[c3b4f8]: / R / Testing_Comparison.R

Download this file

63 lines (50 with data), 3.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Testing_Comparison.R
require(data.table)
require(Metrics)
require(stringr)
require(ggplot2)
Metrics::
rsq <- function (x, y) {cor(x, y) ^ 2}
all_full_evals <- list.files("Full_Model_Testing_Results/", full.names = T, pattern = "GDSC2")
all_full_metrics <- data.table(data_used = NULL, training_type = NULL, length_of_testing_data = NULL, MSE = NULL,
RMSE = NULL, MSLE = NULL, RSQ = NULL, Pearson = NULL)
for (filename in all_full_evals) {
cur_eval <- fread(filename)
cur_data <- str_replace(strsplit(basename(filename), "GDSC2")[[1]][1], "-", "_")
cur_results <- data.table(data_used = cur_data,
training_type = "Full",
length_of_testing_data = nrow(cur_eval),
MSE = mse(cur_eval$actual_target, cur_eval$predicted_target),
RMSE = rmse(cur_eval$actual_target, cur_eval$predicted_target),
MSLE = msle(cur_eval$actual_target, cur_eval$predicted_target),
RSQ = rsq(cur_eval$actual_target, cur_eval$predicted_target),
Pearson = cor(cur_eval$actual_target, cur_eval$predicted_target, method = "pearson"))
all_full_metrics <- rbind(all_full_metrics, cur_results)
}
all_full_metrics_long = melt.data.table(all_full_metrics[, c(1,2,4)], id.vars = c("data_used", "training_type"), variable.name = "Metric", value.name = "Loss")
ggplot(data = all_full_metrics_long) +
geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric, fill = Metric), position = "dodge", stat = "identity") +
theme(axis.text.x = element_text(angle = -45, hjust = 0, size = 16))
all_bottleneck_evals <- list.files("BottleNeck_Model_Testing_Results/", full.names = T, pattern = "GDSC2")
all_bottleneck_metrics <- data.table(data_used = NULL, training_type = NULL, length_of_testing_data = NULL, MSE = NULL, RMSE = NULL, MSLE = NULL, RSQ = NULL)
for (filename in all_bottleneck_evals) {
cur_eval <- fread(filename)
cur_data <- str_replace(strsplit(basename(filename), "GDSC2")[[1]][1], "-", "_")
cur_results <- data.table(data_used = cur_data,
training_type = "BottleNeck",
length_of_testing_data = nrow(cur_eval),
MSE = mse(cur_eval$actual_target, cur_eval$predicted_target),
RMSE = rmse(cur_eval$actual_target, cur_eval$predicted_target),
MSLE = msle(cur_eval$actual_target, cur_eval$predicted_target),
RSQ = rsq(cur_eval$actual_target, cur_eval$predicted_target))
all_bottleneck_metrics <- rbind(all_bottleneck_metrics, cur_results)
}
all_bottleneck_metrics_long = melt.data.table(all_bottleneck_metrics[, c(1,2,4)], id.vars = c("data_used", "training_type"), variable.name = "Metric", value.name = "Loss")
# ggplot(data = all_bottleneck_metrics_long) +
# geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric, fill = Metric), position = "dodge", stat = "identity") +
# theme(axis.text.x = element_text(angle = -45, hjust = 0, size = 16))
all_tests <- rbind(all_full_metrics_long, all_bottleneck_metrics_long)
ggplot(data = all_tests) +
geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric), position = "dodge", stat = "identity") +
theme(axis.text.x = element_text(angle = -90, hjust = 0, size = 16)) +
facet_wrap(vars(training_type))