[286bfb]: / src / mil_models / components.py

Download this file

251 lines (199 with data), 7.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch.nn as nn
import torch
from tqdm import tqdm
from utils.losses import NLLSurvLoss, CoxLoss, SurvRankingLoss
from sksurv.util import Surv
def create_mlp(in_dim=None, hid_dims=[], act=nn.ReLU(), dropout=0.,
out_dim=None, end_with_fc=True, bias=True):
layers = []
if len(hid_dims) < 0:
mlp = nn.Identity()
elif len(hid_dims) >= 0:
if len(hid_dims) > 0:
for hid_dim in hid_dims:
layers.append(nn.Linear(in_dim, hid_dim, bias=bias))
layers.append(act)
layers.append(nn.Dropout(dropout))
in_dim = hid_dim
layers.append(nn.Linear(in_dim, out_dim))
if not end_with_fc:
layers.append(act)
mlp = nn.Sequential(*layers)
return mlp
def create_mlp_with_dropout(in_dim=None, hid_dims=[], act=nn.ReLU(), dropout=0.,
out_dim=None, end_with_fc=True, bias=True):
layers = []
if len(hid_dims) < 0:
mlp = nn.Identity()
elif len(hid_dims) >= 0:
if len(hid_dims) > 0:
for hid_dim in hid_dims:
layers.append(nn.Linear(in_dim, hid_dim, bias=bias))
layers.append(act)
layers.append(nn.Dropout(dropout))
in_dim = hid_dim
layers.append(nn.Linear(in_dim, out_dim))
if not end_with_fc:
layers.append(act)
layers.append(nn.Dropout(dropout))
mlp = nn.Sequential(*layers)
return mlp
#
# Model processing
#
def predict_emb(self, dataset, use_cuda=True, permute=False):
"""
Create prototype-based slide representation
Returns
- X (torch.Tensor): (n_data x output_set_dim)
- y (torch.Tensor): (n_data)
"""
X = []
for i in tqdm(range(len(dataset))):
batch = dataset.__getitem__(i)
data = batch['img'].unsqueeze(dim=0)
if use_cuda:
data = data.cuda()
with torch.no_grad():
out = self.representation(data)
out = out['repr'].data.detach().cpu()
X.append(out)
X = torch.cat(X)
return X
def predict_clf(self, dataset, use_cuda=True, permute=False):
"""
Create prototype-based slide representation
Returns
- X (torch.Tensor): (n_data x output_set_dim)
- y (torch.Tensor): (n_data)
"""
X, y = [], []
for i in tqdm(range(len(dataset))):
batch = dataset.__getitem__(i)
data = batch['img'].unsqueeze(dim=0)
label = batch['label']
if use_cuda:
data = data.cuda()
with torch.no_grad():
out = self.representation(data)
out = out['repr'].data.detach().cpu()
X.append(out)
y.append(label)
X = torch.cat(X)
y = torch.Tensor(y).to(torch.long)
return X, y
def process_clf(logits, label, loss_fn):
results_dict = {'logits': logits}
log_dict = {}
if loss_fn is not None and label is not None:
cls_loss = loss_fn(logits, label)
loss = cls_loss
log_dict.update({
'cls_loss': cls_loss.item(),
'loss': loss.item()})
results_dict.update({'loss': loss})
return results_dict, log_dict
def predict_surv(self, dataset, use_cuda=True, permute=False):
"""
Create prototype-based slide representation
"""
output = []
label_output = []
censor_output = []
time_output = []
for i in tqdm(range(len(dataset))):
batch = dataset.__getitem__(i)
data, label, censorship, time = batch['img'].unsqueeze(dim=0), batch['label'].unsqueeze(dim=0), batch['censorship'].unsqueeze(dim=0), batch['survival_time'].unsqueeze(dim=0)
batch_size = data.shape[0]
if use_cuda:
data = data.cuda()
with torch.no_grad():
batch_out = self.representation(data)
batch_out = batch_out['repr'].data.cpu()
output.append(batch_out)
label_output.append(label)
censor_output.append(censorship)
time_output.append(time)
output = torch.cat(output)
label_output = torch.cat(label_output)
censor_output = torch.cat(censor_output)
time_output = torch.cat(time_output)
y = Surv.from_arrays(~censor_output.numpy().astype('bool').squeeze(),
time_output.numpy().squeeze()
)
return output, y
def process_surv(logits, label, censorship, loss_fn=None):
results_dict = {'logits': logits}
log_dict = {}
if loss_fn is not None and label is not None:
if isinstance(loss_fn, NLLSurvLoss):
surv_loss_dict = loss_fn(logits=logits, times=label, censorships=censorship)
hazards = torch.sigmoid(logits)
survival = torch.cumprod(1 - hazards, dim=1)
risk = -torch.sum(survival, dim=1).unsqueeze(dim=1)
results_dict.update({'hazards': hazards,
'survival': survival,
'risk': risk})
elif isinstance(loss_fn, CoxLoss):
# logits is log risk
surv_loss_dict = loss_fn(logits=logits, times=label, censorships=censorship)
risk = torch.exp(logits)
results_dict['risk'] = risk
elif isinstance(loss_fn, SurvRankingLoss):
surv_loss_dict = loss_fn(z=logits, times=label, censorships=censorship)
results_dict['risk'] = logits
loss = surv_loss_dict['loss']
log_dict['surv_loss'] = surv_loss_dict['loss'].item()
log_dict.update(
{k: v.item() for k, v in surv_loss_dict.items() if isinstance(v, torch.Tensor)})
results_dict.update({'loss': loss})
return results_dict, log_dict
#
# Attention networks
#
class Attn_Net(nn.Module):
"""
Attention Network without Gating (2 fc layers)
args:
L: input feature dimension
D: hidden layer dimension
dropout: dropout
n_classes: number of classes
"""
def __init__(self, L=1024, D=256, dropout=0., n_classes=1):
super(Attn_Net, self).__init__()
self.module = [
nn.Linear(L, D),
nn.Tanh(),
nn.Dropout(dropout),
nn.Linear(D, n_classes)]
self.module = nn.Sequential(*self.module)
def forward(self, x):
return self.module(x), x # N x n_classes
class Attn_Net_Gated(nn.Module):
"""
Attention Network with Sigmoid Gating (3 fc layers)
args:
L: input feature dimension
D: hidden layer dimension
dropout: dropout
n_classes: number of classes
"""
def __init__(self, L=1024, D=256, dropout=0., n_classes=1):
super(Attn_Net_Gated, self).__init__()
self.attention_a = [
nn.Linear(L, D),
nn.Tanh(),
nn.Dropout(dropout)]
self.attention_b = [nn.Linear(L, D),
nn.Sigmoid(),
nn.Dropout(dropout)]
self.attention_a = nn.Sequential(*self.attention_a)
self.attention_b = nn.Sequential(*self.attention_b)
self.attention_c = nn.Linear(D, n_classes)
def forward(self, x):
a = self.attention_a(x)
b = self.attention_b(x)
A = a.mul(b)
A = self.attention_c(A) # N x n_classes
return A