--- a +++ b/R/performance_analysis.R @@ -0,0 +1,541 @@ +# performance_analysis.R + +require(data.table) +require(ggplot2) + + +plot_loss_by_bottleneck_and_split <- function(with_bottleneck_path, without_bottleneck_path, split_by_cell_path, + split_by_drug_path, split_by_both_path, + plot_path, cell_line_data, inference_results_paths, subtitle, plot_name) { + + + ctrp_data <- fread(paste0(path, "CTRP_AAC_MORGAN_512_inference_results.csv")) + ctrp_data <- merge(ctrp_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + gdsc1_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) + gdsc1_data <- merge(gdsc1_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + gdsc2_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) + gdsc2_data <- merge(gdsc2_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + + # ctrp_data[, abs_loss := sqrt(MSE_loss)] + ctrp_data[, lineage_loss_avg := mean(MAE_loss), by = "lineage"] + ctrp_data[, lineage_loss_sd := sd(MAE_loss), by = "lineage"] + ctrp_data[, sample_by_lineage_count := .N, by = "lineage"] + ctrp_avg_abs_by_lineage <- unique(ctrp_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + ctrp_avg_abs_by_lineage$Dataset <- "CTRPv2" + + # gdsc1_data[, abs_loss := sqrt(MSE_loss)] + gdsc1_data[, lineage_loss_avg := mean(MAE_loss), by = "lineage"] + gdsc1_data[, lineage_loss_sd := sd(MAE_loss), by = "lineage"] + gdsc1_data[, sample_by_lineage_count := .N, by = "lineage"] + gdsc1_avg_abs_by_lineage <- unique(gdsc1_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + gdsc1_avg_abs_by_lineage$Dataset <- "GDSC1" + + # gdsc2_data[, abs_loss := sqrt(MSE_loss)] + gdsc2_data[, lineage_loss_avg := mean(MAE_loss), by = "lineage"] + gdsc2_data[, lineage_loss_sd := sd(MAE_loss), by = "lineage"] + gdsc2_data[, sample_by_lineage_count := .N, by = "lineage"] + gdsc2_avg_abs_by_lineage <- unique(gdsc2_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + gdsc2_avg_abs_by_lineage$Dataset <- "GDSC2" + + all_avg_abs_by_lineage <- rbindlist(list(ctrp_avg_abs_by_lineage, gdsc1_avg_abs_by_lineage, gdsc2_avg_abs_by_lineage)) + all_avg_abs_by_lineage <- merge(all_avg_abs_by_lineage, unique(ctrp_data[, c("lineage", "sample_by_lineage_count")])) + all_avg_abs_by_lineage$lineage <- paste0(all_avg_abs_by_lineage$lineage, ", n = ", all_avg_abs_by_lineage$sample_by_lineage_count) + + ggplot(data = all_avg_abs_by_lineage, mapping = aes(x = reorder(lineage, -lineage_loss_avg), y = lineage_loss_avg, fill = Dataset)) + + geom_bar(stat = "identity", position = position_dodge()) + + # geom_errorbar(aes(ymin = lineage_loss_avg - lineage_loss_sd, ymax = lineage_loss_avg + lineage_loss_sd), width = 0.2, position = position_dodge(0.9)) + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + geom_hline(yintercept = mean(ctrp_data$abs_loss), linetype="dashed", color = "red") + + # geom_text(aes(10, mean(ctrp_data$abs_loss),label = mean(ctrp_data$abs_loss), vjust = -1)) + + geom_hline(yintercept = mean(gdsc1_data$abs_loss), linetype="dashed", color = "green") + + geom_hline(yintercept = mean(gdsc2_data$abs_loss), linetype="dashed", color = "blue") + + xlab("Cell Line Lineage + # training datapoints") + ylab("Mean Absolute Loss") + + # scale_y_discrete(limits = c("0.001", "0.002")) + + scale_y_continuous(breaks = sort(c(seq(0, 0.25, length.out=10), + c(mean(ctrp_data$abs_loss), + mean(gdsc1_data$abs_loss), + mean(gdsc2_data$abs_loss)) + ))) + + # ggtitle(label = "Full DRP Mean Absolute Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on All 3") + ggtitle(label = title, subtitle = subtitle) + # ggsave(filename = paste0(plot_path, "drug_prot_train_CTRPv2_test_All_avg_Abs_by_lineage.pdf"), device = "pdf") + ggsave(filename = paste0(plot_path, plot_name), device = "pdf") + +} + + +plot_loss_by_lineage <- function(path, + plot_path, cell_line_data, title, subtitle, plot_filename, display_plot = FALSE) { + + cv_results <- fread(paste0(path, "CV_results.csv")) + cv_valid_loss <- cv_results[V1 == "avg_cv_valid_loss"][,2] + cv_valid_loss <- format(round(cv_valid_loss, 4), nsmall = 4) + ctrp_data <- fread(paste0(path, "CTRP_AAC_MORGAN_1024_inference_results.csv")) + ctrp_data <- merge(ctrp_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + # gdsc1_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_1024_inference_results.csv")) + # gdsc1_data <- merge(gdsc1_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + # gdsc2_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_1024_inference_results.csv")) + # gdsc2_data <- merge(gdsc2_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + + # ctrp_data[, abs_loss := sqrt(MSE_loss)] + ctrp_data[, lineage_loss_avg := mean(RMSE_loss), by = "lineage"] + ctrp_data[, lineage_loss_sd := sd(RMSE_loss), by = "lineage"] + ctrp_data[, sample_by_lineage_count := .N, by = "lineage"] + ctrp_avg_abs_by_lineage <- unique(ctrp_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + ctrp_avg_abs_by_lineage$Dataset <- "CTRPv2" + + # gdsc1_data[, lineage_loss_avg := mean(RMSE_loss), by = "lineage"] + # gdsc1_data[, lineage_loss_sd := sd(RMSE_loss), by = "lineage"] + # gdsc1_data[, sample_by_lineage_count := .N, by = "lineage"] + # gdsc1_avg_abs_by_lineage <- unique(gdsc1_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + # gdsc1_avg_abs_by_lineage$Dataset <- "GDSC1" + # + # gdsc2_data[, lineage_loss_avg := mean(RMSE_loss), by = "lineage"] + # gdsc2_data[, lineage_loss_sd := sd(RMSE_loss), by = "lineage"] + # gdsc2_data[, sample_by_lineage_count := .N, by = "lineage"] + # gdsc2_avg_abs_by_lineage <- unique(gdsc2_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + # gdsc2_avg_abs_by_lineage$Dataset <- "GDSC2" + + # all_avg_abs_by_lineage <- rbindlist(list(ctrp_avg_abs_by_lineage, gdsc1_avg_abs_by_lineage, gdsc2_avg_abs_by_lineage)) + all_avg_abs_by_lineage <- ctrp_avg_abs_by_lineage + all_avg_abs_by_lineage <- merge(all_avg_abs_by_lineage, unique(ctrp_data[, c("lineage", "sample_by_lineage_count")])) + all_avg_abs_by_lineage$lineage <- paste0(all_avg_abs_by_lineage$lineage, ", n = ", all_avg_abs_by_lineage$sample_by_lineage_count) + + g <- ggplot(data = all_avg_abs_by_lineage, mapping = aes(x = reorder(lineage, -lineage_loss_avg), y = lineage_loss_avg, fill = Dataset)) + + geom_bar(stat = "identity", position = position_dodge()) + + # geom_errorbar(aes(ymin = lineage_loss_avg - lineage_loss_sd, ymax = lineage_loss_avg + lineage_loss_sd), width = 0.2, position = position_dodge(0.9)) + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + geom_hline(yintercept = mean(ctrp_data$lineage_loss_avg), linetype="dashed", color = "red") + + # geom_text(aes(10, mean(ctrp_data$abs_loss),label = mean(ctrp_data$abs_loss), vjust = -1)) + + # geom_hline(yintercept = mean(gdsc1_data$lineage_loss_avg), linetype="dashed", color = "green") + + # geom_hline(yintercept = mean(gdsc2_data$lineage_loss_avg), linetype="dashed", color = "blue") + + xlab("Cell Line Lineage + # testing datapoints") + ylab("RMSE Loss") + + # scale_y_discrete(limits = c("0.001", "0.002")) + + scale_y_continuous(breaks = sort(c(seq(0, 0.25, length.out=10), + c(mean(ctrp_data$lineage_loss_avg) + # mean(gdsc1_data$lineage_loss_avg), + # mean(gdsc2_data$lineage_loss_avg) + ) + ))) + + # ggtitle(label = "Full DRP Mean Absolute Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on All 3") + ggtitle(label = title, subtitle = paste0(subtitle, "\nAverage Cross-Validation RMSE Loss:", as.character(cv_valid_loss))) + if (display_plot == TRUE) { + print(g) + } + # ggsave(filename = paste0(plot_path, "drug_prot_train_CTRPv2_test_All_avg_Abs_by_lineage.pdf"), device = "pdf") + ggsave(plot = g, filename = paste0(plot_path, plot_filename), device = "pdf") + +} +# plot_path <- "Plots/DRP/Lineage_Results/" +cell_line_data <- fread("Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv") + + +plot_grid_mono <- function(model_type, data_type, split, bottleneck, drug_type) { + path <- paste0("Data/CV_Results/HyperOpt_DRP_", model_type, "_drug", data_type, + "_HyperOpt_DRP_CTRP_1024_", model_type, "_EncoderTrain_Split_", split, "_", bottleneck, "_NoTCGAPretrain_MergeBySum_RMSELoss_", drug_type, "_drug", data_type, "/") + # HyperOpt_DRP_ResponseOnly_drug_rppa_HyperOpt_DRP_CTRP_1024_ResponseOnly_EncoderTrain_Split_DRUG_NoBottleNeck_NoTCGAPretrain_MergeBySum_RMSELoss_OneHotDrugs_drug_rppa + if (split == "CELL_LINE") { + plot_path <- "Plots/DRP/Split_by_Cell/" + plot_split_name <- "SplitByCell" + title_split_name <- "Cell Line" + } else if (split == "DRUG") { + plot_path <- "Plots/DRP/Split_by_Drug/" + plot_split_name <- "SplitByDrug" + title_split_name <- "Drug" + + } else { + plot_path <- "Plots/DRP/Split_by_Both/" + plot_split_name <- "SplitByBoth" + title_split_name <- "Cell Line & Drug" + + } + if (bottleneck == "WithBottleNeck") { + subtitle_bottleneck_name <- "With Bottleneck" + + } else { + subtitle_bottleneck_name <- "No Bottleneck" + } + + dir.create(plot_path) + plot_filename <- paste0(model_type, "_drug", data_type, "_train_CTRPv2_test_All_RMSE_", plot_split_name, "_", bottleneck, "_", drug_type, ".pdf") + title <- paste0("DRP RMSE (Validation by Strict ", title_split_name, " Splitting)") + subtitle <- paste0("Model Type: ", model_type, " | Data: Drug + ", gsub("_", "", toupper(data_type)), " | Drug Type: ", drug_type, " | Trained on CTRPv2 | Tested on All 3 | Hyper-Param Search: ", subtitle_bottleneck_name) + plot_loss_by_lineage(path = path, plot_path = plot_path, cell_line_data = cell_line_data, title = title, subtitle = subtitle, plot_filename = plot_filename) + +} + +model_types <- c("FullModel", "ResponseOnly") +data_types <- c("mut", "exp", "prot", "mirna", "metab", "rppa", "hist") +data_types <- paste0("_", data_types) +data_types <- c("", data_types) +# splits <- c("CELL_LINE", "DRUG", "BOTH") +splits <- c("DRUG") +# bottlenecking <- c("WithBottleNeck", "NoBottleNeck") +bottlenecking <- c("NoBottleNeck") +drug_types <- c("OneHotDrugs") +grid <- expand.grid(model_types, data_types, splits, bottlenecking, drug_types) + +for (i in 1:nrow(grid)) { + plot_grid_mono(model_type = grid[i, 1], data_type = grid[i, 2], split = grid[i, 3], bottleneck = grid[i, 4], drug_type = grid[i, 5]) +} + +# ==== Drug + Mut ==== + +# Split by Cell, No Bottleneck +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_mut_HyperOpt_DRP_CTRP_FullModel_EncoderTrain_Split_CELL_LINE_NoBottleNeck_WithTCGAPretrain_drug_mut/" +plot_path <- "Plots/DRP/Split_by_Cell/" +dir.create(plot_path) +plot_filename <- "drug_prot_train_CTRPv2_test_All_MAE_SplitByCell_NoBottleneck.pdf" +subtitle <- "Data: Drug + Mutational | Trained on CTRPv2 | Tested on All 3 | Hyper-Param Search: No Bottleneck" +title <- "Full DRP Mean Absolute Loss (Validation by Strict Cell Line Splitting)" +plot_loss_by_lineage(path = path, plot_path = plot_path, cell_line_data = cell_line_data, title = title, subtitle = subtitle, plot_filename = plot_filename) + +# Split by Cell, With Bottleneck +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_mut_HyperOpt_DRP_CTRP_FullModel_EncoderTrain_Split_CELL_LINE_WithBottleNeck_WithTCGAPretrain_drug_mut/" +plot_path <- "Plots/DRP/Split_by_Cell/" +dir.create(plot_path) +plot_filename <- "drug_prot_train_CTRPv2_test_All_MAE_SplitByCell_WithBottleneck.pdf" +subtitle <- "Data: Drug + Mutational | Trained on CTRPv2 | Tested on All 3 | Hyper-Param Search: With Bottleneck" +title <- "Full DRP Mean Absolute Loss (Validation by Strict Cell Line Splitting)" +plot_loss_by_lineage(path = path, plot_path = plot_path, cell_line_data = cell_line_data, title = title, subtitle = subtitle, plot_filename = plot_filename) +# ============ +# Split by Drug, No Bottleneck +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_mut_HyperOpt_DRP_CTRP_FullModel_EncoderTrain_Split_DRUG_NoBottleNeck_WithTCGAPretrain_drug_mut/" +plot_path <- "Plots/DRP/Split_by_Drug/" +dir.create(plot_path) +plot_filename <- "drug_prot_train_CTRPv2_test_All_MAE_SplitByDrug_NoBottleneck.pdf" +subtitle <- "Data: Drug + Mutational | Trained on CTRPv2 | Tested on All 3 | Hyper-Param Search: No Bottleneck" +title <- "Full DRP Mean Absolute Loss (Validation by Strict Drug Splitting)" +plot_loss_by_lineage(path = path, plot_path = plot_path, cell_line_data = cell_line_data, title = title, subtitle = subtitle, plot_filename = plot_filename) + +# Split by Drug, With Bottleneck +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_mut_HyperOpt_DRP_CTRP_FullModel_EncoderTrain_Split_DRUG_WithBottleNeck_WithTCGAPretrain_drug_mut/" +plot_path <- "Plots/DRP/Split_by_Drug/" +dir.create(plot_path) +plot_filename <- "drug_prot_train_CTRPv2_test_All_MAE_SplitByDrug_WithBottleneck.pdf" +subtitle <- "Data: Drug + Mutational | Trained on CTRPv2 | Tested on All 3 | Hyper-Param Search: With Bottleneck" +title <- "Full DRP Mean Absolute Loss (Validation by Strict Drug Splitting)" +plot_loss_by_lineage(path = path, plot_path = plot_path, cell_line_data = cell_line_data, title = title, subtitle = subtitle, plot_filename = plot_filename) +# ============ +# Split by Drug, No Bottleneck +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_mut_HyperOpt_DRP_CTRP_FullModel_EncoderTrain_Split_BOTH_NoBottleNeck_WithTCGAPretrain_drug_mut/" +plot_path <- "Plots/DRP/Split_by_Both/" +dir.create(plot_path) +plot_filename <- "drug_prot_train_CTRPv2_test_All_MAE_SplitByBoth_NoBottleneck.pdf" +subtitle <- "Data: Drug + Mutational | Trained on CTRPv2 | Tested on All 3 | Hyper-Param Search: No Bottleneck" +title <- "Full DRP Mean Absolute Loss (Validation by Strict Cell Line & Drug Splitting)" +plot_loss_by_lineage(path = path, plot_path = plot_path, cell_line_data = cell_line_data, title = title, subtitle = subtitle, plot_filename = plot_filename) + +# Split by Drug, With Bottleneck +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_mut_HyperOpt_DRP_CTRP_FullModel_EncoderTrain_Split_BOTH_WithBottleNeck_WithTCGAPretrain_drug_mut/" +plot_path <- "Plots/DRP/Split_by_Both/" +dir.create(plot_path) +plot_filename <- "drug_prot_train_CTRPv2_test_All_MAE_SplitByBoth_NoBottleneck.pdf" +subtitle <- "Data: Drug + Mutational | Trained on CTRPv2 | Tested on All 3 | Hyper-Param Search: With Bottleneck" +title <- "Full DRP Mean Absolute Loss (Validation by Strict Cell Line & Drug Splitting)" +plot_loss_by_lineage(path = path, plot_path = plot_path, cell_line_data = cell_line_data, title = title, subtitle = subtitle, plot_filename = plot_filename) + + +# +plot_path <- "Plots/DRP/Split_by_Drug/" +plot_path <- "Plots/DRP/Split_by_Both/" +plot_name <- "" +# Plot average MSE by lineage Full (drug + prot) ================================ +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_prot_CTRP_Full/" + +### GDSC1 ==== +cur_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on GDSC1") +ggsave(filename = paste0(plot_path, "drug_prot_full_train_CTRPv2_test_GDSC1_avg_MSE_by_lineage.pdf"), device = "pdf") + + +### GDSC2 ==== +cur_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on GDSC2") +ggsave(filename = paste0(plot_path, "drug_prot_full_train_CTRPv2_test_GDSC2_avg_MSE_by_lineage.pdf"), device = "pdf") + + +### CTRPv2 ==== +cur_data <- fread(paste0(path, "CTRP_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage) + + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on CTRPv2") +ggsave(filename = paste0(plot_path, "drug_prot_train_CTRPv2_test_CTRP_avg_MSE_by_lineage.pdf"), device = "pdf") + + +### All side by side (lineage bar plot) ==== +ctrp_data <- fread(paste0(path, "CTRP_AAC_MORGAN_512_inference_results.csv")) +ctrp_data <- merge(ctrp_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") +gdsc1_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) +gdsc1_data <- merge(gdsc1_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") +gdsc2_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) +gdsc2_data <- merge(gdsc2_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +ctrp_data[, abs_loss := sqrt(MSE_loss)] +ctrp_data[, lineage_loss_avg := mean(abs_loss), by = "lineage"] +ctrp_data[, lineage_loss_sd := sd(abs_loss), by = "lineage"] +ctrp_data[, sample_by_lineage_count := .N, by = "lineage"] +ctrp_avg_abs_by_lineage <- unique(ctrp_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) +ctrp_avg_abs_by_lineage$Dataset <- "CTRPv2" + +gdsc1_data[, abs_loss := sqrt(MSE_loss)] +gdsc1_data[, lineage_loss_avg := mean(abs_loss), by = "lineage"] +gdsc1_data[, lineage_loss_sd := sd(abs_loss), by = "lineage"] +gdsc1_data[, sample_by_lineage_count := .N, by = "lineage"] +gdsc1_avg_abs_by_lineage <- unique(gdsc1_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) +gdsc1_avg_abs_by_lineage$Dataset <- "GDSC1" + +gdsc2_data[, abs_loss := sqrt(MSE_loss)] +gdsc2_data[, lineage_loss_avg := mean(abs_loss), by = "lineage"] +gdsc2_data[, lineage_loss_sd := sd(abs_loss), by = "lineage"] +gdsc2_data[, sample_by_lineage_count := .N, by = "lineage"] +gdsc2_avg_abs_by_lineage <- unique(gdsc2_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) +gdsc2_avg_abs_by_lineage$Dataset <- "GDSC2" + +all_avg_abs_by_lineage <- rbindlist(list(ctrp_avg_abs_by_lineage, gdsc1_avg_abs_by_lineage, gdsc2_avg_abs_by_lineage)) +all_avg_abs_by_lineage <- merge(all_avg_abs_by_lineage, unique(ctrp_data[, c("lineage", "sample_by_lineage_count")])) +all_avg_abs_by_lineage$lineage <- paste0(all_avg_abs_by_lineage$lineage, ", n = ", all_avg_abs_by_lineage$sample_by_lineage_count) + +ggplot(data = all_avg_abs_by_lineage, mapping = aes(x = reorder(lineage, -lineage_loss_avg), y = lineage_loss_avg, fill = Dataset)) + + geom_bar(stat = "identity", position = position_dodge()) + + # geom_errorbar(aes(ymin = lineage_loss_avg - lineage_loss_sd, ymax = lineage_loss_avg + lineage_loss_sd), width = 0.2, position = position_dodge(0.9)) + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + geom_hline(yintercept = mean(ctrp_data$abs_loss), linetype="dashed", color = "red") + + # geom_text(aes(10, mean(ctrp_data$abs_loss),label = mean(ctrp_data$abs_loss), vjust = -1)) + + geom_hline(yintercept = mean(gdsc1_data$abs_loss), linetype="dashed", color = "green") + + geom_hline(yintercept = mean(gdsc2_data$abs_loss), linetype="dashed", color = "blue") + + xlab("Cell Line Lineage + # training datapoints") + ylab("Average Absolute Loss") + + # scale_y_discrete(limits = c("0.001", "0.002")) + + scale_y_continuous(breaks = sort(c(seq(0, 0.12, length.out=5), + c(mean(ctrp_data$abs_loss), + mean(gdsc1_data$abs_loss), + mean(gdsc2_data$abs_loss)) + ))) + + ggtitle(label = "Full DRP Mean Absolute Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on All 3") +ggsave(filename = paste0(plot_path, "drug_prot_train_CTRPv2_test_All_avg_Abs_by_lineage.pdf"), device = "pdf") + + +### All side by side (cell line dot plot) ==== +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_prot_CTRP_Full/" + +ctrp_data <- fread(paste0(path, "CTRP_AAC_MORGAN_512_inference_results.csv")) +ctrp_data <- merge(ctrp_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") +gdsc1_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) +gdsc1_data <- merge(gdsc1_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") +gdsc2_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) +gdsc2_data <- merge(gdsc2_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +ctrp_data[, lineage_loss_sd := sd(MSE_loss), by = "lineage"] +ctrp_data[, cell_line_loss_avg := mean(MSE_loss), by = "cell_name"] +ctrp_avg_mse_by_cell_line <- unique(ctrp_data[, c("cell_name", "lineage", "cell_line_loss_avg", "lineage_loss_sd")]) +ctrp_avg_mse_by_cell_line$Dataset <- "CTRPv2" + +gdsc1_data[, lineage_loss_sd := sd(MSE_loss), by = "lineage"] +gdsc1_data[, cell_line_loss_avg := mean(MSE_loss), by = "cell_name"] +gdsc1_avg_mse_by_cell_line <- unique(gdsc1_data[, c("cell_name", "lineage", "cell_line_loss_avg", "lineage_loss_sd")]) +gdsc1_avg_mse_by_cell_line$Dataset <- "GDSC1" + +gdsc2_data[, lineage_loss_sd := sd(MSE_loss), by = "lineage"] +gdsc2_data[, cell_line_loss_avg := mean(MSE_loss), by = "cell_name"] +gdsc2_avg_mse_by_cell_line <- unique(gdsc2_data[, c("cell_name", "lineage", "cell_line_loss_avg", "lineage_loss_sd")]) +gdsc2_avg_mse_by_cell_line$Dataset <- "GDSC2" + +all_avg_mse_by_cell_line <- rbindlist(list(ctrp_avg_mse_by_cell_line, gdsc1_avg_mse_by_cell_line, gdsc2_avg_mse_by_cell_line)) +ggplot(data = all_avg_mse_by_cell_line, mapping = aes(x = cell_name, y = cell_line_loss_avg, group = Dataset)) + + facet_wrap(vars(lineage), scales = "free") + + # geom_bar(stat = "identity", position = position_dodge()) + + # geom_dotplot(binaxis = 'y', stackdir = 'center') + + geom_boxplot() + + geom_errorbar(aes(ymin = cell_line_loss_avg - lineage_loss_sd, ymax = cell_line_loss_avg + lineage_loss_sd), width = 0.2, position = position_dodge(0.9)) + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + geom_hline(yintercept = mean(ctrp_data$MSE_loss), linetype="dashed", color = "red") + + # geom_text(aes(10, mean(ctrp_data$MSE_loss),label = mean(ctrp_data$MSE_loss), vjust = -1)) + + geom_hline(yintercept = mean(gdsc1_data$MSE_loss), linetype="dashed", color = "green") + + geom_hline(yintercept = mean(gdsc2_data$MSE_loss), linetype="dashed", color = "blue") + + xlab("Cell Line Lineage + # training datapoints") + ylab("Average MSE Loss") + + # scale_y_discrete(limits = c("0.001", "0.002")) + + scale_y_continuous(breaks = sort(c(seq(0, 0.12, length.out=5), + c(mean(ctrp_data$MSE_loss), + mean(gdsc1_data$MSE_loss), + mean(gdsc2_data$MSE_loss)) + ))) + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on All 3") +ggsave(filename = paste0(plot_path, "drug_prot_train_CTRPv2_test_All_avg_MSE_by_cell_line.pdf"), device = "pdf") + +# Plot average MSE by lineage Full Response Only + EncoderTrain + PreTrain (drug + exp) ================================ +path = "Data/CV_Results/HyperOpt_DRP_ResponseOnly_drug_exp_CTRP_EncoderTrain_PreTrain/" + +### GDSC1 +cur_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "ResponseOnly DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on GDSC1") +ggsave(filename = paste0(plot_path, "drug_prot_full_train_CTRPv2_test_GDSC1_avg_MSE_by_lineage.pdf"), device = "pdf") + + +### GDSC2 +cur_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on GDSC2") +ggsave(filename = paste0(plot_path, "drug_prot_full_train_CTRPv2_test_GDSC2_avg_MSE_by_lineage.pdf"), device = "pdf") + + +### CTRPv2 +cur_data <- fread(paste0(path, "CTRP_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on CTRPv2") +ggsave(filename = paste0(plot_path, "drug_prot_train_CTRPv2_test_CTRP_avg_MSE_by_lineage.pdf"), device = "pdf") + + +# Plot average MSE by lineage (drug + exp) ================================ +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_exp_CTRP_Full/" +# GDSC1 +cur_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Gene Expression | Trained on CTRPv2 | Tested on GDSC1") +ggsave(filename = paste0(plot_path, "drug_exp_train_CTRPv2_test_GDSC1_avg_MSE_by_lineage.pdf"), device = "pdf") + +# Plot average MSE by lineage Full (drug + exp + prot) ================================ +path = "Data/CV_Results/HyperOpt_DRP_FullModel_drug_exp_prot_CTRP_Full/" +### GDSC1 ==== +cur_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Gene Expression + Proteomics | Trained on CTRPv2 | Tested on GDSC1") +ggsave(filename = paste0(plot_path, "drug_exp_prot_full_train_CTRPv2_test_GDSC1_avg_MSE_by_lineage.pdf"), device = "pdf") + + +# GDSC2 +cur_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Gene Expression + Proteomics | Trained on CTRPv2 | Tested on GDSC2") +ggsave(filename = paste0(plot_path, "drug_exp_prot_full_train_CTRPv2_test_GDSC2_avg_MSE_by_lineage.pdf"), device = "pdf") + +# CTRPv2 +cur_data <- fread(paste0(path, "CTRP_AAC_MORGAN_512_inference_results.csv")) +cur_data <- merge(cur_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +cur_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +avg_mse_by_lineage <- unique(cur_data[, c("lineage", "lineage_loss_avg")]) +ggplot(data = avg_mse_by_lineage)+ + geom_bar(mapping = aes(x = reorder(lineage,-lineage_loss_avg), y = lineage_loss_avg), stat = "identity") + + theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + + geom_hline(yintercept = mean(cur_data$MSE_loss), linetype="dashed", color = "red") + + xlab("Cell Line Lineage") + ylab("Average MSE Loss") + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Gene Expression + Proteomics | Trained on CTRPv2 | Tested on CTRPv2") +ggsave(filename = paste0(plot_path, "drug_exp_prot_full_train_CTRPv2_test_CTRP_avg_MSE_by_lineage.pdf"), device = "pdf") + + +### All side by side ==== +ctrp_data <- fread(paste0(path, "CTRP_AAC_MORGAN_512_inference_results.csv")) +ctrp_data <- merge(ctrp_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") +gdsc1_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_512_inference_results.csv")) +gdsc1_data <- merge(gdsc1_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") +gdsc2_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) +gdsc2_data <- merge(gdsc2_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + +ctrp_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +ctrp_avg_mse_by_lineage <- unique(ctrp_data[, c("lineage", "lineage_loss_avg")]) +ctrp_data[, sample_by_lineage_count := .N, by = "lineage"] +ctrp_avg_mse_by_lineage$Dataset <- "CTRPv2" + +gdsc1_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +gdsc1_avg_mse_by_lineage <- unique(gdsc1_data[, c("lineage", "lineage_loss_avg")]) +gdsc1_avg_mse_by_lineage$Dataset <- "GDSC1" + +gdsc2_data[, lineage_loss_avg := mean(MSE_loss), by = "lineage"] +gdsc2_avg_mse_by_lineage <- unique(gdsc2_data[, c("lineage", "lineage_loss_avg")]) +gdsc2_avg_mse_by_lineage$Dataset <- "GDSC2" + +all_avg_mse_by_lineage <- rbindlist(list(ctrp_avg_mse_by_lineage, gdsc1_avg_mse_by_lineage, gdsc2_avg_mse_by_lineage)) +all_avg_mse_by_lineage <- merge(all_avg_mse_by_lineage, unique(ctrp_data[, c("lineage", "sample_by_lineage_count")])) +all_avg_mse_by_lineage$lineage <- paste0(all_avg_mse_by_lineage$lineage, ", n = ", all_avg_mse_by_lineage$sample_by_lineage_count) + +ggplot(data = all_avg_mse_by_lineage) + + geom_bar(mapping = aes(x = reorder(lineage, -lineage_loss_avg), y = lineage_loss_avg, fill = Dataset), stat = "identity", position = "dodge") + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + geom_hline(yintercept = mean(ctrp_data$MSE_loss), linetype="dashed", color = "red") + + # geom_text(aes(10, mean(ctrp_data$MSE_loss),label = mean(ctrp_data$MSE_loss), vjust = -1)) + + geom_hline(yintercept = mean(gdsc1_data$MSE_loss), linetype="dashed", color = "green") + + geom_hline(yintercept = mean(gdsc2_data$MSE_loss), linetype="dashed", color = "blue") + + xlab("Cell Line Lineage + # training datapoints") + ylab("Average MSE Loss") + + # scale_y_discrete(limits = c("0.001", "0.002")) + + scale_y_continuous(breaks = sort(c(seq(0, 0.12, length.out=5), + c(mean(ctrp_data$MSE_loss), + mean(gdsc1_data$MSE_loss), + mean(gdsc2_data$MSE_loss)) + ))) + + ggtitle(label = "Full DRP Mean MSE Loss by Cell Line Lineage", subtitle = "Data: Drug + Expression + Proteomics | Trained on CTRPv2 | Tested on All 3") +ggsave(filename = paste0(plot_path, "drug_exp_prot_train_CTRPv2_test_All_avg_MSE_by_lineage.pdf"), device = "pdf") +