--- a +++ b/R/loss_by_lineage.R @@ -0,0 +1,83 @@ +# loss_by_lineage.R +require(data.table) +require(ggplot2) + + +plot_loss_by_lineage <- function(path, + plot_path, cell_line_data, title, subtitle, plot_filename, display_plot = FALSE) { + + cv_results <- fread(paste0(path, "CV_results.csv")) + cv_valid_loss <- cv_results[V1 == "avg_cv_valid_loss"][,2] + cv_valid_loss <- format(round(cv_valid_loss, 4), nsmall = 4) + ctrp_data <- fread(paste0(path, "CTRP_AAC_MORGAN_1024_inference_results.csv")) + ctrp_data <- merge(ctrp_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + # gdsc1_data <- fread(paste0(path, "GDSC1_AAC_MORGAN_1024_inference_results.csv")) + # gdsc1_data <- merge(gdsc1_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + # gdsc2_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_1024_inference_results.csv")) + # gdsc2_data <- merge(gdsc2_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") + + # ctrp_data[, abs_loss := sqrt(MSE_loss)] + ctrp_data[, lineage_loss_avg := mean(RMSE_loss), by = "lineage"] + ctrp_data[, lineage_loss_sd := sd(RMSE_loss), by = "lineage"] + ctrp_data[, sample_by_lineage_count := .N, by = "lineage"] + ctrp_avg_abs_by_lineage <- unique(ctrp_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + ctrp_avg_abs_by_lineage$Dataset <- "CTRPv2" + + # gdsc1_data[, lineage_loss_avg := mean(RMSE_loss), by = "lineage"] + # gdsc1_data[, lineage_loss_sd := sd(RMSE_loss), by = "lineage"] + # gdsc1_data[, sample_by_lineage_count := .N, by = "lineage"] + # gdsc1_avg_abs_by_lineage <- unique(gdsc1_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + # gdsc1_avg_abs_by_lineage$Dataset <- "GDSC1" + # + # gdsc2_data[, lineage_loss_avg := mean(RMSE_loss), by = "lineage"] + # gdsc2_data[, lineage_loss_sd := sd(RMSE_loss), by = "lineage"] + # gdsc2_data[, sample_by_lineage_count := .N, by = "lineage"] + # gdsc2_avg_abs_by_lineage <- unique(gdsc2_data[, c("lineage", "lineage_loss_avg", "lineage_loss_sd")]) + # gdsc2_avg_abs_by_lineage$Dataset <- "GDSC2" + + # all_avg_abs_by_lineage <- rbindlist(list(ctrp_avg_abs_by_lineage, gdsc1_avg_abs_by_lineage, gdsc2_avg_abs_by_lineage)) + all_avg_abs_by_lineage <- ctrp_avg_abs_by_lineage + all_avg_abs_by_lineage <- merge(all_avg_abs_by_lineage, unique(ctrp_data[, c("lineage", "sample_by_lineage_count")])) + all_avg_abs_by_lineage$lineage <- paste0(all_avg_abs_by_lineage$lineage, ", n = ", all_avg_abs_by_lineage$sample_by_lineage_count) + + g <- ggplot(data = all_avg_abs_by_lineage, mapping = aes(x = reorder(lineage, -lineage_loss_avg), y = lineage_loss_avg, fill = Dataset)) + + geom_bar(stat = "identity", position = position_dodge()) + + # geom_errorbar(aes(ymin = lineage_loss_avg - lineage_loss_sd, ymax = lineage_loss_avg + lineage_loss_sd), width = 0.2, position = position_dodge(0.9)) + + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + + geom_hline(yintercept = mean(ctrp_data$lineage_loss_avg), linetype="dashed", color = "red") + + # geom_text(aes(10, mean(ctrp_data$abs_loss),label = mean(ctrp_data$abs_loss), vjust = -1)) + + # geom_hline(yintercept = mean(gdsc1_data$lineage_loss_avg), linetype="dashed", color = "green") + + # geom_hline(yintercept = mean(gdsc2_data$lineage_loss_avg), linetype="dashed", color = "blue") + + xlab("Cell Line Lineage + # testing datapoints") + ylab("RMSE Loss") + + # scale_y_discrete(limits = c("0.001", "0.002")) + + scale_y_continuous(breaks = sort(c(seq(0, 0.25, length.out=10), + c(mean(ctrp_data$lineage_loss_avg) + # mean(gdsc1_data$lineage_loss_avg), + # mean(gdsc2_data$lineage_loss_avg) + ) + ))) + + # ggtitle(label = "Full DRP Mean Absolute Loss by Cell Line Lineage", subtitle = "Data: Drug + Proteomics | Trained on CTRPv2 | Tested on All 3") + ggtitle(label = title, subtitle = paste0(subtitle, "\nAverage Cross-Validation RMSE Loss:", as.character(cv_valid_loss))) + if (display_plot == TRUE) { + print(g) + } + # ggsave(filename = paste0(plot_path, "drug_prot_train_CTRPv2_test_All_avg_Abs_by_lineage.pdf"), device = "pdf") + ggsave(plot = g, filename = paste0(plot_path, plot_filename), device = "pdf") + +} + + +model_types <- c("FullModel", "ResponseOnly") +data_types <- c("mut", "exp", "prot", "mirna", "metab", "rppa", "hist") +data_types <- paste0("_", data_types) +data_types <- c("", data_types) +# splits <- c("CELL_LINE", "DRUG", "BOTH") +splits <- c("DRUG") +# bottlenecking <- c("WithBottleNeck", "NoBottleNeck") +bottlenecking <- c("NoBottleNeck") +drug_types <- c("OneHotDrugs") +grid <- expand.grid(model_types, data_types, splits, bottlenecking, drug_types) + +for (i in 1:nrow(grid)) { + plot_grid_mono(model_type = grid[i, 1], data_type = grid[i, 2], split = grid[i, 3], bottleneck = grid[i, 4], drug_type = grid[i, 5]) +}