Diff of /R/job_grid.R [000000] .. [c3b4f8]

Switch to unified view

a b/R/job_grid.R
1
# ${TRAIN_FILE}${GPU_PER_TRIAL}${NUM_SAMPLES}${N_FOLDS}${DATA_TYPES}${NAME_TAG}${SUBSET_TYPE}${STRATIFY}${BOTTLENECK}${FULL}${ENCODER_TRAIN}
2
require(utils)
3
require(data.table)
4
all_combos <- c(
5
  # "gnndrug mut exp",
6
  # "gnndrug cnv exp",
7
  # "gnndrug exp prot",
8
  # "gnndrug exp rppa",
9
  # "gnndrug exp hist",
10
  # "gnndrug exp metab",
11
  # "gnndrug exp mirna",
12
  # "gnndrug prot rppa",
13
  # "gnndrug cnv prot",
14
  "gnndrug mut cnv",
15
  # "gnndrug mirna metab",
16
  # "gnndrug metab hist",
17
  # "gnndrug metab rppa",
18
  
19
  # "drug cnv exp metab"
20
  
21
  # "gnndrug cnv exp prot",
22
  # "gnndrug cnv exp prot mirna metab hist rppa",
23
  # "gnndrug exp rppa hist prot",
24
  # "gnndrug exp prot hist rppa",
25
  # "gnndrug exp prot rppa",
26
  # "gnndrug exp rppa prot",
27
  # "gnndrug mirna metab hist rppa",
28
  # "gnndrug mut cnv exp prot"
29
  # "gnndrug mut cnv exp prot mirna metab hist rppa"
30
  
31
  # "gnndrug mut cnv exp",
32
  
33
  # "gnndrug cnv exp prot metab"
34
  # "drug cnv exp prot metab"
35
  
36
  # "drug mut cnv exp",
37
  # "drug mut cnv exp prot",
38
  # "drug cnv exp prot",
39
  # "drug exp rppa prot",
40
  # "drug exp rppa hist prot",
41
  # "drug mirna metab hist rppa",
42
  # "drug mut cnv exp prot mirna metab hist rppa",
43
  # "drug cnv exp prot mirna metab hist rppa"
44
  
45
  # "gnndrug mut prot",
46
  # "gnndrug mut mirna",
47
  # "gnndrug mut metab",
48
  # "gnndrug mut hist",
49
  # "gnndrug mut rppa",
50
  # "gnndrug cnv mirna",
51
  # "gnndrug cnv metab",
52
  # "gnndrug cnv hist",
53
  # "gnndrug cnv rppa",
54
  # "gnndrug prot mirna",
55
  # "gnndrug prot metab",
56
  # "gnndrug prot hist",
57
  "gnndrug mirna hist",
58
  "gnndrug mirna rppa",
59
  "gnndrug hist rppa",
60
  
61
  # "drug mut prot",
62
  # "drug mut mirna",
63
  # "drug mut metab",
64
  # "drug mut hist",
65
  # "drug mut rppa",
66
  # "drug cnv mirna",
67
  "drug cnv metab",
68
  # "drug cnv hist",
69
  # "drug cnv rppa",
70
  # "drug prot mirna",
71
  # "drug prot metab",
72
  # "drug prot hist",
73
  # "drug mirna hist",
74
  # "drug mirna rppa",
75
  # "drug hist rppa",
76
  # 
77
  # "drug mut exp",
78
  # "drug cnv exp",
79
  # "drug exp prot",
80
  # "drug exp rppa",
81
  # "drug exp hist",
82
  # "drug exp metab",
83
  # "drug exp mirna",
84
  # "drug prot rppa",
85
  # "drug cnv prot",
86
  # "drug mut cnv",
87
  # "drug mirna metab",
88
  # "drug metab hist",
89
  # "drug metab rppa"
90
  
91
  
92
  # "gnndrug exp",
93
  "gnndrug mut",
94
  "gnndrug cnv",
95
  "gnndrug prot",
96
  "gnndrug mirna"
97
  # "gnndrug metab",
98
  # "gnndrug hist",
99
  # "gnndrug rppa"
100
  # 
101
  # "drug exp",
102
  # "drug mut",
103
  # "drug cnv",
104
  # "drug prot",
105
  # "drug mirna",
106
  # "drug metab"
107
  # "drug hist",
108
  # "drug rppa"
109
  
110
  # "gnndrug mut exp hist",
111
  # "gnndrug cnv exp hist",
112
  # "gnndrug exp prot hist",
113
  # "gnndrug exp mirna hist",
114
  # "gnndrug exp metab hist",
115
  # "gnndrug exp hist rppa"
116
  # "gnndrug cnv exp metab"
117
  
118
  )
119
# ${TRAIN_FILE} ${N_FOLDS} ${DATA_TYPES} ${NAME_TAG} ${SUBSET_TYPE} ${STRATIFY} ${FULL} ${ENCODER_TRAIN}
120
121
all_grids <- vector(mode = "list")
122
for (combo in all_combos) {
123
  ENCODER_TRAIN <- "1"
124
  NUM_SAMPLES <- "40"
125
  if (grepl("cnv", combo)) {
126
    GPU_PER_TRIAL <- "1"
127
  } else if (combo == "gnndrug prot" | combo == "drug prot") {
128
    GPU_PER_TRIAL <- "0.5"
129
    # NUM_SAMPLES <- "32"
130
  } else if (combo  == "gnndrug exp" |
131
             combo == "gnndrug exp prot" |
132
             combo == "gnndrug mut" |
133
             combo == "drug mut" |
134
             combo  == "drug exp" | combo == "drug exp prot") {
135
    GPU_PER_TRIAL <- "0.5"
136
    # NUM_SAMPLES <- "8"
137
  } else if (combo == "gnndrug mirna" |
138
             combo == "gnndrug metab" |
139
             combo == "gnndrug hist" | combo == "gnndrug rppa" |
140
             combo == "drug mirna" |
141
             combo == "drug metab" |
142
             combo == "drug hist" | combo == "drug rppa") {
143
    GPU_PER_TRIAL <- "0.2"
144
    # NUM_SAMPLES <- "40"
145
  } else {
146
    GPU_PER_TRIAL <- "1"
147
    # NUM_SAMPLES <- "8"
148
  }
149
  
150
  # LOSS_TYPE = "rmse"
151
  # loss_type_name = "RMSELoss"
152
  # LOSS_TYPE = "weighted_rmse"
153
  # loss_type_name = "WeightedRMSELoss"
154
  
155
  for (LOSS_TYPE in c("rmse", "weighted_rmse")) {
156
    if (LOSS_TYPE == "rmse") {
157
      loss_type_name = "RMSELoss"
158
    } else {
159
      loss_type_name = "WeightedRMSELoss"
160
    }
161
    for (ONE_HOT_DRUGS in c("0", "1")) {
162
      if (ONE_HOT_DRUGS == "1") {
163
        one_hot_drugs_name = "OneHotDrugs"
164
      } else {
165
        if (grepl("gnndrug", combo) == TRUE) {
166
          one_hot_drugs_name = "GNNDrugs"
167
        } else {
168
          one_hot_drugs_name = "MorganDrugs"
169
        }
170
      }
171
      for (MERGE_METHOD in c("sum", "concat", "lmf")) {
172
        if (MERGE_METHOD == "sum") {
173
          merge_method_name = "MergeBySum"
174
        } else if (MERGE_METHOD == "concat") {
175
          merge_method_name = "MergeByConcat"
176
        } else if (MERGE_METHOD == "lmf") {
177
          merge_method_name = "MergeByLMF"
178
        }
179
        for (BOTTLENECK in c("0", "1")) {
180
          # for (TRAIN_FILE in c("CTRP_AAC_MORGAN_1024.hdf")) {
181
          # for (TRAIN_FILE in c("CTRP_AAC_SMILES.txt", "GDSC1_AAC_SMILES.txt", "GDSC2_AAC_SMILES.txt")) {
182
          # for (TRAIN_FILE in c("CTRP_AAC_MORGAN_1024.hdf", "GDSC1_AAC_MORGAN_1024.hdf", "GDSC2_AAC_MORGAN_1024.hdf")) {
183
          # for (TRAIN_FILE in c("CTRP_AAC_SMILES.txt")) {
184
          if (grepl("gnn", combo)) {
185
            TRAIN_FILE = "CTRP_AAC_SMILES.txt"
186
          } else {
187
            TRAIN_FILE = "CTRP_AAC_MORGAN_1024.hdf"
188
          }
189
          train_set_name <- "CTRP"
190
          for (SUBSET_TYPE in c("cell_line", "drug", "lineage", "both")) {
191
            if (SUBSET_TYPE == "both") {
192
              N_FOLDS <- "5"
193
            } else {
194
              N_FOLDS <- "5"
195
            }
196
            for (FULL in c("0", "1")) {
197
              if (FULL == "1") {
198
                cur_pretrain <- "0"
199
                # train_set_name <- gsub("\\_.+", "", TRAIN_FILE)
200
                full <- "FullModel"
201
                encoder <- "EncoderTrain"
202
                split <- toupper(SUBSET_TYPE)
203
                data_types <- gsub(" ", "_", combo)
204
                if (BOTTLENECK == "0") {
205
                  bottleneck <- "NoBottleNeck"
206
                } else {
207
                  bottleneck <- "WithBottleNeck"
208
                }
209
                if (cur_pretrain == "0") {
210
                  pretrain <- "NoTCGAPretrain"
211
                } else {
212
                  pretrain <- "WithTCGAPretrain"
213
                }
214
                
215
                NAME_TAG <-
216
                  paste(
217
                    "HyperOpt_DRP",
218
                    train_set_name,
219
                    full,
220
                    encoder,
221
                    "Split",
222
                    split,
223
                    bottleneck,
224
                    pretrain,
225
                    merge_method_name,
226
                    loss_type_name,
227
                    one_hot_drugs_name,
228
                    data_types,
229
                    sep = "_"
230
                  )
231
                
232
                cur_grid <- data.table(
233
                  TRAIN_FILE = TRAIN_FILE,
234
                  GPU_PER_TRIAL = GPU_PER_TRIAL,
235
                  NUM_SAMPLES = NUM_SAMPLES,
236
                  N_FOLDS = N_FOLDS,
237
                  DATA_TYPES = combo,
238
                  NAME_TAG = NAME_TAG,
239
                  SUBSET_TYPE = SUBSET_TYPE,
240
                  STRATIFY = "1",
241
                  BOTTLENECK = BOTTLENECK,
242
                  FULL = FULL,
243
                  ENCODER_TRAIN = ENCODER_TRAIN,
244
                  PRETRAIN = cur_pretrain,
245
                  MERGE_METHOD = MERGE_METHOD,
246
                  LOSS_TYPE = LOSS_TYPE,
247
                  ONE_HOT_DRUGS = ONE_HOT_DRUGS
248
                )
249
                all_grids <- append(all_grids, list(cur_grid))
250
                
251
              } else {
252
                if (grepl("cnv", combo) | grepl("exp", combo)) {
253
                  for (PRETRAIN in c("0", "1")) {
254
                    cur_encoder_train <- "1"
255
                    encoder <- "EncoderTrain"
256
                    # train_set_name <- gsub("\\_.+", "", TRAIN_FILE)
257
                    full <- "ResponseOnly"
258
                    split <- toupper(SUBSET_TYPE)
259
                    data_types <- gsub(" ", "_", combo)
260
                    if (BOTTLENECK == "0") {
261
                      bottleneck <- "NoBottleNeck"
262
                    } else {
263
                      bottleneck <- "WithBottleNeck"
264
                    }
265
                    if (PRETRAIN == "0") {
266
                      pretrain <- "NoTCGAPretrain"
267
                    } else {
268
                      pretrain <- "WithTCGAPretrain"
269
                    }
270
                    
271
                    NAME_TAG <-
272
                      paste(
273
                        "HyperOpt_DRP",
274
                        train_set_name,
275
                        full,
276
                        encoder,
277
                        "Split",
278
                        split,
279
                        bottleneck,
280
                        pretrain,
281
                        merge_method_name,
282
                        loss_type_name,
283
                        one_hot_drugs_name,
284
                        data_types,
285
                        sep = "_"
286
                      )
287
                    
288
                    cur_grid <- data.table(
289
                      TRAIN_FILE = TRAIN_FILE,
290
                      GPU_PER_TRIAL = GPU_PER_TRIAL,
291
                      NUM_SAMPLES = NUM_SAMPLES,
292
                      N_FOLDS = N_FOLDS,
293
                      DATA_TYPES = combo,
294
                      NAME_TAG = NAME_TAG,
295
                      SUBSET_TYPE = SUBSET_TYPE,
296
                      STRATIFY = "1",
297
                      BOTTLENECK = BOTTLENECK,
298
                      FULL = FULL,
299
                      ENCODER_TRAIN = cur_encoder_train,
300
                      PRETRAIN = PRETRAIN,
301
                      MERGE_METHOD = MERGE_METHOD,
302
                      LOSS_TYPE = LOSS_TYPE,
303
                      ONE_HOT_DRUGS = ONE_HOT_DRUGS
304
                    )
305
                    all_grids <- append(all_grids, list(cur_grid))
306
                    
307
                  }
308
                } else {
309
                  cur_encoder_train <- "1"
310
                  encoder <- "EncoderTrain"
311
                  # train_set_name <- gsub("\\_.+", "", TRAIN_FILE)
312
                  full <- "ResponseOnly"
313
                  split <- toupper(SUBSET_TYPE)
314
                  data_types <- gsub(" ", "_", combo)
315
                  if (BOTTLENECK == "0") {
316
                    bottleneck <- "NoBottleNeck"
317
                  } else {
318
                    bottleneck <- "WithBottleNeck"
319
                  }
320
                  cur_pretrain <- "0"
321
                  pretrain <- "NoTCGAPretrain"
322
                  
323
                  NAME_TAG <-
324
                    paste(
325
                      "HyperOpt_DRP",
326
                      train_set_name,
327
                      full,
328
                      encoder,
329
                      "Split",
330
                      split,
331
                      bottleneck,
332
                      pretrain,
333
                      merge_method_name,
334
                      loss_type_name,
335
                      one_hot_drugs_name,
336
                      data_types,
337
                      sep = "_"
338
                    )
339
                  
340
                  cur_grid <- data.table(
341
                    TRAIN_FILE = TRAIN_FILE,
342
                    GPU_PER_TRIAL = GPU_PER_TRIAL,
343
                    NUM_SAMPLES = NUM_SAMPLES,
344
                    N_FOLDS = N_FOLDS,
345
                    DATA_TYPES = combo,
346
                    NAME_TAG = NAME_TAG,
347
                    SUBSET_TYPE = SUBSET_TYPE,
348
                    STRATIFY = "1",
349
                    BOTTLENECK = BOTTLENECK,
350
                    FULL = FULL,
351
                    ENCODER_TRAIN = cur_encoder_train,
352
                    PRETRAIN = cur_pretrain,
353
                    MERGE_METHOD = MERGE_METHOD,
354
                    LOSS_TYPE = LOSS_TYPE,
355
                    ONE_HOT_DRUGS = ONE_HOT_DRUGS
356
                  )
357
                  all_grids <- append(all_grids, list(cur_grid))
358
                }
359
              }
360
            }
361
          }
362
        }
363
      }
364
    }
365
  }
366
}
367
all_param_combos <- rbindlist(all_grids)
368
369
370
# ==== Bi-Modal split by DRUG (ALL) ====
371
combos <- all_param_combos[PRETRAIN == 0 & SUBSET_TYPE == "drug" & MERGE_METHOD == "concat" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
372
# combos <- all_param_combos[PRETRAIN == 0 & SUBSET_TYPE == "drug" & MERGE_METHOD == "lmf" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
373
combos <- all_param_combos[PRETRAIN == 0 & SUBSET_TYPE == "drug" & MERGE_METHOD == "concat" & LOSS_TYPE == "rmse" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
374
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
375
# fwrite(combos, "DRP/slurm/grids/drp_cv_split_by_DRUG_grid.csv", col.names = F)
376
# fwrite(combos, "DRP/slurm/grids/drp_cv_lmf_split_by_DRUG_grid.csv", col.names = F)
377
# fwrite(combos, "DRP/slurm/grids/drp_validate_lmf_split_by_DRUG_grid.csv", col.names = F)
378
fwrite(combos, "DRP/slurm/grids/drp_validate_split_by_DRUG_grid.csv", col.names = F)
379
380
# ==== Bi-Modal split by CELL_LINE (ALL) ====
381
combos <- all_param_combos[PRETRAIN == 0 & SUBSET_TYPE == "cell_line" & (MERGE_METHOD == "concat" | MERGE_METHOD == "lmf") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
382
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
383
fwrite(combos, "DRP/slurm/grids/drp_cv_split_by_CELL_LINE_grid.csv", col.names = F)
384
combos <- all_param_combos[PRETRAIN == 0 & SUBSET_TYPE == "cell_line" & (MERGE_METHOD == "concat" | MERGE_METHOD == "lmf") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
385
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
386
# fwrite(combos, "DRP/slurm/grids/drp_validate_split_by_CELL_LINE_grid.csv", col.names = F)
387
388
# ==== (GDSC) Bi-modal with GNN + LMF ====
389
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
390
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
391
fwrite(combos, "DRP/slurm/drp_opt_gdsc_grid.csv", col.names = F)
392
393
# ==== Bi-modal Baseline (Morgan + Concat + RMSE) ====
394
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
395
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
396
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_grid.csv", col.names = F)
397
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & LOSS_TYPE == "rmse" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
398
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
399
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_cell_line_drug_grid.csv", col.names = F)
400
401
# ==== Bi-modal Baseline + LDS (Morgan + Concat + WeightedRMSE) ====
402
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
403
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
404
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_grid.csv", col.names = F)
405
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
406
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
407
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
408
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_lds_cell_line_drug_grid.csv", col.names = F)
409
410
# ==== Bi-modal Baseline + LMF (Morgan + LMF + RMSE) ====
411
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0 & LOSS_TYPE == "rmse"]
412
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
413
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_lmf_grid.csv", col.names = F)
414
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
415
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0 & LOSS_TYPE == "rmse"]
416
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
417
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_lmf_cell_line_drug_grid.csv", col.names = F)
418
419
# ==== Bi-modal Baseline + LMF (Morgan + LMF + RMSE) ====
420
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "sum") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0 & LOSS_TYPE == "rmse"]
421
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
422
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_sum_grid.csv", col.names = F)
423
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
424
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "sum") & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0 & LOSS_TYPE == "rmse"]
425
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
426
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_sum_cell_line_drug_grid.csv", col.names = F)
427
428
# ==== Bi-modal Baseline + GNN (GNN + concat + RMSE) ====
429
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0 & LOSS_TYPE == "rmse"]
430
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
431
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_gnn_grid.csv", col.names = F)
432
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
433
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0 & LOSS_TYPE == "rmse"]
434
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
435
fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_gnn_cell_line_drug_grid.csv", col.names = F)
436
# fwrite(combos, "DRP/slurm/grids/drp_opt_baseline_with_gnn_cell_line_drug_grid_extra.csv", col.names = F)
437
438
439
# ==== Bi-modal with GNN + LMF but no LDS ====
440
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
441
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
442
fwrite(combos, "DRP/slurm/drp_opt_noLDS_grid.csv", col.names = F)
443
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
444
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
445
fwrite(combos, "DRP/slurm/drp_opt_noLDS_cell_line_drug_grid.csv", col.names = F)
446
447
# ==== Bi-modal GNN + Concatenation (non-LMF) ====
448
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "weighted_rmse" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
449
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
450
fwrite(combos, "DRP/slurm/grids/drp_opt_concat_grid.csv", col.names = F)
451
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
452
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
453
fwrite(combos, "DRP/slurm/grids/drp_opt_concat_cell_line_drug_grid.csv", col.names = F)
454
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
455
# combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
456
# fwrite(combos, "DRP/slurm/drp_opt_concat_drug_grid.csv", col.names = F)
457
458
# ==== Bi-modal GNN + Sum (non-LMF) ====
459
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "sum") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
460
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
461
fwrite(combos, "DRP/slurm/drp_opt_sum_grid.csv", col.names = F)
462
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "sum") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
463
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
464
fwrite(combos, "DRP/slurm/grids/drp_opt_sum_cell_line_drug_grid.csv", col.names = F)
465
466
# ==== Bi-modal GNN + LMF + LDS (trifecta) ====
467
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
468
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
469
fwrite(combos, "DRP/slurm/grids/drp_opt_bi_lmf_lds_grid.csv", col.names = F)
470
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
471
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
472
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
473
fwrite(combos, "DRP/slurm/grids/drp_opt_bi_lmf_lds_cell_line_drug_grid.csv", col.names = F)
474
475
# ==== Bi-modal GNN + LMF without LDS (trifecta - LDS) ====
476
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "rmse" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
477
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
478
fwrite(combos, "DRP/slurm/grids/drp_opt_bi_trifecta_without_lds_grid.csv", col.names = F)
479
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
480
481
# ==== Bi-modal LDS + GNN without LMF (trifecta - LMF) ====
482
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & LOSS_TYPE == "weighted_rmse" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
483
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
484
fwrite(combos, "DRP/slurm/grids/drp_opt_bi_trifecta_without_lds_grid.csv", col.names = F)
485
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
486
487
# ==== Bi-modal LMF + LDS without GNN ====
488
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" &
489
                             SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
490
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
491
fwrite(combos, "DRP/slurm/grids/drp_opt_morgan_grid.csv", col.names = F)
492
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & (SUBSET_TYPE == "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
493
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
494
fwrite(combos, "DRP/slurm/grids/drp_opt_morgan_cell_line_drug_grid.csv", col.names = F)
495
496
# ==== Bi-modal Trifecta ====
497
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
498
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
499
fwrite(combos, "DRP/slurm/grids/drp_opt_bimodal_trifecta_grid.csv", col.names = F)
500
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
501
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
502
fwrite(combos, "DRP/slurm/grids/drp_opt_bimodal_trifecta_cell_line_drug_grid.csv", col.names = F)
503
504
# ==== Bi-Modal Bottleneck (Cell Line Splitting/Grouping) ====
505
baseline_combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" &
506
                                      TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE == "cell_line" &
507
                                      BOTTLENECK == 1 & FULL == 1 & ONE_HOT_DRUGS == 0]
508
baseline_combos <- baseline_combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
509
fwrite(baseline_combos, "DRP/slurm/grids/drp_opt_bimodal_baseline_bottleneck_cell_line_grid.csv", col.names = F)
510
511
trifecta_combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" &
512
                                      TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "cell_line" &
513
                                      BOTTLENECK == 1 & FULL == 1 & ONE_HOT_DRUGS == 0]
514
trifecta_combos <- trifecta_combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
515
fwrite(trifecta_combos, "DRP/slurm/grids/drp_opt_bimodal_trifecta_bottleneck_cell_line_grid.csv", col.names = F)
516
517
518
# ==== Tri-modal Trifecta (initial) ====
519
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
520
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
521
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_trifecta_other_grid.csv", col.names = F)
522
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & DATA_TYPES %like% "gnn" & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "cell_line" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
523
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
524
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_trifecta_other_cell_line_drug_grid.csv", col.names = F)
525
526
# ==== Tri-modal Trifecta (remainders) ====
527
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
528
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
529
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_trifecta_grid.csv", col.names = F)
530
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & (SUBSET_TYPE == "cell_line" | SUBSET_TYPE == "cell_line") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
531
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
532
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_trifecta_cell_line_drug_grid.csv", col.names = F)
533
534
# ==== Tri-modal Trifecta, split by lineage ====
535
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "lineage" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
536
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
537
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_trifecta_lineage_grid.csv", col.names = F)
538
539
# ==== Tri-modal baseline (remainders) ====
540
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
541
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
542
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_baseline_grid.csv", col.names = F)
543
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
544
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
545
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_baseline_cell_line_drug_grid.csv", col.names = F)
546
547
# ==== Tri-modal baseline (remainders) ====
548
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
549
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
550
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_baseline_grid.csv", col.names = F)
551
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
552
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
553
fwrite(combos, "DRP/slurm/grids/drp_opt_trimodal_baseline_cell_line_drug_grid.csv", col.names = F)
554
555
# ==== Tri-Modal Bottleneck (Cell Line Splitting/Grouping) ====
556
baseline_combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" &
557
                                      TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE == "cell_line" &
558
                                      BOTTLENECK == 1 & FULL == 1 & ONE_HOT_DRUGS == 0]
559
baseline_combos <- baseline_combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
560
fwrite(baseline_combos, "DRP/slurm/grids/drp_opt_trimodal_baseline_bottleneck_cell_line_grid.csv", col.names = F)
561
562
trifecta_combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" &
563
                                      TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE == "cell_line" &
564
                                      BOTTLENECK == 1 & FULL == 1 & ONE_HOT_DRUGS == 0]
565
trifecta_combos <- trifecta_combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
566
fwrite(trifecta_combos, "DRP/slurm/grids/drp_opt_trimodal_trifecta_bottleneck_cell_line_grid.csv", col.names = F)
567
568
# EXP_HIST
569
# MIRNA_RPPA
570
# ==== Multi-modal Trifecta with EXP_HIST ====
571
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
572
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
573
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_exp_hist_trifecta_grid.csv", col.names = F)
574
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") &  LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
575
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
576
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_exp_hist_trifecta_cell_line_drug_grid.csv", col.names = F)
577
# ==== Multi-modal Trifecta with CNV_EXP_METAB ====
578
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
579
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
580
combos$GPU_PER_TRIAL <- 0.5
581
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_cnv_exp_metab_trifecta_grid.csv", col.names = F)
582
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") &  LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
583
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
584
combos$GPU_PER_TRIAL <- 0.5
585
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_cnv_exp_metab_trifecta_cell_line_drug_grid.csv", col.names = F)
586
587
# ==== Multi-modal Trifecta with CNV_EXP_PROT_METAB ====
588
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
589
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
590
combos$GPU_PER_TRIAL <- 1
591
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_cnv_exp_metab_trifecta_grid.csv", col.names = F)
592
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") &  LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
593
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
594
combos$GPU_PER_TRIAL <- 1
595
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_cnv_exp_prot_metab_trifecta_cell_line_drug_grid.csv", col.names = F)
596
597
# ==== Multi-modal Baseline ====
598
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
599
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
600
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_baseline_grid.csv", col.names = F)
601
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE != "cell_line" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
602
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
603
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_baseline_cell_line_drug_grid.csv", col.names = F)
604
605
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
606
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
607
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_baseline_all_grid.csv", col.names = F)
608
609
# ==== Multi-modal Baseline + LMF ====
610
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
611
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
612
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_baseline_with_lmf_grid.csv", col.names = F)
613
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
614
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
615
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_baseline_with_lmf_cell_line_drug_grid.csv", col.names = F)
616
617
# ==== Multi-modal Baseline + LDS ====
618
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
619
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
620
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_baseline_with_lds_grid.csv", col.names = F)
621
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "rmse" & TRAIN_FILE == "CTRP_AAC_MORGAN_1024.hdf" & SUBSET_TYPE != "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
622
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
623
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_baseline_with_lmf_cell_line_drug_grid.csv", col.names = F)
624
625
# ==== Multi-modal GNN + LMF + LDS (trifecta) ====
626
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
627
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
628
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_trifecta_grid.csv", col.names = F)
629
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") &  LOSS_TYPE == "weighted_rmse" & TRAIN_FILE == "CTRP_AAC_SMILES.txt" & SUBSET_TYPE != "lineage" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
630
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
631
fwrite(combos, "DRP/slurm/grids/drp_opt_multimodal_trifecta_cell_line_drug_grid.csv", col.names = F)
632
633
table(all_param_combos$DATA_TYPES)
634
all_param_combos[PRETRAIN == 0]
635
all_param_combos[PRETRAIN == 1]
636
unique(all_param_combos[, .SD, .SDcols = !c("PRETRAIN")])
637
all_param_combos[PRETRAIN == 0 & FULL == 1]
638
all_param_combos[PRETRAIN == 0 & FULL == 1]
639
all_param_combos[FULL == 1]
640
table(all_param_combos[FULL == 1]$DATA_TYPES)
641
table(all_param_combos[FULL == 1 & PRETRAIN == 0]$DATA_TYPES)
642
all_param_combos[FULL == 1 & PRETRAIN == 0 & MERGE_METHOD == "concat" & SUBSET_TYPE == "drug"]
643
all_param_combos[FULL == 0 & PRETRAIN == 0 & MERGE_METHOD == "concat" & SUBSET_TYPE == "drug"]
644
645
# 2 data types including exp
646
combos <- all_param_combos[PRETRAIN == 0 & MERGE_METHOD == "sum" & SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
647
fwrite(combos, "DRP/slurm/drp_opt_grid.csv", col.names = F)
648
# unimodal + bimodal with exp + lmf + gnndrug
649
combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
650
combos <- combos[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
651
fwrite(combos, "DRP/slurm/drp_opt_grid.csv", col.names = F)
652
# fwrite(combos, "DRP/slurm/drp_opt_grid_sub.csv", col.names = F)
653
654
combos_1 <- all_param_combos[PRETRAIN == 0 & MERGE_METHOD == "sum" & SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 1]
655
combos_2 <- all_param_combos[PRETRAIN == 0 & MERGE_METHOD == "sum" & SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & DATA_TYPES == "drug cnv"]
656
combos_3 <- all_param_combos[PRETRAIN == 0 & MERGE_METHOD == "sum" & SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 1]
657
fwrite(unique(rbindlist(list(combos_1, combos_2, combos_3))), "DRP/slurm/drp_opt_grid.csv", col.names = F)
658
659
660
fwrite(all_param_combos[PRETRAIN == 0 & MERGE_METHOD == "sum" & SUBSET_TYPE == "drug" & BOTTLENECK == 0], "DRP/slurm/drp_opt_grid.csv", col.names = F)
661
fwrite(all_param_combos[PRETRAIN == 0 & MERGE_METHOD == "sum" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & ONE_HOT_DRUGS == 0], "DRP/slurm/drp_opt_grid.csv", col.names = F)
662
fwrite(all_param_combos[PRETRAIN == 0 & FULL == 0 & MERGE_METHOD == "concat" & SUBSET_TYPE == "drug" & ONE_HOT_DRUGS == 0], "DRP/slurm/drp_opt_grid.csv", col.names = F)
663
664
fwrite(all_param_combos[PRETRAIN == 0 & FULL == 1], "DRP/slurm/drp_opt_extra_grid.csv", col.names = F)
665
fwrite(all_param_combos[PRETRAIN == 0 & FULL == 1][1], "DRP/slurm/drp_opt_test_grid.csv", col.names = F)
666
fwrite(all_param_combos[PRETRAIN == 0 & FULL == 1], "DRP/slurm/drp_opt_drug_grid.csv", col.names = F)
667
668
colnames(all_param_combos)
669
670
# "TRAIN_FILE"    "GPU_PER_TRIAL" "NUM_SAMPLES"   "N_FOLDS"       "DATA_TYPES"    "NAME_TAG"      "SUBSET_TYPE"   "STRATIFY"      "BOTTLENECK"   
671
# "FULL"          "ENCODER_TRAIN" "PRETRAIN" "MERGE_METHOD"  "LOSS_TYPE"  "ONE_HOT_DRUGS"
672
# ==== CV Grid ====
673
# require(data.table)
674
# cur_opt_grid <- fread("DRP/slurm/drp_opt_grid.csv")
675
# # ${TRAIN_FILE} ${N_FOLDS}   ${DATA_TYPES}  ${NAME_TAG}  ${SUBSET_TYPE}  ${STRATIFY}  ${FULL} ${ENCODER_TRAIN}
676
# cur_cv_grid <- unique(cur_opt_grid[, c(1, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15)])
677
# fwrite(cur_cv_grid, "DRP/slurm/drp_cv_grid.csv", col.names = F)
678
# 
679
# cur_cv_grid[V6 %like% ".*ResponseOnly.*"]
680
# fwrite(cur_cv_grid[V6 %like% ".*ResponseOnly.*" & V5 != "drug cnv" & V15 == 0], "DRP/slurm/drp_cv_grid.csv", col.names = F)
681
# fwrite(cur_cv_grid[!(V6  %like% ".*ResponseOnly.*" & V5 == "drug cnv")], "DRP/slurm/drp_cv_grid.csv", col.names = F)
682
# fwrite(cur_cv_grid[!(V6  %like% ".*ResponseOnly.*" & V5 == "drug cnv") & !(V6 %like% "OneHotDrugs")], "DRP/slurm/drp_infer_grid.csv", col.names = F)
683
# 
684
# cur_cv_grid <- fread("DRP/slurm/drp_cv_grid.csv")
685
# cur_cv_grid$V1 <- gsub(pattern = "CTRP", replacement = "GDSC2", cur_cv_grid$V1)
686
# cur_cv_grid$V4 <- gsub(pattern = "CTRP", replacement = "GDSC2", cur_cv_grid$V4)
687
# 
688
# 
689
# 
690
# fwrite(cur_cv_grid, "DRP/slurm/drp_cv_grid.csv", col.names = F)
691
692
# Remaining CV Runs ====
693
cnv_metab_base <- all_param_combos[DATA_TYPES == "drug cnv metab" & PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "rmse" &
694
                               SUBSET_TYPE == "cell_line" & BOTTLENECK == 1 & FULL == 0 & ONE_HOT_DRUGS == 0]
695
cnv_sum_lds_gnn <- all_param_combos[DATA_TYPES == "gnndrug cnv" & PRETRAIN == 0 & (MERGE_METHOD == "sum") & LOSS_TYPE == "weighted_rmse" &
696
                                      SUBSET_TYPE == "cell_line" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
697
cnv_lmf_base_gnn <- all_param_combos[DATA_TYPES == "gnndrug cnv" & PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "rmse" &
698
                                      SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
699
hist_rppa_trifecta <- all_param_combos[DATA_TYPES == "gnndrug hist rppa" & PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" &
700
                                         SUBSET_TYPE %in% c("cell_line", "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
701
mirna_hist_trifecta <- all_param_combos[DATA_TYPES == "gnndrug mirna hist" & PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" &
702
                                         SUBSET_TYPE %in% c("cell_line") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
703
mirna_lmf_base_gnn <- all_param_combos[DATA_TYPES == "gnndrug mirna" & PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "rmse" &
704
                                       SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
705
mirna_rppa_trifecta <- all_param_combos[DATA_TYPES == "gnndrug mirna rppa" & PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" &
706
                                         SUBSET_TYPE %in% c("cell_line", "drug") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
707
mut_cnv_trifecta <- all_param_combos[DATA_TYPES == "gnndrug mut cnv" & PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" &
708
                                         SUBSET_TYPE %in% c("both") & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
709
mut_base_lds_gnn <- all_param_combos[DATA_TYPES == "gnndrug mut" & PRETRAIN == 0 & (MERGE_METHOD == "concat") & LOSS_TYPE == "weighted_rmse" &
710
                                       SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
711
prot_lmf_base_gnn <- all_param_combos[DATA_TYPES == "gnndrug prot" & PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "rmse" &
712
                                       SUBSET_TYPE == "drug" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
713
714
stragglers <- rbindlist(
715
  list(
716
    cnv_metab_base,
717
    cnv_sum_lds_gnn,
718
    cnv_lmf_base_gnn,
719
    hist_rppa_trifecta,
720
    mirna_hist_trifecta,
721
    mirna_lmf_base_gnn,
722
    mirna_rppa_trifecta,
723
    mut_cnv_trifecta,
724
    mut_base_lds_gnn,
725
    prot_lmf_base_gnn
726
  )
727
)
728
729
# combos <- all_param_combos[PRETRAIN == 0 & (MERGE_METHOD == "lmf") & LOSS_TYPE == "weighted_rmse" & SUBSET_TYPE == "both" & BOTTLENECK == 0 & FULL == 0 & ONE_HOT_DRUGS == 0]
730
stragglers <- stragglers[, !c("ENCODER_TRAIN", "ONE_HOT_DRUGS")]
731
fwrite(combos, "DRP/slurm/grids/drp_opt_stragglers.csv", col.names = F)