Diff of /R/Testing_Comparison.R [000000] .. [c3b4f8]

Switch to unified view

a b/R/Testing_Comparison.R
1
# Testing_Comparison.R
2
require(data.table)
3
require(Metrics)
4
require(stringr)
5
require(ggplot2)
6
Metrics::
7
rsq <- function (x, y) {cor(x, y) ^ 2}
8
9
all_full_evals <- list.files("Full_Model_Testing_Results/", full.names = T, pattern = "GDSC2")
10
11
all_full_metrics <- data.table(data_used = NULL, training_type = NULL, length_of_testing_data = NULL, MSE = NULL,
12
                               RMSE = NULL, MSLE = NULL, RSQ = NULL, Pearson = NULL)
13
14
for (filename in all_full_evals) {
15
  cur_eval <- fread(filename)
16
  cur_data <- str_replace(strsplit(basename(filename), "GDSC2")[[1]][1], "-", "_")
17
  cur_results <- data.table(data_used = cur_data,
18
                            training_type = "Full",
19
                            length_of_testing_data = nrow(cur_eval),
20
                            MSE = mse(cur_eval$actual_target, cur_eval$predicted_target),
21
                            RMSE = rmse(cur_eval$actual_target, cur_eval$predicted_target),
22
                            MSLE = msle(cur_eval$actual_target, cur_eval$predicted_target),
23
                            RSQ = rsq(cur_eval$actual_target, cur_eval$predicted_target),
24
                            Pearson = cor(cur_eval$actual_target, cur_eval$predicted_target, method = "pearson"))
25
  all_full_metrics <- rbind(all_full_metrics, cur_results)
26
}
27
28
all_full_metrics_long = melt.data.table(all_full_metrics[, c(1,2,4)], id.vars = c("data_used", "training_type"), variable.name = "Metric", value.name = "Loss")
29
ggplot(data = all_full_metrics_long) +
30
  geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric, fill = Metric), position = "dodge", stat = "identity") +
31
  theme(axis.text.x = element_text(angle = -45, hjust = 0, size = 16))
32
33
34
35
all_bottleneck_evals <- list.files("BottleNeck_Model_Testing_Results/", full.names = T, pattern = "GDSC2")
36
all_bottleneck_metrics <- data.table(data_used = NULL, training_type = NULL, length_of_testing_data = NULL, MSE = NULL, RMSE = NULL, MSLE = NULL, RSQ = NULL)
37
38
for (filename in all_bottleneck_evals) {
39
  cur_eval <- fread(filename)
40
  cur_data <- str_replace(strsplit(basename(filename), "GDSC2")[[1]][1], "-", "_")
41
  cur_results <- data.table(data_used = cur_data,
42
                            training_type = "BottleNeck",
43
                            length_of_testing_data = nrow(cur_eval),
44
                            MSE = mse(cur_eval$actual_target, cur_eval$predicted_target),
45
                            RMSE = rmse(cur_eval$actual_target, cur_eval$predicted_target),
46
                            MSLE = msle(cur_eval$actual_target, cur_eval$predicted_target),
47
                            RSQ = rsq(cur_eval$actual_target, cur_eval$predicted_target))
48
  all_bottleneck_metrics <- rbind(all_bottleneck_metrics, cur_results)
49
}
50
51
all_bottleneck_metrics_long = melt.data.table(all_bottleneck_metrics[, c(1,2,4)], id.vars = c("data_used", "training_type"), variable.name = "Metric", value.name = "Loss")
52
53
# ggplot(data = all_bottleneck_metrics_long) +
54
#   geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric, fill = Metric), position = "dodge", stat = "identity") +
55
#   theme(axis.text.x = element_text(angle = -45, hjust = 0, size = 16))
56
57
58
all_tests <- rbind(all_full_metrics_long, all_bottleneck_metrics_long)
59
ggplot(data = all_tests) +
60
  geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric), position = "dodge", stat = "identity") +
61
  theme(axis.text.x = element_text(angle = -90, hjust = 0, size = 16)) +
62
  facet_wrap(vars(training_type))