[ec103b]: / model2.py

Download this file

230 lines (183 with data), 9.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import pickle
import torch
from simpletransformers.classification import (MultiLabelClassificationArgs, MultiLabelClassificationModel)
from sklearn.metrics import accuracy_score, hamming_loss, classification_report, roc_auc_score
from sklearn.preprocessing import MultiLabelBinarizer
import pandas as pd
import numpy as np
train_df = pd.read_csv('/Users/aakansha/Desktop/NCCS NLP for Histology Reports/Datasets for Trials/train_data_for_model2.csv')
train_df['Combined Diagnosis'] = train_df['Diagnosis'] + train_df['Gross Description'] \
+ train_df['Microscopic Description']
train_df = train_df[['Combined Diagnosis', 'Primary Site of Cancer']]
eval_df = pd.read_csv('/Users/aakansha/Desktop/NCCS NLP for Histology Reports/Datasets for Trials/test_data_for_model2.csv')
eval_df['Combined Diagnosis'] = eval_df['Diagnosis'] + eval_df['Gross Description'] \
+ eval_df['Microscopic Description']
eval_df = eval_df[['Combined Diagnosis', 'Primary Site of Cancer']]
eval_metrics_df = pd.DataFrame(columns=['Model Type', 'Model Name', 'Epoch', 'Overall Accuracy', 'Overall AUROC Score',
'Hamming Loss', 'Eval Loss'])
# Multi-hot Encoding for Train Data
# Drop NA rows
train_df = train_df.dropna(subset=['Primary Site of Cancer']).reset_index(drop=True)
# Convert datatype of elements to string
train_df['Primary Site of Cancer'] = train_df['Primary Site of Cancer'].astype('str')
# Put primary sites into lists, separate multiple sites for each report
for (i, row) in train_df.iterrows():
val = train_df['Primary Site of Cancer'].iloc[i]
list_separated = val.split(",")
stripped = [s.strip().upper() for s in list_separated]
set_list = set(stripped)
train_df.at[i, 'Primary Site of Cancer'] = set_list
# Initialize MultiLabelBinarizer
mlb = MultiLabelBinarizer()
mlb.fit(train_df['Primary Site of Cancer'])
cols = ["%s" % c for c in mlb.classes_]
# Fit data into binarizer, generate multi-hot encodings
df = pd.DataFrame(mlb.fit_transform(train_df['Primary Site of Cancer']), columns=mlb.classes_)
# Merge original text with multi-hot encodings
train_df = pd.concat([train_df[['Combined Diagnosis']], df], axis=1)
print(cols)
# Generate labels columns as list
count = len(cols)
train_df['labels'] = ''
for (i, row) in train_df.iterrows():
labels = []
j = 1
while j <= count:
labels.append(train_df.iloc[i].iloc[j])
j += 1
tup = tuple(labels)
train_df.at[i, 'labels'] = tup
train_df = train_df[['Combined Diagnosis', 'labels']]
# Multi-hot Encoding for Test Data
# Drop NA rows
eval_df = eval_df.dropna(subset=['Primary Site of Cancer'])
# Convert datatype of elements to string
eval_df['Primary Site of Cancer'] = eval_df['Primary Site of Cancer'].astype('str')
# Put primary sites into lists, separate multiple sites for each report
for (i, row) in eval_df.iterrows():
val = eval_df['Primary Site of Cancer'].iloc[i]
list_separated = val.split(",")
stripped = [s.strip().upper() for s in list_separated]
set_list = set(stripped)
eval_df.at[i, 'Primary Site of Cancer'] = set_list
# Fit data into binarizer, generate multi-hot encodings
eval_df_individual_labels = pd.DataFrame(mlb.transform(eval_df['Primary Site of Cancer']), columns=cols)
# Merge original text with multi-hot encodings
eval_df = pd.concat([eval_df[['Combined Diagnosis']], eval_df_individual_labels], axis=1)
# Generate labels columns as list
eval_df['labels'] = ''
for (i, row) in eval_df.iterrows():
labels = []
j = 1
while j <= count:
labels.append(eval_df.iloc[i].iloc[j])
j += 1
tup = tuple(labels)
eval_df.at[i, 'labels'] = tup
eval_df = eval_df[['Combined Diagnosis', 'labels']]
for n in [2]:
curr_epoch = "Epoch" + str(n)
# Configure model args
model_args = MultiLabelClassificationArgs(num_train_epochs=n)
model_args.evaluate_during_training_steps = -1
model_args.save_eval_checkpoints = False
model_args.save_model_every_epoch = False
model_args.learning_rate = 1e-5
model_args.manual_seed = 4
model_args.multiprocessing_chunksize = 5000
model_args.no_cache = True
model_args.reprocess_input_data = True
model_args.train_batch_size = 16
model_args.gradient_accumulation_steps = 2
model_args.use_multiprocessing = True
model_args.overwrite_output_dir = True
model_args.labels_list = cols
# model
model_type = "roberta"
model_name = "roberta-large"
# Create Transformer Model
model = MultiLabelClassificationModel(model_type, model_name, num_labels=count, use_cuda=False, args=model_args)
if __name__ == '__main__':
# Train the model
model.train_model(train_df)
pickle.dump(model, open('model2.pkl', 'wb'))
prediction_df = eval_df['Combined Diagnosis'].values.tolist()
# Predict output
prediction, outputs = model.predict(prediction_df)
outputs_df = pd.DataFrame(outputs, columns=cols)
prediction_df = pd.DataFrame(prediction, columns=cols)
# Save outputs to csv file
filename_prefix = "/Users/aakansha/Desktop/Model2/" + model_name + "_outputs_df"
filename = "%s.csv" % filename_prefix
outputs_df.to_csv(filename)
# Save true and predicted labels to csv file
combined_cols_df = pd.concat([eval_df, prediction_df], axis=1)
filename_prefix = "/Users/aakansha/Desktop/Model2/" + model_name + "_combined_cols_df"
filename = "%s.csv" % filename_prefix
combined_cols_df.to_csv(filename)
# Calculate individual label accuracies
label_accuracy_df = pd.concat([eval_df_individual_labels, prediction_df], axis=1)
new_acc_cols_order = np.unique(
np.array(list(zip(eval_df_individual_labels.columns, prediction_df.columns))).flatten())
label_accuracy_df = label_accuracy_df[new_acc_cols_order]
count = len(label_accuracy_df.columns)
i = 0
colnames = []
accuracies = []
auroc = []
while i < count:
actualValue = label_accuracy_df.iloc[:, i]
predictedValue = label_accuracy_df.iloc[:, i + 1]
actualValue = actualValue.values
predictedValue = predictedValue.values
acc = accuracy_score(actualValue, predictedValue)
# temporary fix, try-except block will be removed in the future with a more balanced dataset
try:
auroc_score = roc_auc_score(actualValue, predictedValue)
except ValueError:
auroc_score = 0
colnames.append(label_accuracy_df.columns[i])
accuracies.append(acc)
auroc.append(auroc_score)
i += 2
accuracy_auroc_df = pd.DataFrame(list(zip(colnames, accuracies, auroc)),
columns=['Site', 'Accuracy', 'AUROC Score'])
# Evaluate model
result, model_outputs, wrong_predictions = model.eval_model(eval_df)
# Processing for metrics calculation
eval_df_multi_hot_encodings = []
for (i, row) in eval_df.iterrows():
val = eval_df['labels'].iloc[i]
val_array = np.asarray(val)
eval_df_multi_hot_encodings.append(val_array)
eval_df_true = np.array(eval_df_multi_hot_encodings)
prediction_data = np.array(prediction)
# Calculate metrics
overall_acc = accuracy_score(eval_df_true, prediction_data)
# temporary fix, try-except block will be removed in the future with a more balanced dataset
try:
overall_auroc = roc_auc_score(eval_df_true, prediction_data)
except:
overall_auroc = 0
hamming_loss = hamming_loss(eval_df_true, prediction_data)
target_names = cols
other_metrics_report = classification_report(eval_df_true, prediction_data, target_names=target_names,
output_dict=True)
classification_report_df = pd.DataFrame(other_metrics_report).transpose()
# Combine individual accuracies to classification report
classification_report_df = classification_report_df.reset_index()
accuracy_auroc_df = accuracy_auroc_df.reset_index()
classification_report_df_final = pd.concat([classification_report_df, accuracy_auroc_df['Accuracy'],
accuracy_auroc_df['AUROC Score']], axis=1)
# Save classification report to csv file
filename_prefix = "/Users/aakansha/Desktop/Model2/" + model_name + "_classification_metrics_df"
filename = "%s.csv" % filename_prefix
classification_report_df_final.to_csv(filename)
# Save other metrics to csv file
metrics_data = [model_type, model_name, curr_epoch, overall_acc, overall_auroc, hamming_loss,
result['eval_loss']]
df_length = len(eval_metrics_df)
eval_metrics_df.loc[df_length] = metrics_data
filename_prefix = "/Users/aakansha/Desktop/Model2/" + model_name + "_eval_metrics_df"
filename = "%s.csv" % filename_prefix
eval_metrics_df.to_csv(filename)