[793d90]: / lib / plot_auc_curve.py

Download this file

133 lines (105 with data), 4.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# -*- coding:utf-8 -*-
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import rc
from scipy import interp
from sklearn.metrics import auc, roc_curve
from sklearn.model_selection import StratifiedKFold
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
import gcforest.data_load as load
from gcforest.gcforest import GCForest
from gcforest.utils.log_utils import get_logger
from sklearn.preprocessing import OneHotEncoder
import utils
LOGGER = get_logger('cascade_clf.lib.plot_roc_all')
def one_hot(integer_encoded):
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
one_hot_encoder = OneHotEncoder(sparse=False)
one_hot_encoded = one_hot_encoder.fit_transform(integer_encoded)
return one_hot_encoded
save_fig = True
# activate latex text rendering
rc('text', usetex=True)
f, ax = plt.subplots(3, 1, figsize=(15, 15))
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)
clf_svm = SVC(random_state=0, probability=True)
clf_knn = KNeighborsClassifier(n_neighbors=5)
clf_lg = LogisticRegression(random_state=0)
config = utils.load_json("demo_ca.json")
clf_gc = GCForest(config)
datasets = ['Cirrhosis', 'T2D', 'Obesity']
params = [(clf_lg, 'y', "LR"), (clf_svm, 'purple', 'SVM'),
(clf_knn, 'blue', 'kNN'), ('CNN', 'green', 'CNN'), (clf_gc, 'red', 'DF')]
for dataset_idx, name in enumerate(datasets):
X = None
Y = None
if dataset_idx == 0:
X, Y = load.cirrhosis_data()
elif dataset_idx == 1:
X, Y = load.t2d_data()
elif dataset_idx == 2:
X, Y = load.obesity_data()
else:
raise Exception('the dataset is not defined!!!')
gc_pred_acc = []
for idx, x in enumerate(params):
mean_fpr = np.linspace(0, 1, 100)
tprs = []
aucs = []
for train, test in cv.split(X, Y):
if idx == 3: ## CNN
Y_trans = one_hot(Y)
y_score = utils.cnn(X.iloc[train], X.iloc[test], Y_trans[train], Y_trans[test])
fpr, tpr, thresholds = roc_curve(Y[test], y_score)
v = interp(mean_fpr, fpr, tpr)
tprs.append(v)
tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
elif idx == 4:
gc = x[0]
x_train, y_train, x_test, y_test = X.iloc[train], Y[train], X.iloc[test], Y[test]
x_train = x_train.values.reshape(-1, 1, len(x_train.columns))
x_test = x_test.values.reshape(-1, 1, len(x_test.columns))
X_train_enc = gc.fit_transform(x_train, y_train)
probas_ = gc.predict_proba(x_test)
fpr, tpr, thresholds = roc_curve(Y[test], probas_[:, 1])
v = interp(mean_fpr, fpr, tpr)
tprs.append(v)
tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
else:
x[0].fit(X.iloc[train], Y[train])
probas_ = x[0].predict_proba(X.iloc[test])
fpr, tpr, thresholds = roc_curve(Y[test], probas_[:, 1])
v = interp(mean_fpr, fpr, tpr)
tprs.append(v)
tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
if idx == 4:
label = '\\textbf{' + x[2] + '(AUC={:.3f})'.format(mean_auc) + '}'
ax[dataset_idx].plot(mean_fpr, mean_tpr, color=x[1], label=label, lw=2, alpha=.8)
else:
label = '{}' '(AUC={:.3f})'.format(x[2], mean_auc)
ax[dataset_idx].plot(mean_fpr, mean_tpr, color=x[1], label=label, lw=2, alpha=.8)
ax[dataset_idx].plot([0, 1], [0, 1], linestyle='--', lw=2, color='grey', alpha=.8)
ax[dataset_idx].set_title(name)
ax[dataset_idx].legend(loc='lower right')
ax[dataset_idx].set_ylabel('True Positive Rate')
ax[dataset_idx].set_xlabel('False Positive Rate')
ax[dataset_idx].set(adjustable='box-forced', aspect='equal')
if save_fig:
plt.savefig('output/AUC.png', bbox_inches='tight')
plt.close(f)
else:
plt.show()