[286bfb]: / src / training / trainer.py

Download this file

463 lines (380 with data), 19.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import os
from os.path import join as j_
import pdb
import torch.nn.functional as F
import numpy as np
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
try:
from sksurv.metrics import concordance_index_censored
except ImportError:
print('scikit-survival not installed. Exiting...')
raise
from sklearn.metrics import (roc_auc_score, balanced_accuracy_score,
cohen_kappa_score, classification_report, accuracy_score)
from mil_models.tokenizer import PrototypeTokenizer
from mil_models import create_downstream_model, prepare_emb
from utils.losses import NLLSurvLoss, CoxLoss, SurvRankingLoss
from utils.utils import (EarlyStopping, save_checkpoint, AverageMeter,
get_optim, print_network, get_lr_scheduler)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PROTO_MODELS = ['PANTHER', 'OT', 'H2T', 'ProtoCount']
## GENERIC
def log_dict_tensorboard(writer, results, str_prefix, step=0, verbose=False):
for k, v in results.items():
if verbose: print(f'{k}: {v:.4f}')
writer.add_scalar(f'{str_prefix}{k}', v, step)
return writer
def train(datasets, args, mode='classification'):
"""
Train for a single fold for classification or suvival
"""
writer_dir = args.results_dir
if not os.path.isdir(writer_dir):
os.mkdir(writer_dir)
writer = SummaryWriter(writer_dir, flush_secs=15)
assert args.es_metric == 'loss'
if mode == 'classification':
loss_fn = nn.CrossEntropyLoss()
elif mode == 'survival':
if args.loss_fn == 'nll':
loss_fn = NLLSurvLoss(alpha=args.nll_alpha)
elif args.loss_fn == 'cox':
loss_fn = CoxLoss()
elif args.loss_fn == 'rank':
loss_fn = SurvRankingLoss()
print('\nInit Model...', end=' ')
# If prototype-based models, need to create slide-level embeddings
if args.model_type in PROTO_MODELS:
datasets, _ = prepare_emb(datasets, args, mode)
new_in_dim = None
for k, loader in datasets.items():
assert loader.dataset.X is not None
new_in_dim_curr = loader.dataset.X.shape[-1]
if new_in_dim is None:
new_in_dim = new_in_dim_curr
else:
assert new_in_dim == new_in_dim_curr
if 'LinearEmb' in args.emb_model_type:
# Theis emb_model_type doesn't require per-prototype structure (simple linear layer)
factor = 1
else:
# The original embedding is 1-D (long) feature vector
# Reshape it to (n_proto, -1)
tokenizer = PrototypeTokenizer(args.model_type, args.out_type, args.n_proto)
prob, mean, cov = tokenizer(loader.dataset.X)
loader.dataset.X = torch.cat([torch.Tensor(prob).unsqueeze(dim=-1), torch.Tensor(mean), torch.Tensor(cov)], dim=-1)
factor = args.n_proto
args.in_dim = new_in_dim // factor
args.model_type = args.emb_model_type
args.model_config = args.emb_model_type # actually the config
else:
print(f"{args.model_type} doesn't construct unsupervised slide-level embeddings!")
model = create_downstream_model(args, mode=mode)
model.to(device)
print('Done!')
print_network(model)
print('\nInit optimizer ...', end=' ')
optimizer = get_optim(model=model, args=args)
lr_scheduler = get_lr_scheduler(args, optimizer, datasets['train'])
if args.early_stopping:
print('\nSetup EarlyStopping...', end=' ')
early_stopper = EarlyStopping(save_dir=args.results_dir,
patience=args.es_patience,
min_stop_epoch=args.es_min_epochs,
better='min' if args.es_metric == 'loss' else 'max',
verbose=True)
else:
print('\nNo EarlyStopping...', end=' ')
early_stopper = None
#####################
# The training loop #
#####################
for epoch in range(args.max_epochs):
step_log = {'epoch': epoch, 'samples_seen': (epoch + 1) * len(datasets['train'].dataset)}
### Train Loop
print('#' * 10, f'TRAIN Epoch: {epoch}', '#' * 10)
if mode == 'classification':
train_results = train_loop_classification(model, datasets['train'], optimizer, lr_scheduler, loss_fn,
in_dropout=args.in_dropout, print_every=args.print_every,
accum_steps=args.accum_steps)
elif mode == 'survival':
train_results = train_loop_survival(model, datasets['train'], optimizer, lr_scheduler, loss_fn,
in_dropout=args.in_dropout, print_every=args.print_every,
accum_steps=args.accum_steps)
writer = log_dict_tensorboard(writer, train_results, 'train/', epoch)
### Validation Loop (Optional)
if 'val' in datasets.keys():
print('#' * 11, f'VAL Epoch: {epoch}', '#' * 11)
if mode == 'classification':
val_results, _ = validate_classification(model, datasets['val'], loss_fn,
print_every=args.print_every, verbose=True)
elif mode == 'survival':
val_results, _ = validate_survival(model, datasets['val'], loss_fn,
print_every=args.print_every, verbose=True)
writer = log_dict_tensorboard(writer, val_results, 'val/', epoch)
### Check Early Stopping (Optional)
if early_stopper is not None:
if args.es_metric == 'loss':
score = val_results['loss']
else:
raise NotImplementedError
save_ckpt_kwargs = dict(config=vars(args),
epoch=epoch,
model=model,
score=score,
fname=f's_checkpoint.pth')
stop = early_stopper(epoch, score, save_checkpoint, save_ckpt_kwargs)
if stop:
break
print('#' * (22 + len(f'TRAIN Epoch: {epoch}')), '\n')
### End of epoch: Load in the best model (or save the latest model with not early stopping)
if args.early_stopping:
model.load_state_dict(torch.load(j_(args.results_dir, f"s_checkpoint.pth"))['model'])
else:
torch.save(model.state_dict(), j_(args.results_dir, f"s_checkpoint.pth"))
### End of epoch: Evaluate on val and test set
results, dumps = {}, {}
for k, loader in datasets.items():
print(f'End of training. Evaluating on Split {k.upper()}...:')
if mode == 'classification':
results[k], dumps[k] = validate_classification(model, loader, loss_fn, print_every=args.print_every,
dump_results=True, verbose=False)
elif mode == 'survival':
results[k], dumps[k] = validate_survival(model, loader, loss_fn, print_every=args.print_every,
dump_results=True, verbose=False)
if k == 'train':
_ = results.pop('train') # Train results by default are not saved in the summary, but train dumps are
else:
log_dict_tensorboard(writer, results[k], f'final/{k}_', 0, verbose=True)
writer.close()
return results, dumps
## CLASSIFICATION
def train_loop_classification(model, loader, optimizer, lr_scheduler, loss_fn=None,
in_dropout=0.0, print_every=50,
accum_steps=1):
model.train()
meters = {'bag_size': AverageMeter(), 'cls_acc': AverageMeter()}
bag_size_meter = meters['bag_size']
acc_meter = meters['cls_acc']
#import pdb; pdb.set_trace()
for batch_idx, batch in enumerate(loader):
data = batch['img'].to(device)
label = batch['label'].to(torch.long).to(device)
if len(label.shape) == 2 and label.shape[1] == 1:
label = label.squeeze(dim=-1)
if in_dropout:
data = F.dropout(data, p=in_dropout)
attn_mask = batch['attn_mask'].to(device) if ('attn_mask' in batch) else None
model_kwargs = {'attn_mask': attn_mask, 'label': label, 'loss_fn': loss_fn}
out, log_dict = model(data, model_kwargs)
# Get loss + backprop
loss = out['loss']
loss = loss / accum_steps
loss.backward()
if (batch_idx + 1) % accum_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# End of iteration classification-specific metrics to calculate / log
logits = out['logits']
acc = (label == logits.argmax(dim=-1)).float().mean()
for key, val in log_dict.items():
if key not in meters:
meters[key] = AverageMeter()
meters[key].update(val, n=len(data))
acc_meter.update(acc.item(), n=len(data))
bag_size_meter.update(data.size(1), n=len(data))
if ((batch_idx + 1) % print_every == 0) or (batch_idx == len(loader) - 1):
msg = [f"avg_{k}: {meter.avg:.4f}" for k, meter in meters.items()]
msg = f"batch {batch_idx}\t" + "\t".join(msg)
print(msg)
# End of epoch classification-specific metrics to calculate / log
results = {k: meter.avg for k, meter in meters.items()}
results['lr'] = optimizer.param_groups[0]['lr']
return results
@torch.no_grad()
def validate_classification(model, loader,
loss_fn=None,
print_every=50,
dump_results=False,
verbose=1):
model.eval()
meters = {'bag_size': AverageMeter(), 'cls_acc': AverageMeter()}
acc_meter = meters['cls_acc']
bag_size_meter = meters['bag_size']
all_probs = []
all_labels = []
for batch_idx, batch in enumerate(loader):
data = batch['img'].to(device)
label = batch['label'].to(torch.long).to(device)
if len(label.shape) == 2 and label.shape[1] == 1:
label = label.squeeze(dim=-1)
attn_mask = batch['attn_mask'].to(device) if ('attn_mask' in batch) else None
model_kwargs = {'attn_mask': attn_mask, 'label': label, 'loss_fn': loss_fn}
out, log_dict = model(data, model_kwargs)
# End of iteration classification-specific metrics to calculate / log
logits = out['logits']
acc = (label == logits.argmax(dim=-1)).float().mean()
acc_meter.update(acc.item(), n=len(data))
bag_size_meter.update(data.size(1), n=len(data))
for key, val in log_dict.items():
if key not in meters:
meters[key] = AverageMeter()
meters[key].update(val, n=len(data))
all_probs.append(torch.softmax(logits, dim=-1).cpu().numpy())
all_labels.append(label.cpu().numpy())
if verbose and (((batch_idx + 1) % print_every == 0) or (batch_idx == len(loader) - 1)):
msg = [f"avg_{k}: {meter.avg:.4f}" for k, meter in meters.items()]
msg = f"batch {batch_idx}\t" + "\t".join(msg)
print(msg)
# End of epoch classification-specific metrics to calculate / log
n_classes = logits.size(1)
all_probs = np.concatenate(all_probs)
all_labels = np.concatenate(all_labels)
all_preds = all_probs.argmax(axis=1)
results = sweep_classification_metrics(all_probs, all_labels, all_preds=all_preds, n_classes=n_classes)
results.update({k: meter.avg for k, meter in meters.items()})
if 'report' in results:
del results['report']
if verbose:
msg = [f"{k}: {v:.3f}" for k, v in results.items()]
print("\t".join(msg))
dumps = {}
if dump_results:
dumps['labels'] = all_labels
dumps['probs'] = all_probs
dumps['sample_ids'] = np.array(
loader.dataset.idx2sample_df['sample_id'])
return results, dumps
## SURVIVAL
def train_loop_survival(model, loader, optimizer, lr_scheduler, loss_fn=None, in_dropout=0.0, print_every=50,
accum_steps=32):
model.train()
meters = {'bag_size': AverageMeter()}
bag_size_meter = meters['bag_size']
all_risk_scores, all_censorships, all_event_times = [], [], []
for batch_idx, batch in enumerate(loader):
data = batch['img'].to(device)
label = batch['label'].to(device)
if in_dropout:
data = F.dropout(data, p=in_dropout)
event_time = batch['survival_time'].to(device)
censorship = batch['censorship'].to(device)
attn_mask = batch['attn_mask'].to(device) if ('attn_mask' in batch) else None
model_kwargs = {'attn_mask': attn_mask, 'label': label, 'censorship': censorship, 'loss_fn': loss_fn}
out, log_dict = model(data, model_kwargs)
if out['loss'] is None:
continue
# Get loss + backprop
loss = out['loss']
loss = loss / accum_steps
loss.backward()
if (batch_idx + 1) % accum_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# End of iteration survival-specific metrics to calculate / log
all_risk_scores.append(out['risk'].detach().cpu().numpy())
all_censorships.append(censorship.cpu().numpy())
all_event_times.append(event_time.cpu().numpy())
for key, val in log_dict.items():
if key not in meters:
meters[key] = AverageMeter()
meters[key].update(val, n=len(data))
bag_size_meter.update(data.size(1), n=len(data))
if ((batch_idx + 1) % print_every == 0) or (batch_idx == len(loader) - 1):
msg = [f"avg_{k}: {meter.avg:.4f}" for k, meter in meters.items()]
msg = f"batch {batch_idx}\t" + "\t".join(msg)
print(msg)
# End of epoch survival-specific metrics to calculate / log
all_risk_scores = np.concatenate(all_risk_scores).squeeze(1)
all_censorships = np.concatenate(all_censorships).squeeze(1)
all_event_times = np.concatenate(all_event_times).squeeze(1)
c_index = concordance_index_censored(
(1 - all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
results = {k: meter.avg for k, meter in meters.items()}
results.update({'c_index': c_index})
results['lr'] = optimizer.param_groups[0]['lr']
return results
@torch.no_grad()
def validate_survival(model, loader,
loss_fn=None,
print_every=50,
dump_results=False,
recompute_loss_at_end=True,
verbose=1):
model.eval()
meters = {'bag_size': AverageMeter()}
bag_size_meter = meters['bag_size']
all_risk_scores, all_censorships, all_event_times = [], [], []
for batch_idx, batch in enumerate(loader):
data = batch['img'].to(device)
label = batch['label'].to(device)
event_time = batch['survival_time'].to(device)
censorship = batch['censorship'].to(device)
attn_mask = batch['attn_mask'].to(device) if ('attn_mask' in batch) else None
model_kwargs = {'attn_mask': attn_mask, 'label': label, 'censorship': censorship, 'loss_fn': loss_fn}
out, log_dict = model(data, model_kwargs)
# End of iteration survival-specific metrics to calculate / log
bag_size_meter.update(data.size(1), n=len(data))
for key, val in log_dict.items():
if key not in meters:
meters[key] = AverageMeter()
meters[key].update(val, n=len(data))
all_risk_scores.append(out['risk'].cpu().numpy())
all_censorships.append(censorship.cpu().numpy())
all_event_times.append(event_time.cpu().numpy())
if verbose and (((batch_idx + 1) % print_every == 0) or (batch_idx == len(loader) - 1)):
msg = [f"avg_{k}: {meter.avg:.4f}" for k, meter in meters.items()]
msg = f"batch {batch_idx}\t" + "\t".join(msg)
print(msg)
# End of epoch survival-specific metrics to calculate / log
all_risk_scores = np.concatenate(all_risk_scores).squeeze(1)
all_censorships = np.concatenate(all_censorships).squeeze(1)
all_event_times = np.concatenate(all_event_times).squeeze(1)
c_index = concordance_index_censored(
(1 - all_censorships).astype(bool), all_event_times, all_risk_scores, tied_tol=1e-08)[0]
results = {k: meter.avg for k, meter in meters.items()}
results.update({'c_index': c_index})
if recompute_loss_at_end and isinstance(loss_fn, CoxLoss):
surv_loss_dict = loss_fn(logits=torch.tensor(all_risk_scores).unsqueeze(1),
times=torch.tensor(all_event_times).unsqueeze(1),
censorships=torch.tensor(all_censorships).unsqueeze(1))
results['surv_loss'] = surv_loss_dict['loss'].item()
results.update({k: v.item() for k, v in surv_loss_dict.items() if isinstance(v, torch.Tensor)})
if verbose:
msg = [f"{k}: {v:.3f}" for k, v in results.items()]
print("\t".join(msg))
dumps = {}
if dump_results:
dumps['all_risk_scores'] = all_risk_scores
dumps['all_censorships'] = all_censorships
dumps['all_event_times'] = all_event_times
dumps['sample_ids'] = np.array(
loader.dataset.idx2sample_df['sample_id'])
return results, dumps
@torch.no_grad()
def sweep_classification_metrics(all_probs, all_labels, all_preds=None, n_classes=None):
if n_classes is None:
n_classes = all_probs.shape[1]
if all_preds is None:
all_preds = all_probs.argmax(axis=1)
if n_classes == 2:
all_probs = all_probs[:, 1]
roc_kwargs = {}
else:
roc_kwargs = {'multi_class': 'ovo', 'average': 'macro'}
bacc = balanced_accuracy_score(all_labels, all_preds)
kappa = cohen_kappa_score(all_labels, all_preds, weights='quadratic')
cls_rep = classification_report(all_labels, all_preds, output_dict=True, zero_division=0)
acc = accuracy_score(all_labels, all_preds)
roc_auc = roc_auc_score(all_labels, all_probs, **roc_kwargs)
results = {'acc': acc,
'bacc': bacc,
'report': cls_rep,
'kappa': kappa,
'roc_auc': roc_auc,
'weighted_f1': cls_rep['weighted avg']['f1-score']}
return results