[c3b4f8]: / R / Dataset_Exploration.R

Download this file

159 lines (125 with data), 6.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Dataset_exploration.R
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("PharmacoGx", version = "3.8")
library(PharmacoGx)
library(data.table)
??PharmacoSet
availablePSets()
ccle <- PharmacoGx::downloadPSet("CCLE_2013")
gdsc <- PharmacoGx::downloadPSet("GDSC_2013")
gcsi <- PharmacoGx::downloadPSet("gCSI")
common = intersectPSet(pSets = list(ccle, gdsc, gcsi),
intersectOn = c("drugs", "cell.lines"), strictIntersect = T, nthread = 2)
intersectPSet(pSets = list(ccle, gdsc),
intersectOn = "cell.lines", strictIntersect = F, nthread = 2)
fNames(ccle, 'rna')
fNames(gdsc, 'rna')
fNames(gcsi, 'rnaseq')
sensitivityMeasures(ccle)
unique(ccle@sensitivity$info[,-(1:2)])
ccle@sensitivity$raw
ccle@sensitivity$profiles
ccle_sum <- summarizeSensitivityProfiles(pSet = ccle, sensitivity.measure = "auc_published",
drugs = "lapatinib")
ccle_sum[1:5]
# common = intersectPSet(pSets = list(ccle, gdsc),
# intersectOn = c("drugs", "cell.lines"), strictIntersect = T, nthread = 2)
# common_drugs = intersectPSet(pSets = list(ccle, gdsc, gcsi),
# intersectOn = c("drugs", "cell.lines"),
# drugs = c("Erlotinib", "Lapatinib", "Paclitaxel"), nthread = 2)
# common_drugs$CCLE@drug
# common_drugs$GDSC@drug
# common_drugs$GDSC@cell$tissueid
common$CCLE@drug$drug.name
common$CCLE@cell$cellid[common$CCLE@cell$tissueid == "breast"]
common$CCLE@drug$drug.name[common$CCLE@cell$tissueid == "breast"]
sensitivityMeasures(pSet = gdsc)
gdsc_auc <-
summarizeSensitivityProfiles(
pSet = gdsc,
sensitivity.measure = "auc_published",
summary.stat = "median",
fill.missing = T
)
ccle_auc <-
summarizeSensitivityProfiles(
pSet = ccle,
sensitivity.measure = "auc_published",
summary.stat = "median",
fill.missing = T
)
gcsi_auc <-
summarizeSensitivityProfiles(
pSet = gcsi,
sensitivity.measure = "auc_recomputed",
summary.stat = "median",
fill.missing = T
)
# Find breast tissue cell lines with Lapatinib tested on them
ccle@drug$drug.name == "Lapatinib"
cell_drug <- sensNumber(ccle)
cell_drug <- as.data.table(cell_drug, keep.rownames = T)
breast_cells <- ccle@cell$cellid[ccle@cell$tissueid == "breast"]
# All the cell lines in CCLE that have a breast origin and test Lapatinib
cell_drug[rn %in% breast_cells & lapatinib == 1]$rn
drugDoseResponseCurve(drug = "Lapatinib", cellline = "HARA",
pSets = ccle)
drugDoseResponseCurve(drug = "lapatinib", cellline = "HARA",
pSets = ccle)
ach <- fread("Data/Achilles/D2_combined_gene_dep_scores.csv")
ach <- fread("Data/Achilles/RNAseq_lRPKM_data.csv")
dim(ach)
ach[1:5, 1:5]
# ==== Read DepMap data ====
ccle_rna <- fread("Data/DepMap/CCLE_depMap_19Q1_TPM.csv")
ccle_transcripts <- fread("Data/DepMap/CCLE_depMap_19Q1_TPM_transcripts.csv")
dim(ccle_transcripts)
ccle_drug_data <- fread("Data/DepMap/CCLE_NP24.2009_Drug_data_2015.02.24.csv")
ccle_line_info <- fread("Data/DepMap/DepMap-2019q1-celllines_v2.csv")
dim(ccle_rna)
ccle_line_info
depmap_mutation <- fread("Data/DepMap/depmap_19Q1_mutation_calls.csv")
# Percentage DepMap cell line mutation data shared with CCLE
sum(ccle_rna$V1 %in% depmap_mutation$DepMap_ID) / length(ccle_rna$V1)
# Percentage GDSC cell lines in DepMap mutation data
sum(colnames(gdsc_auc)[-1] %in% depmap_mutation$DepMap_ID) / (ncol(gdsc_auc)-1)
gdsc_auc <- fread("Data/DepMap/GDSC_AUC.csv")
dim(gdsc_auc)
gdsc_auc$V1
ccle_rna[1:5, 1:5]
length(unique(ccle_line_info$DepMap_ID))
ccle_linenames <- gsub(pattern = "_.*", replacement = "", x = ccle_line_info[DepMap_ID %in% ccle_rna$V1]$CCLE_Name)
line_name_id <- data.table(DepMap_ID = ccle_line_info$DepMap_ID,
Name = gsub(pattern = "_.*", replacement = "", x = ccle_line_info$CCLE_Name))
# Percentage CTRPv2 cell lines with CCLE RNA expression data
sum(ctrp_cell_info$ccl_name %in% ccle_linenames) / length(ctrp_cell_info$ccl_name)
# Percentage CTRPv2 cell lines with DepMap mutation data
ctrp_depmap_id <- line_name_id[Name %in% ctrp_cell_info$ccl_name]$DepMap_ID
sum(ctrp_depmap_id %in% depmap_mutation$DepMap_ID) / length(ctrp_depmap_id)
sum(ctrp_cell_info$ccl_name %in% ccle_linenames) / length(ctrp_cell_info$ccl_name)
# Percentage GDSC cell lines in DepMap CCLE expression data
sum(colnames(gdsc_auc)[-1] %in% ccle_rna$V1) / length(colnames(gdsc_auc)[-1])
sum(ccle_line_info$DepMap_ID %in% ccle_rna$V1)
sum(colnames(gdsc_auc)[-1] %in% ccle_line_info$DepMap_ID) / (ncol(gdsc_auc)-1)
length(unique(colnames(gdsc_auc)))-1
length(unique(ccle_line_info$DepMap_ID))
ctrp_columns <- fread("Data/DepMap/CTRPv2.0_2015_ctd2_ExpandedDataset/v20._COLUMNS.txt")
unique(ctrp_columns[COLUMN_HEADER == "master_cpd_id", "COLUMN_DESCRIPTION"])
unique(ctrp_columns[COLUMN_HEADER == "experiment_id", "COLUMN_DESCRIPTION"])
unique(ctrp_columns[COLUMN_HEADER == "cpd_pred_pv", "COLUMN_DESCRIPTION"])
unique(ctrp_columns[COLUMN_HEADER == "cpd_avg_pv", "COLUMN_DESCRIPTION"])
unique(ctrp_columns[COLUMN_HEADER == "master_ccl_id", "COLUMN_DESCRIPTION"])
unique(ctrp_columns[COLUMN_HEADER == "baseline_signal", "COLUMN_DESCRIPTION"])
ctrp_plate <- fread("Data/DepMap/CTRPv2.0_2015_ctd2_ExpandedDataset/v20.meta.per_assay_plate.txt")
unique(ctrp_plate$assay_plate_barcode)
ctrp_data <- fread("Data/DepMap/CTRPv2.0_2015_ctd2_ExpandedDataset/v20.data.per_cpd_post_qc.txt")
ctrp_experiment <- fread("Data/DepMap/CTRPv2.0_2015_ctd2_ExpandedDataset/v20.meta.per_experiment.txt")
ctrp_drug_data <- fread("Data/DepMap/CTRPv2.0_2015_ctd2_ExpandedDataset/v20.data.per_cpd_avg.txt")
ctrp_line_info <- fread("Data/DepMap/CTRPv2.0_2015_ctd2_ExpandedDataset/v20.meta.per_cell_line.txt")
ctrp_data[experiment_id == 1 & master_cpd_id == 1788]
length(unique(ctrp_drug_data$assay_plate_barcode))
ctrp_drug_data[experiment_id == 1]
ctrp_experiment$experiment_id
ctrp_master <- merge(x = ctrp_data, y = ctrp_drug_data, by = "experiment_id")
ctrp_drug_info <- fread("Data/DepMap/CTRPv2.0_2015_ctd2_ExpandedDataset/v20.meta.per_compound.txt")