[05e710]: / mediaug / models / unet / utils / hooks / profiling_hook.py

Download this file

55 lines (42 with data), 1.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import tensorflow as tf
import horovod.tensorflow as hvd
from dllogger import LOGGER, tags, AverageMeter
class ProfilingHook(tf.train.SessionRunHook):
def __init__(self, batch_size, log_every, warmup_steps):
self._log_every = log_every
self._warmup_steps = warmup_steps
self._current_step = 0
self._global_batch_size = batch_size * hvd.size()
self._meter = AverageMeter()
self._t0 = 0
def before_run(self, run_context):
if self._current_step % self._log_every == 0:
LOGGER.log('iter_start', self._current_step)
if self._current_step > self._warmup_steps:
self._t0 = time.time()
def after_run(self,
run_context,
run_values):
if self._current_step > self._warmup_steps:
batch_time = time.time() - self._t0
ips = self._global_batch_size / batch_time
self._meter.record(ips)
self._current_step += 1
def begin(self):
pass
def end(self, session):
LOGGER.log('average_images_per_second', self._meter.get_value())