n = param.numel()
num_params += n
if param.requires_grad:
num_params_train += n
logging.info(f'Total number of parameters: {num_params}')
logging.info(f'Total number of trainable parameters: {num_params_train}')
# print('Total number of parameters: %d' % num_params)
# print('Total number of trainable parameters: %d' % num_params_train)
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, save_dir, patience=20, min_stop_epoch=50, verbose=False, better='min'):
"""
train_args:
patience (int): How long to wait after last time validation loss improved.
Default: 20
min_stop_epoch (int): Earliest epoch possible for stopping
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
"""
self.patience = patience
self.patience_counter = 0
self.min_stop_epoch = min_stop_epoch
self.better = better
self.verbose = verbose
self.best_score = None
self.save_dir = save_dir
if better == 'min':
self.best_score = np.Inf
else:
self.best_score = -np.Inf
self.early_stop = False
self.counter = 0
def is_new_score_better(self, score):
if self.better == 'min':
return score < self.best_score
else:
return score > self.best_score
def __call__(self, epoch, score, save_ckpt_fn, save_ckpt_kwargs):
is_better = self.is_new_score_better(score)
if is_better:
print(
f'score improved ({self.best_score:.6f} --> {score:.6f}). Saving model ...')
self.save_checkpoint(save_ckpt_fn, save_ckpt_kwargs)
self.counter = 0
self.best_score = score
else:
self.counter += 1
print(
f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience and epoch >= (self.min_stop_epoch - 1):
self.early_stop = True
return self.early_stop
def save_checkpoint(self, save_ckpt_fn, save_ckpt_kwargs):
'''Saves model when score improves.'''
if 'save_dir' in save_ckpt_kwargs:
save_ckpt_fn(**save_ckpt_kwargs)
else:
save_ckpt_fn(save_dir=self.save_dir, **save_ckpt_kwargs)
def save_checkpoint(config, epoch, model, score, save_dir, fname=None):
save_state = {'model': model.state_dict(),
'score': score,
'epoch': epoch,
'config': config}
if fname is None:
save_path = j_(save_dir, f'ckpt_epoch_{epoch}.pth')
else:
save_path = j_(save_dir, fname)
torch.save(save_state, save_path)