|
a |
|
b/R/interpretation_analysis.R |
|
|
1 |
# interpretation_analysis.R |
|
|
2 |
require(data.table) |
|
|
3 |
setDTthreads(8) |
|
|
4 |
require(ggfortify) |
|
|
5 |
require(umap) |
|
|
6 |
exp_path = "Data/CV_Results/HyperOpt_DRP_ResponseOnly_gnndrug_exp_HyperOpt_DRP_CTRP_ResponseOnly_EncoderTrain_Split_BOTH_NoBottleNeck_NoTCGAPretrain_MergeByLMF_WeightedRMSELoss_GNNDrugs_gnndrug_exp/" |
|
|
7 |
prot_path = "Data/CV_Results/HyperOpt_DRP_ResponseOnly_gnndrug_prot_HyperOpt_DRP_CTRP_ResponseOnly_EncoderTrain_Split_BOTH_NoBottleNeck_NoTCGAPretrain_MergeByLMF_WeightedRMSELoss_GNNDrugs_gnndrug_prot/" |
|
|
8 |
dir.create("Plots/DRP") |
|
|
9 |
dir.create("Plots/DRP/Lineage_Results") |
|
|
10 |
|
|
|
11 |
targeted_drugs <- c("Idelalisib", "Olaparib", "Venetoclax", "Crizotinib", "Regorafenib", |
|
|
12 |
"Tretinoin", "Bortezomib", "Cabozantinib", "Dasatinib", "Erlotinib", |
|
|
13 |
"Sonidegib", "Vandetanib", "Axitinib", "Ibrutinib", "Gefitinib", |
|
|
14 |
"Nilotinib", "Tamoxifen", "Bosutinib", "Pazopanib", "Lapatinib", |
|
|
15 |
"Dabrafenib", "Bexarotene", "Temsirolimus", "Belinostat", |
|
|
16 |
"Sunitinib", "Vorinostat", "Trametinib", "Fulvestrant", "Sorafenib", |
|
|
17 |
"Vemurafenib", "Alpelisib") |
|
|
18 |
|
|
|
19 |
ctrp <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt") |
|
|
20 |
|
|
|
21 |
length(targeted_drugs) |
|
|
22 |
|
|
|
23 |
length(unique(ctrp[cpd_name %in% targeted_drugs]$ccl_name)) # 842 cell lines tested with targeted drugs |
|
|
24 |
length(unique(ctrp[cpd_name %in% targeted_drugs & area_above_curve >= 0.7]$ccl_name)) # 302 of them with AAC >= 0.7 |
|
|
25 |
nrow(unique(ctrp[cpd_name %in% targeted_drugs & area_above_curve >= 0.7])) # resulting in 395 potential samples |
|
|
26 |
# Load cell line and interpretation results =============================== |
|
|
27 |
exp_data <- fread(paste0(exp_path, "integrated_gradients_results.csv")) |
|
|
28 |
prot_data <- fread(paste0(prot_path, "integrated_gradients_results.csv")) |
|
|
29 |
cell_line_data <- fread("Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv") |
|
|
30 |
# cur_data <- fread(paste0(path, "GDSC2_AAC_MORGAN_512_inference_results.csv")) |
|
|
31 |
# cur_cv <- fread(paste0(path, "CV_results.csv")) |
|
|
32 |
|
|
|
33 |
dim(cur_data) |
|
|
34 |
exp_data[1:5, 1:10] |
|
|
35 |
max(exp_data[1:5, -c(1:7)]) |
|
|
36 |
exp_data[RMSE_loss < 0.2][1:5, 1:5] |
|
|
37 |
prot_data[RMSE_loss < 0.1][1:5, 1:5] |
|
|
38 |
prot_data[RMSE_loss < 0.1][, 1:6] |
|
|
39 |
cur_data$RMSE_loss[1] |
|
|
40 |
cur_data$DeepLIFT_delta[1] |
|
|
41 |
|
|
|
42 |
exp_data <- merge(exp_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") |
|
|
43 |
prot_data <- merge(prot_data, cell_line_data[, c("stripped_cell_line_name", "lineage")], by.x = "cell_name", by.y = "stripped_cell_line_name") |
|
|
44 |
|
|
|
45 |
unique(prot_data$cpd_name) |
|
|
46 |
# cur_data[, total_drug_attrib := sum(.SD), .SDcols = drug_cols, by = ] |
|
|
47 |
setcolorder(prot_data, 'lineage') |
|
|
48 |
prot_data[lineage == "lung" & RMSE_loss < 0.3][, 1:6] |
|
|
49 |
prot_data[lineage == "lung"][, 1:6] |
|
|
50 |
setcolorder(exp_data, 'lineage') |
|
|
51 |
|
|
|
52 |
cur_data[1:5, 1:10] |
|
|
53 |
exp_data$V1 <- NULL |
|
|
54 |
prot_data$V1 <- NULL |
|
|
55 |
# drug_cols = colnames(cur_data)[7:518] |
|
|
56 |
prot_cols = colnames(prot_data)[8:ncol(prot_data)] |
|
|
57 |
exp_cols = colnames(exp_data)[8:ncol(exp_data)] |
|
|
58 |
col_types <- sapply(cur_data[, ..prot_cols], class) |
|
|
59 |
which(col_types == "character") |
|
|
60 |
unique(col_types) |
|
|
61 |
|
|
|
62 |
mean(exp_data$RMSE_loss) |
|
|
63 |
mean(prot_data$RMSE_loss) |
|
|
64 |
# cur_data[lineage %like% 'blood'][, 1:8] |
|
|
65 |
exp_data[cpd_name %like% 'Paclitaxel' & target >= 0.9 & RMSE_loss <= 0.1][, 1:8] |
|
|
66 |
prot_data[cpd_name %like% 'Paclitaxel' & target >= 0.9 & RMSE_loss <= 0.1][, 1:8] |
|
|
67 |
exp_data[cpd_name %like% 'Paclitaxel' & target >= 0.9 & RMSE_loss <= 0.1]$cell_name %in% prot_data[cpd_name %like% 'Paclitaxel' & target >= 0.9 & RMSE_loss <= 0.1]$cell_name |
|
|
68 |
cur_data[cpd_name %like% 'Paclitaxel' & cell_name == "GA10"][, 1:8] |
|
|
69 |
|
|
|
70 |
|
|
|
71 |
# Distinguish positive and negative attributions |
|
|
72 |
exp_temp <- exp_data[cpd_name %like% 'Paclitaxel' & cell_name == "697"] |
|
|
73 |
prot_temp <- prot_data[cpd_name %like% 'Paclitaxel' & cell_name == "697"] |
|
|
74 |
|
|
|
75 |
# temp <- cur_data[RMSE_loss <= 0.1] |
|
|
76 |
# temp[1:100, 1:8] |
|
|
77 |
|
|
|
78 |
prot_temp <- melt(prot_temp[1, ..prot_cols]) |
|
|
79 |
prot_pos_temp <- prot_temp[value > 0] |
|
|
80 |
top_10 <- quantile(prot_pos_temp$value, 0.9) |
|
|
81 |
quantile(prot_pos_temp$value) |
|
|
82 |
quantile(prot_pos_temp$value)[4] # %75 |
|
|
83 |
|
|
|
84 |
# Top Prots |
|
|
85 |
prot_pos_temp[value > quantile(prot_pos_temp$value)[4]] |
|
|
86 |
prot_top_5 <- prot_pos_temp[value > quantile(prot_pos_temp$value, 0.95)] |
|
|
87 |
setorder(prot_top_5, -value) |
|
|
88 |
prot_top_5$variable <- gsub("prot_", "", prot_top_5$variable) |
|
|
89 |
top_5_prots <- setNames(prot_top_5$value, prot_top_5$variable) |
|
|
90 |
|
|
|
91 |
# Bottom Prots |
|
|
92 |
# temp <- melt(temp[1, ..prot_cols]) |
|
|
93 |
neg_temp <- prot_temp[value < 0] |
|
|
94 |
bottom_5 <- neg_temp[value < quantile(neg_temp$value, 0.05)] |
|
|
95 |
bottom_5$value <- abs(bottom_5$value) |
|
|
96 |
setorder(bottom_5, -value) |
|
|
97 |
bottom_5$variable <- gsub("prot_", "", bottom_5$variable) |
|
|
98 |
bottom_5_prots <- setNames(bottom_5$value, bottom_5$variable) |
|
|
99 |
|
|
|
100 |
prot_top_5[variable %like% "Q02548"] # PAX5 for leukemia |
|
|
101 |
prot_temp[variable %like% "Q02548"] |
|
|
102 |
prot_temp[variable %like% "PAX5"] |
|
|
103 |
prot_temp[variable %like% "NBN"] |
|
|
104 |
prot_temp[variable %like% "GNB1"] |
|
|
105 |
prot_temp[variable %like% "FLT3"] |
|
|
106 |
prot_temp[variable %like% "ETV6"] |
|
|
107 |
prot_temp[variable %like% "ACTB"] |
|
|
108 |
|
|
|
109 |
prot_top_5[variable %like% "FLT3"] |
|
|
110 |
prot_top_5[variable %like% "PAX5"] |
|
|
111 |
prot_top_5[variable %like% "NBN"] |
|
|
112 |
prot_top_5[variable %like% "GNB1"] |
|
|
113 |
prot_top_5[variable %like% "ETV6"] |
|
|
114 |
prot_top_5[variable %like% "ACTB"] |
|
|
115 |
|
|
|
116 |
exp_temp <- melt(exp_temp[1, ..exp_cols]) |
|
|
117 |
exp_pos_temp <- exp_temp[value > 0] |
|
|
118 |
top_10 <- quantile(exp_pos_temp$value, 0.9) |
|
|
119 |
quantile(exp_pos_temp$value) |
|
|
120 |
quantile(exp_pos_temp$value)[4] # %75 |
|
|
121 |
exp_pos_temp[value > quantile(exp_pos_temp$value)[4]] |
|
|
122 |
exp_top_5 <- exp_pos_temp[value > quantile(exp_pos_temp$value, 0.95)] |
|
|
123 |
setorder(exp_top_5, -value) |
|
|
124 |
exp_top_5$variable <- gsub("exp_", "", exp_top_5$variable) |
|
|
125 |
top_5_exps <- setNames(exp_top_5$value, exp_top_5$variable) |
|
|
126 |
|
|
|
127 |
exp_temp[variable %like% "PAX5"] |
|
|
128 |
exp_temp[variable %like% "NBN"] |
|
|
129 |
exp_temp[variable %like% "GNB1"] |
|
|
130 |
exp_temp[variable %like% "FLT3"] |
|
|
131 |
exp_temp[variable %like% "ETV6"] |
|
|
132 |
exp_temp[variable %like% "ACTB"] |
|
|
133 |
|
|
|
134 |
exp_top_5[variable %like% "FLT3"] |
|
|
135 |
exp_top_5[variable %like% "PAX5"] |
|
|
136 |
exp_top_5[variable %like% "NBN"] |
|
|
137 |
exp_top_5[variable %like% "GNB1"] |
|
|
138 |
exp_top_5[variable %like% "ETV6"] |
|
|
139 |
exp_top_5[variable %like% "ACTB"] |
|
|
140 |
|
|
|
141 |
exp_top_5[1:10,] |
|
|
142 |
temp <- cur_data[RMSE_loss <= 0.1] |
|
|
143 |
|
|
|
144 |
temp[1, 1:8] |
|
|
145 |
temp[variable %like% "XPO1"] |
|
|
146 |
|
|
|
147 |
temp <- melt(temp[1, ..prot_cols]) |
|
|
148 |
neg_temp <- temp[value < 0] |
|
|
149 |
bottom_5 <- neg_temp[value < quantile(neg_temp$value, 0.05)] |
|
|
150 |
bottom_5$value <- abs(bottom_5$value) |
|
|
151 |
setorder(bottom_5, -value) |
|
|
152 |
bottom_5$variable <- gsub("exp_", "", bottom_5$variable) |
|
|
153 |
bottom_5_prots <- setNames(bottom_5$value, bottom_5$variable) |
|
|
154 |
|
|
|
155 |
# ==== clusterProfiler ==== |
|
|
156 |
# BiocManager::install("clusterProfiler") |
|
|
157 |
# BiocManager::install("pathview") |
|
|
158 |
# BiocManager::install("enrichplot") |
|
|
159 |
|
|
|
160 |
require(clusterProfiler) |
|
|
161 |
require(pathview) |
|
|
162 |
organism = "org.Hs.eg.db" |
|
|
163 |
# BiocManager::install(organism, character.only = TRUE) |
|
|
164 |
library(organism, character.only = TRUE) |
|
|
165 |
keytypes(get(organism)) |
|
|
166 |
# org.Hs.eg.db |
|
|
167 |
top_gse_prot <- gseGO(geneList=top_5_prots, |
|
|
168 |
ont ="ALL", |
|
|
169 |
keyType = "UNIPROT", |
|
|
170 |
# nPerm = 10000, |
|
|
171 |
minGSSize = 3, |
|
|
172 |
maxGSSize = 800, |
|
|
173 |
pvalueCutoff = 0.05, |
|
|
174 |
verbose = TRUE, |
|
|
175 |
OrgDb = get(organism), |
|
|
176 |
pAdjustMethod = "none") |
|
|
177 |
p_top_prot <- ridgeplot(top_gse_prot) + labs(x = "enrichment distribution") + ggtitle("Top 5% Protein Attributions GSE", |
|
|
178 |
subtitle = "Cell-line 697 (lymphoblastic leukemia) + Paclitaxel\nTarget: 0.97, Predicted: 0.94") |
|
|
179 |
ggsave("Plots/Interpretation/IntegratedGradients/GSE/gnndrug_prot_697_Paclitaxel_GSE_top_5.pdf", p_top_prot, |
|
|
180 |
width = 10, units = "in") |
|
|
181 |
|
|
|
182 |
|
|
|
183 |
bottom_gse_prot <- gseGO(geneList=bottom_5_prots, |
|
|
184 |
ont ="ALL", |
|
|
185 |
keyType = "UNIPROT", |
|
|
186 |
# nPerm = 10000, |
|
|
187 |
minGSSize = 3, |
|
|
188 |
maxGSSize = 800, |
|
|
189 |
pvalueCutoff = 0.05, |
|
|
190 |
verbose = TRUE, |
|
|
191 |
OrgDb = get(organism), |
|
|
192 |
pAdjustMethod = "none") |
|
|
193 |
p_bottom_prot <- ridgeplot(bottom_gse_prot) + labs(x = "enrichment distribution") + ggtitle("Bottom 5% Protein Attributions GSE", |
|
|
194 |
subtitle = "Cell-line 697 (lymphoblastic leukemia) + Paclitaxel\nTarget: 0.97, Predicted: 0.94") |
|
|
195 |
ggsave("Plots/Interpretation/IntegratedGradients/GSE/gnndrug_prot_697_Paclitaxel_GSE_bottom_5.pdf", p_bottom_prot, |
|
|
196 |
width = 20, units = "in") |
|
|
197 |
|
|
|
198 |
require(cowplot) |
|
|
199 |
cowplot::plot_grid(p_top_prot, p_bottom_prot, ncol = 2) |
|
|
200 |
dir.create("Plots/Interpretation") |
|
|
201 |
dir.create("Plots/Interpretation/IntegratedGradients") |
|
|
202 |
dir.create("Plots/Interpretation/IntegratedGradients/GSE") |
|
|
203 |
ggsave("Plots/Interpretation/IntegratedGradients/GSE/gnndrug_prot_697_Paclitaxel_GSE.pdf", width = 20, units = "in") |
|
|
204 |
|
|
|
205 |
|
|
|
206 |
gse_exp <- gseGO(geneList=top_5_exps, |
|
|
207 |
ont ="ALL", |
|
|
208 |
keyType = "SYMBOL", |
|
|
209 |
nPerm = 10000, |
|
|
210 |
minGSSize = 3, |
|
|
211 |
maxGSSize = 800, |
|
|
212 |
pvalueCutoff = 0.05, |
|
|
213 |
verbose = TRUE, |
|
|
214 |
OrgDb = get(organism), |
|
|
215 |
pAdjustMethod = "none") |
|
|
216 |
p_top_exp <- ridgeplot(gse_exp) + labs(x = "enrichment distribution") + ggtitle("Top 5% RNA-Seq Attributions GSE") |
|
|
217 |
|
|
|
218 |
require(cowplot) |
|
|
219 |
cowplot::plot_grid(p_top_prot, p_top_exp, ncol = 2) |
|
|
220 |
dir.create("Plots/Interpretation") |
|
|
221 |
dir.create("Plots/Interpretation/IntegratedGradients") |
|
|
222 |
dir.create("Plots/Interpretation/IntegratedGradients/GSE") |
|
|
223 |
ggsave("Plots/Interpretation/IntegratedGradients/GSE/gnndrug_exp_5637_leptomycin_b_GSE.pdf", width = 20, units = "in") |
|
|
224 |
ggsave("Plots/Interpretation/IntegratedGradients/GSE/gnndrug_exp_vs_prot_697_paclitaxel_GSE.pdf", width = 20, units = "in") |
|
|
225 |
max(cur_data$MSE_loss) |
|
|
226 |
min(cur_data$MSE_loss) |
|
|
227 |
mean(cur_data$MSE_loss) |
|
|
228 |
quantile(cur_data$MSE_loss) |
|
|
229 |
|
|
|
230 |
# Which lineages are easier to learn compared to others? |
|
|
231 |
easy_samples <- cur_data[MSE_loss < quantile(cur_data$MSE_loss)[4]][, 1:6] |
|
|
232 |
hard_samples <- cur_data[MSE_loss > quantile(cur_data$MSE_loss)[4]][, 1:6] |
|
|
233 |
easy_samples$type <- "easy" |
|
|
234 |
hard_samples$type <- "hard" |
|
|
235 |
easy_hard <- rbindlist(list(easy_samples[, c("lineage", "type")], hard_samples[, c("lineage", "type")])) |
|
|
236 |
ggplot(data = easy_hard) + geom_bar(mapping = aes(x = lineage, fill = type), stat = "count", position = "stack") + |
|
|
237 |
theme(axis.text.x = element_text(angle = 45, hjust = 1)) |
|
|
238 |
|
|
|
239 |
# easy_hard <- within(easy_hard, type <- factor(type, levels = names(sort(table(type), decreasing = T)))) |
|
|
240 |
ggplot(data = easy_hard) + geom_bar(mapping = aes(x = reorder(lineage,lineage, |
|
|
241 |
function(x)-length(x)), fill = type)) + |
|
|
242 |
theme(axis.text.x = element_text(angle = 45, hjust = 1), axis.text.y = element_text()) + |
|
|
243 |
xlab("Cell Line Lineage") + ylab("Cell Line x Drug Count") |
|
|
244 |
|
|
|
245 |
# cur_data[, total_drug_attrib := sum(.SD), .SDcols = drug_cols, by = ] |
|
|
246 |
quantile(cur_data[2, ..drug_cols]) |
|
|
247 |
max(cur_data[2, ..drug_cols]) |
|
|
248 |
min(cur_data[2, ..drug_cols]) |
|
|
249 |
|
|
|
250 |
|
|
|
251 |
|
|
|
252 |
# Add max/min for each attribute for each data type |
|
|
253 |
cur_data[, max_drug := max(.SD), .SDcols = drug_cols, by = c("cell_name", "cpd_name")] |
|
|
254 |
cur_data[, min_drug := min(.SD), .SDcols = drug_cols, by = c("cell_name", "cpd_name")] |
|
|
255 |
cur_data[, max_prot := max(.SD), .SDcols = prot_cols, by = c("cell_name", "cpd_name")] |
|
|
256 |
cur_data[, min_prot := min(.SD), .SDcols = prot_cols, by = c("cell_name", "cpd_name")] |
|
|
257 |
|
|
|
258 |
cur_data[, "max_drug"] |
|
|
259 |
cur_data[, "min_drug"] |
|
|
260 |
cur_data[, "min_prot"] |
|
|
261 |
cur_data[, "max_prot"] |
|
|
262 |
|
|
|
263 |
# Plot histogram encompassing all positions of the drug data |
|
|
264 |
|
|
|
265 |
plot(cur_data[2, ..drug_cols]) |
|
|
266 |
|
|
|
267 |
|
|
|
268 |
|
|
|
269 |
pca_res <- prcomp(cur_data[, ..drug_cols], scale. = TRUE) |
|
|
270 |
umap_drug <- umap(cur_data[, ..drug_cols]) |
|
|
271 |
autoplot(pca_res, data = cur_data[, c("MSE_loss", "lineage", drug_cols), with = F], colour = "MSE_loss") |
|
|
272 |
autoplot(pca_res, data = cur_data[, c("MSE_loss", "lineage", drug_cols), with = F], colour = "lineage") |
|
|
273 |
|
|
|
274 |
cur_data[, ..prot_cols][,1] |
|
|
275 |
|
|
|
276 |
pca_prot <- prcomp(cur_data[, ..prot_cols], scale. = TRUE) |
|
|
277 |
autoplot(pca_prot, data = cur_data[, c("MSE_loss", "lineage", prot_cols), with = F], colour = "lineage") |
|
|
278 |
autoplot(pca_prot, data = cur_data[, c("MSE_loss", "lineage", prot_cols), with = F], colour = "MSE_loss") |