--- a +++ b/R/Testing_Comparison.R @@ -0,0 +1,62 @@ +# Testing_Comparison.R +require(data.table) +require(Metrics) +require(stringr) +require(ggplot2) +Metrics:: +rsq <- function (x, y) {cor(x, y) ^ 2} + +all_full_evals <- list.files("Full_Model_Testing_Results/", full.names = T, pattern = "GDSC2") + +all_full_metrics <- data.table(data_used = NULL, training_type = NULL, length_of_testing_data = NULL, MSE = NULL, + RMSE = NULL, MSLE = NULL, RSQ = NULL, Pearson = NULL) + +for (filename in all_full_evals) { + cur_eval <- fread(filename) + cur_data <- str_replace(strsplit(basename(filename), "GDSC2")[[1]][1], "-", "_") + cur_results <- data.table(data_used = cur_data, + training_type = "Full", + length_of_testing_data = nrow(cur_eval), + MSE = mse(cur_eval$actual_target, cur_eval$predicted_target), + RMSE = rmse(cur_eval$actual_target, cur_eval$predicted_target), + MSLE = msle(cur_eval$actual_target, cur_eval$predicted_target), + RSQ = rsq(cur_eval$actual_target, cur_eval$predicted_target), + Pearson = cor(cur_eval$actual_target, cur_eval$predicted_target, method = "pearson")) + all_full_metrics <- rbind(all_full_metrics, cur_results) +} + +all_full_metrics_long = melt.data.table(all_full_metrics[, c(1,2,4)], id.vars = c("data_used", "training_type"), variable.name = "Metric", value.name = "Loss") +ggplot(data = all_full_metrics_long) + + geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric, fill = Metric), position = "dodge", stat = "identity") + + theme(axis.text.x = element_text(angle = -45, hjust = 0, size = 16)) + + + +all_bottleneck_evals <- list.files("BottleNeck_Model_Testing_Results/", full.names = T, pattern = "GDSC2") +all_bottleneck_metrics <- data.table(data_used = NULL, training_type = NULL, length_of_testing_data = NULL, MSE = NULL, RMSE = NULL, MSLE = NULL, RSQ = NULL) + +for (filename in all_bottleneck_evals) { + cur_eval <- fread(filename) + cur_data <- str_replace(strsplit(basename(filename), "GDSC2")[[1]][1], "-", "_") + cur_results <- data.table(data_used = cur_data, + training_type = "BottleNeck", + length_of_testing_data = nrow(cur_eval), + MSE = mse(cur_eval$actual_target, cur_eval$predicted_target), + RMSE = rmse(cur_eval$actual_target, cur_eval$predicted_target), + MSLE = msle(cur_eval$actual_target, cur_eval$predicted_target), + RSQ = rsq(cur_eval$actual_target, cur_eval$predicted_target)) + all_bottleneck_metrics <- rbind(all_bottleneck_metrics, cur_results) +} + +all_bottleneck_metrics_long = melt.data.table(all_bottleneck_metrics[, c(1,2,4)], id.vars = c("data_used", "training_type"), variable.name = "Metric", value.name = "Loss") + +# ggplot(data = all_bottleneck_metrics_long) + +# geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric, fill = Metric), position = "dodge", stat = "identity") + +# theme(axis.text.x = element_text(angle = -45, hjust = 0, size = 16)) + + +all_tests <- rbind(all_full_metrics_long, all_bottleneck_metrics_long) +ggplot(data = all_tests) + + geom_bar(mapping = aes(x = reorder(data_used, -Loss), y = Loss, group = Metric), position = "dodge", stat = "identity") + + theme(axis.text.x = element_text(angle = -90, hjust = 0, size = 16)) + + facet_wrap(vars(training_type))