[c3b4f8]: / R / Complete_Sample_Prep-ML3867-FTAJ.R

Download this file

831 lines (656 with data), 35.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
# Complete_Sample_Prep.R
# This script is intended to pair genomics, transcriptomics, proteomics and drug response data
# mainly from the DepMap resource.
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
dir.create(paste0(path, "Data/DRP_Training_Data"))
require(data.table)
# ==== Cell line info cleanup ====
depmap_samples <- fread(paste0(path, "Data/DepMap/21Q2/sample_info.csv"))
# Subset relevant (machine learning) columns
depmap_samples <- depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype")]
fwrite(depmap_samples, paste0(path, "Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv"))
# depmap_samples <- fread("Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv")
# ==== Expression data cleanup ====
ccle_exp <- fread(paste0(path, "Data/DepMap/21Q2/CCLE_expression.csv"))
dim(ccle_exp)
ccle_exp[1:5, 1:20]
# Change column names to only contain HGNC name: replace everything after first word with ""
colnames(ccle_exp) <- gsub(" .+", "", colnames(ccle_exp))
colnames(ccle_exp)[1] <- "DepMap_ID"
# Merge with sample info to have cell line name in addition to DepMap ID
ccle_exp <- merge(ccle_exp, depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease")], by = "DepMap_ID")
ccle_exp[, DepMap_ID := NULL]
ccle_exp[1:5, 1:20]
# Move cell line name to the first column: just giving the column name to the function moves it to first place
setcolorder(ccle_exp, neworder = sort(colnames(ccle_exp)))
setcolorder(ccle_exp, neworder = c("stripped_cell_line_name", "primary_disease"))
ccle_exp[1:5, 1:20]
# Save
fwrite(ccle_exp, paste0(path, "Data/DRP_Training_Data/DepMap_21Q2_Expression.csv"), sep = ',')
# ccle_exp <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_21Q2_Expression.csv"))
ccle_exp
# DIMENSIONS OF EXPRESSION DATA: 1375 X 19178
rm(ccle_exp)
# ==== Copy number data cleanup ====
ccle_cn <- fread(paste0(path, "Data/DepMap/21Q2/CCLE_gene_copy_number.csv"))
dim(ccle_cn)
ccle_cn[1:5, 1:10]
# Change column names to only contain HGNC name: replace everything after first word with ""
colnames(ccle_cn) <- gsub(" .+", "", colnames(ccle_cn))
colnames(ccle_cn)[1] <- "DepMap_ID"
# Merge with sample info to have cell line name in addition to DepMap ID
ccle_cn <- merge(ccle_cn, depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease")], by = "DepMap_ID")
ccle_cn[, DepMap_ID := NULL]
setcolorder(ccle_cn, neworder = sort(colnames(ccle_cn)))
setcolorder(ccle_cn, neworder = c("stripped_cell_line_name", "primary_disease"))
ccle_cn[1:5, 1:20]
dim(ccle_cn)
# Save
fwrite(ccle_cn, paste0(path, "Data/DRP_Training_Data/DepMap_21Q2_CopyNumber.csv"), sep = ',')
# DIMENSIONS OF COPY NUMBER DATA: 1740 X 27563
rm(ccle_cn)
gc()
# ==== Proteomic data cleanup ====
ccle_prot <- fread(paste0(path, "Data/DepMap/20Q2/CCLE_protein_quant_current_normalized.csv"))
dim(ccle_prot)
ccle_prot[1:5, 1:10]
ccle_prot[1:5, 48:60]
# Subset only the Uniprot accession (since its unique unlike HGNC) and the cell line experimental data
ccle_prot <- ccle_prot[, c(6, 49:ncol(ccle_prot)), with = F]
colnames(ccle_prot) <- gsub("\\_.+", "", colnames(ccle_prot))
colnames(ccle_prot)[1] <- "Uniprot_Acc"
# Transpose the data.table to match with other data type tables
t <- transpose(ccle_prot, make.names = "Uniprot_Acc")
# Check if transpose worked as intended
as.numeric(unlist(t[1,])) == as.numeric(unlist(ccle_prot[,2]))
as.numeric(unlist(t[2,])) == as.numeric(unlist(ccle_prot[,3]))
# Add cell lines
t$stripped_cell_line_name <- colnames(ccle_prot)[-1]
# Merge with sample info to have cell line name in addition to DepMap ID
t <- merge(t, depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease")], by = "stripped_cell_line_name")
# Move to front
setcolorder(t, neworder = c("DepMap_ID", "stripped_cell_line_name", "primary_disease"))
t[1:5, 1:10]
# Save
fwrite(t, paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_ProteinQuant.csv"), sep = ',')
### Get proteins that are observed in all cell lines
# Create the same transposed table as above
# Remove all rows and columns that have any NA in them
prot_nona <- na.omit(ccle_prot)
which(is.na(prot_nona))
# Transpose the data.table to match with other data type tables
t <- transpose(prot_nona, make.names = "Uniprot_Acc")
# Check if transpose worked as intended
as.numeric(unlist(t[1,])) == as.numeric(unlist(prot_nona[,2]))
as.numeric(unlist(t[2,])) == as.numeric(unlist(prot_nona[,3]))
# Add cell lines
t$stripped_cell_line_name <- colnames(prot_nona)[-1]
# Merge with sample info to have cell line name in addition to DepMap ID
t <- merge(t, depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease")], by = "stripped_cell_line_name")
# Move to front
setcolorder(t, neworder = c("DepMap_ID", "stripped_cell_line_name", "primary_disease"))
t[1:5, 1:10]
# Now we have ~5000 proteins that are available in all samples
dim(t)
# We have 3 duplicates
sum(duplicated(t$stripped_cell_line_name))
# Save
fwrite(t, paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_No_NA_ProteinQuant.csv"), sep = ',')
# ccle_prot <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_No_NA_ProteinQuant.csv"))
dim(ccle_prot)
ccle_prot[1:5, 1:5]
ccle_prot[, DepMap_ID := NULL]
# fwrite(ccle_prot, paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_No_NA_ProteinQuant.csv"), sep = ',')
# DIMENSIONS OF PROTEIN QUANTITY DATA: 378 X 5155
ccle_prot <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_No_NA_ProteinQuant.csv"))
anyDuplicated(ccle_prot$stripped_cell_line_name)
# ==== Mutation data cleanup ====
rm(list = ls(pattern = "ccle"))
require(data.table)
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
ccle_mut <- fread(paste0(path, "Data/DepMap/21Q2/CCLE_mutations.csv"))
table(ccle_mut$isCOSMIChotspot)
table(ccle_mut$isTCGAhotspot)
table(ccle_mut$Variant_Type)
length(unique(ccle_mut$DepMap_ID))
dim(ccle_mut)
ccle_mut[1,]
colnames(ccle_mut)
# Calculate number of mutations per cell line
temp <- ccle_mut[, c("Variant_Type", "DepMap_ID")]
temp[, nMut := .N, by = "DepMap_ID"]
temp
unique(temp$Variant_Type)
# For simplicity, extract only SNP data for now: this discards ~90,000 mutations
# ccle_mut <- ccle_mut[Variant_Type == "SNP"]
dim(ccle_mut)
t <- ccle_mut[, c("DepMap_ID", "Chromosome", "Strand", "Start_position", "End_position")]
dim(unique(t))
length(unique(ccle_mut$DepMap_ID))
# Keep relevant columns/features
# Aside: Should the sequence change be provided, or just whether the SNP is deleterious or not?
ccle_mut <- ccle_mut[, c("DepMap_ID", "Hugo_Symbol", "Chromosome", "Start_position", "End_position", "Strand",
"Variant_Classification", "Variant_Type", "isDeleterious",
"isTCGAhotspot", "isCOSMIChotspot", "Genome_Change", "cDNA_Change")]
dim(ccle_mut)
length(unique(ccle_mut$DepMap_ID))
table(ccle_mut$isDeleterious)
table(ccle_mut$isTCGAhotspot)
table(ccle_mut$isCOSMIChotspot)
# ==== CCLE Mut Overlap with COSMIC CGC ====
# Perhaps it's best to use the mutations in genes that COSMIC considers important, like another paper in
# the field (~500 genes)
# Or, we can use a binary vector for genes and whether they have a deleterious mutation: this will result in
# ~20,000 parameters
length(unique(ccle_mut$Hugo_Symbol))
length(unique(ccle_mut[isCOSMIChotspot == T]$Hugo_Symbol))
length(unique(ccle_mut[isTCGAhotspot == T]$Hugo_Symbol))
length(unique(ccle_mut[isDeleterious == T]$Hugo_Symbol))
tcga_hotspot_genes <- unique(ccle_mut[isTCGAhotspot == T]$Hugo_Symbol)
# Read COSMIC Cancer Gene Census data
cgc <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/COSMIC/cancer_gene_census.csv")
dim(cgc)
cgc[1:5, 1:20]
length(unique(cgc$`Gene Symbol`))
length(unique(cgc$HGVSG))
# Get Genes in this census
cgc_genes <- unique(cgc$`Gene Symbol`)
cgc[Tier == 1]
length(unique(cgc$`Genome Location`)) # 922,732
# rm(cgc)
# Subset DepMap mutations based on the CGC genes
sum(unique(ccle_mut$Hugo_Symbol) %in% unique(cgc_genes))
ccle_mut <- ccle_mut[Hugo_Symbol %in% cgc_genes]
length(unique(ccle_mut$DepMap_ID))
sum(ccle_mut$isDeleterious)
ccle_mut[Variant_Classification == "Missense_Mutation"]
length(unique(ccle_mut[isDeleterious == T]$Hugo_Symbol))
ccle_mut[isDeleterious == T]
# TODO: Use CGC to check for overlap with CCLE cell lines, then collapse to whether each of the 700 genes for
# that cell line has a mutation listed in the CGC
length(unique(cgc$`Mutation genome position`)) # ~922,000 unique mutations
unique(ccle_mut$NCBI_Build) # CCLE is with GRCh 37
unique(cgc$GRCh) # CGC has GRCh 38
# We must "lift over" the mutations from 37 to 38 before checking for overlap
if (!require(liftOver)) {
BiocManager::install("liftOver")
require(liftOver)
require(rtracklayer)
}
# liftOver requires a chain file to convert 37 to 38: http://hgdownload.soe.ucsc.edu/goldenPath/hg19/liftOver/
chain_path <- paste0(path, "Data/hg19ToHg38.over.chain")
grch_37_38_chain <- import.chain(chain_path)
# Must add "chr" to start of chromosome names
ccle_mut$Chromosome <- paste0("chr", ccle_mut$Chromosome)
# Must convert positions to GRanges
ccle_mut_gr <- makeGRangesFromDataFrame(df = ccle_mut, keep.extra.columns = T,
seqnames.field = "Chromosome", start.field = "Start_position",
end.field = "End_position", strand.field = "Strand")
length(unique(ccle_mut_gr$DepMap_ID))
# Lift over
lifted_ccle_mut <- liftOver(x = ccle_mut_gr, chain = grch_37_38_chain)
# Convert GRangesList to GRanges
lifted_ccle_mut <- unlist(lifted_ccle_mut)
# Convert back to data.table
lifted_ccle_mut <- as.data.table(lifted_ccle_mut)
# Note: Genome_Change is now out of date!
# Remove chr from seqnames
lifted_ccle_mut$seqnames <- gsub("chr", "", lifted_ccle_mut$seqnames)
# Can find the overlap of Mutation genome position in CGC with a newly created column based on CCLE positions
lifted_ccle_mut[, Mutation_Position := paste0(seqnames, ':', start, '-', end)]
ccle_mut$seqnames <- gsub("chr", "", ccle_mut$Chromosome)
ccle_mut[, Mutation_Position := paste0(seqnames, ':', as.character(Start_position), '-', as.character(End_position))]
length(unique(lifted_ccle_mut$DepMap_ID))
sum(ccle_mut$Mutation_Position %in% unique(cgc$`Genome Location`))
# Now find the overlap with CGC (which already has GRCh38)
subset <- lifted_ccle_mut[Mutation_Position %in% unique(cgc$`Genome Location`)]
table(subset$Variant_Type)
length(unique(subset$DepMap_ID))
# IMPORTANT! There is a loss of 8 cell lines (which do not have a mutation that is in
# CGC) using the Tier 1 data only
# Alternative (March 2021) ====
# Take those mutations that are COSMIC or TCGA hotspots, ignoring CGC
subset <- ccle_mut[isTCGAhotspot | isCOSMIChotspot]
### Create a vector of mutations for each cell line with the CGC genes
length(unique(subset$Hugo_Symbol))
sub_dcast <- dcast.data.table(data = subset[, c("DepMap_ID", "Hugo_Symbol")],
formula = DepMap_ID ~ Hugo_Symbol, fun.aggregate = length, value.var = "DepMap_ID")
dim(sub_dcast)
sub_dcast[1:5, 1:50]
sum(sub_dcast$A1BG)
sum(sub_dcast$A1CF)
depmap_samples <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv"))
sub_dcast <- merge(sub_dcast, depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease")],
by = "DepMap_ID")
setcolorder(sub_dcast, c("DepMap_ID", "stripped_cell_line_name", "primary_disease"))
sub_dcast[1:5, 1:50]
# Save
fwrite(sub_dcast, paste0(path, "Data/DRP_Training_Data/DepMap_21Q2_Mutations_by_Cell.csv"), sep = ',')
dim(cgc_muts)
cgc_muts[1:5, 1:5]
typeof(cgc_muts[1,2])
temp <- fread("Data/DRP_Training_Data/DepMap_21Q2_Mutations_by_Cell.csv")
dim(temp)
temp[1:5, 1:50]
# # Attach the cell line name and primary disease
# # cgc_muts <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_CGC_Mutations_by_Cell.csv"))
# depmap_samples <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_Line_Info.csv"))
# cgc_muts <- merge(cgc_muts, depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease")],
# by = "DepMap_ID")
# setcolorder(cgc_muts, neworder = c("stripped_cell_line_name", colnames(cgc_muts)[-ncol(cgc_muts)]))
#
# # Save
# fwrite(cgc_muts, paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_CGC_Mutations_by_Cell.csv"), sep = ',')
# cgc_muts <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_CGC_Mutations_by_Cell.csv"))
# cgc_muts[1:5, 1:5]
# cgc_muts[, DepMap_ID := NULL]
# DIMENSIONS OF CGC MUTATIONAL DATA: 1733 X 697
# ==== miRNA Data Cleanup ====
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
require(data.table)
depmap_samples <- fread("Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv")
ccle_mirna <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE_miRNA_20181103.gct")
dim(ccle_mirna)
anyNA(ccle_mirna)
ccle_mirna[1:5, 1:5]
min(ccle_mirna[, -c(1:2)], na.rm = T)
max(ccle_mirna[, -c(1:2)], na.rm = T)
ccle_mirna <- transpose(ccle_mirna, keep.names = "Name")
dim(ccle_mirna)
ccle_mirna[1:5, 1:5]
ccle_mirna$Name
sum(duplicated(unlist(ccle_mirna[2, ])))
ccle_mirna <- ccle_mirna[-1,]
ccle_mirna[1:5, 1:5]
colnames(ccle_mirna) <- unlist(ccle_mirna[1,])
ccle_mirna <- ccle_mirna[-1,]
# Clean cell line name
ccle_mirna$Description <- gsub(pattern = "\\_.+", replacement = "", ccle_mirna$Description)
colnames(ccle_mirna)[1] <- "stripped_cell_line_name"
ccle_mirna <- merge(ccle_mirna, depmap_samples[, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype")],
by = "stripped_cell_line_name")
dim(ccle_mirna)
ccle_mirna[1:5, 1:5]
setcolorder(ccle_mirna, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype"))
fwrite(ccle_mirna, paste0(path, "Data/DRP_Training_Data/DepMap_2019_miRNA.csv"), sep = ',')
rm(ccle_mirna)
# ==== Metabolomics Data Cleanup ====
depmap_samples <- fread("Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv")
ccle_metab <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE_metabolomics_20190502.csv")
dim(ccle_metab)
ccle_metab[1:5, 1:5]
min(ccle_metab[, -c(1:2)], na.rm = T)
max(ccle_metab[, -c(1:2)], na.rm = T)
anyNA(ccle_metab)
sum(is.na(ccle_metab))
which(is.na(ccle_metab), arr.ind = T)
ccle_metab[which(is.na(ccle_metab), arr.ind = T)]
ccle_metab[554, 2] # DepMap_ID is NA
min(ccle_metab[, -c(1:2)])
ccle_metab <- merge(ccle_metab[, -1], depmap_samples[, c("DepMap_ID", "stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype")],
by = "DepMap_ID")
setcolorder(ccle_metab, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype"))
ccle_metab$DepMap_ID <- NULL
dim(ccle_metab)
fwrite(ccle_metab, paste0(path, "Data/DRP_Training_Data/DepMap_2019_Metabolomics.csv"), sep = ',')
rm(ccle_metab)
# ==== RPPA Data Cleanup ====
ccle_rppa <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE_RPPA_20181003.csv")
dim(ccle_rppa)
ccle_rppa[1:5, 1:5]
anyNA(ccle_rppa)
min(ccle_rppa[, -c(1:2)], na.rm = T) # has negative values
max(ccle_rppa[, -c(1:2)], na.rm = T)
ccle_rppa$V1 <- gsub(pattern = "\\_.+", replacement = "", ccle_rppa$V1)
colnames(ccle_rppa)[1] <- "stripped_cell_line_name"
ccle_rppa <- merge(ccle_rppa, depmap_samples[, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype")],
by = "stripped_cell_line_name")
dim(ccle_rppa)
ccle_rppa[1:5, 1:10]
setcolorder(ccle_rppa, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype"))
fwrite(ccle_rppa, paste0(path, "Data/DRP_Training_Data/DepMap_2019_RPPA.csv"), sep = ',')
rm(ccle_rppa)
# ==== Chromatin Profiling Data Cleanup ====
ccle_chrom <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE_GlobalChromatinProfiling_20181130.csv")
dim(ccle_chrom)
ccle_chrom[1:5, 1:10]
min(ccle_chrom[, -c(1:2)], na.rm = T) # has negative values
max(ccle_chrom[, -c(1:2)], na.rm = T)
anyNA(ccle_chrom)
sum(is.na(ccle_chrom)) # 842 NA values
unique(which(is.na(ccle_chrom), arr.ind = T)[,2])
length(unique(which(is.na(ccle_chrom), arr.ind = T)[,2])) # 26 columns have NAs
# Convert NA to 0
setnafill(ccle_chrom, fill = 0, cols = unique(which(is.na(ccle_chrom), arr.ind = T)[,2]))
anyNA(ccle_chrom)
ccle_chrom$CellLineName <- gsub(pattern = "\\_.+", replacement = "", ccle_chrom$CellLineName)
colnames(ccle_chrom)[1] <- "stripped_cell_line_name"
dim(ccle_chrom)
ccle_chrom <- merge(ccle_chrom, depmap_samples[, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype")],
by = "stripped_cell_line_name")
ccle_chrom$BroadID <- NULL
dim(ccle_chrom)
ccle_chrom[1:5, 1:10]
setcolorder(ccle_chrom, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype"))
fwrite(ccle_chrom, paste0(path, "Data/DRP_Training_Data/DepMap_2019_ChromatinProfiling.csv"), sep = ',')
rm(ccle_chrom)
# ==== Fusion Data Cleanup ====
ccle_fusion <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE_fusions.csv")
dim(ccle_fusion)
ccle_fusion[1:5, 1:17]
length(unique(ccle_fusion$FusionName))
length(unique(ccle_fusion$DepMap_ID))
unique(ccle_fusion$SpliceType)
quantile(ccle_fusion$FFPM)
ccle_fusion$CellLineName <- gsub(pattern = "\\_.+", replacement = "", ccle_fusion$CellLineName)
colnames(ccle_fusion)[1] <- "stripped_cell_line_name"
dim(ccle_fusion)
ccle_fusion <- merge(ccle_fusion, depmap_samples[, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype")],
by = "stripped_cell_line_name")
ccle_fusion$BroadID <- NULL
dim(ccle_fusion)
ccle_fusion[1:5, 1:10]
setcolorder(ccle_fusion, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype"))
fwrite(ccle_fusion, paste0(path, "Data/DRP_Training_Data/DepMap_2019_GeneFusion.csv"), sep = ',')
rm(ccle_fusion)
# ==== Exon Usage Ratio Data Cleanup ====
require(data.table)
setDTthreads(8)
ccle_exon <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE_RNAseq_ExonUsageRatio_20180929.gct")
dim(ccle_exon)
ccle_exon[1:10, 1:17]
transpose(ccle_exon, keep.names = "exon")
length(unique(ccle_exon$FusionName))
length(unique(ccle_exon$DepMap_ID))
unique(ccle_exon$SpliceType)
quantile(ccle_exon$FFPM)
ccle_exon$CellLineName <- gsub(pattern = "\\_.+", replacement = "", ccle_exon$CellLineName)
colnames(ccle_exon)[1] <- "stripped_cell_line_name"
dim(ccle_exon)
ccle_exon <- merge(ccle_exon, depmap_samples[, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype")],
by = "stripped_cell_line_name")
ccle_exon$BroadID <- NULL
dim(ccle_exon)
ccle_exon[1:5, 1:10]
setcolorder(ccle_exon, c("stripped_cell_line_name", "primary_disease", "lineage", "lineage_subtype"))
# fwrite(ccle_exon, paste0(path, "Data/DRP_Training_Data/DepMap_2019_ExonUsageRatio.csv"), sep = ',')
rm(ccle_exon)
# ==== RRBS Profiling Data Cleanup ====
require(data.table)
setDTthreads(8)
# === TSS
ccle_tss <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE_RRBS_TSS1kb_20181022.txt")
dim(ccle_tss)
ccle_tss[1:5, 1:5]
length(unique(ccle_tss$cluster_id))
ccle_tss <- transpose(ccle_tss[, -2], keep.names = "cluster_id")
colnames(ccle_tss) <- unlist(ccle_tss[1,])
ccle_tss <- ccle_tss[-1,]
# === Promoter
ccle_tss <- fread("/Users/ftaj/OneDrive - University of Toronto/Drug_Response/Data/DepMap/Extra/CCLE")
dim(ccle_tss)
ccle_tss[1:5, 1:5]
length(unique(ccle_tss$cluster_id))
ccle_tss <- transpose(ccle_tss[, -2], keep.names = "cluster_id")
colnames(ccle_tss) <- unlist(ccle_tss[1,])
ccle_tss <- ccle_tss[-1,]
# === Enhancers
# ==== Drug Sensitivity Data Cleanup ====
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
require(data.table)
require(webchem)
# BiocManager::install("ChemmineR")
require(ChemmineR)
options(chemspider_key = "N98K4aOip0VpcSc8F9GilqIIktLt0hux")
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
ctrp <- fread("Data/DRP_Training_Data/CTRP_AUC_SMILES.txt")
gdsc1 <- fread("Data/DRP_Training_Data/GDSC1_AUC_SMILES.txt")
gdsc2 <- fread("Data/DRP_Training_Data/GDSC2_AUC_SMILES.txt")
# Clean up duplicate with missing pubchem
cpd_info_1 <- fread(paste0(path, "Data/GDSC/GDSC1_Drug_Info.csv"))
cpd_info_1[drug_name == unique(cpd_info_1[, c("drug_name", "pubchem")])[anyDuplicated(unique(cpd_info_1[, c("drug_name", "pubchem")])$drug_name),]$drug_name]
cpd_info_1 <- cpd_info_1[drug_id != 476]
cpd_info_1 <- cpd_info_1[drug_id != 1490]
cpd_info_1 <- cpd_info_1[drug_id != 1496]
cpd_info_1 <- cpd_info_1[drug_id != 1386]
cpd_info_1 <- cpd_info_1[drug_id != 1402]
cpd_info_1 <- cpd_info_1[drug_id != 1393]
nrow(cpd_info_1[pubchem == "-"])
sum(cpd_info_1$drug_name %in% unique(ctrp$cpd_name))
# Subset for valid pubchem IDs
cpd_info_1 <- cpd_info_1[pubchem != "-"]
cpd_info_1 <- cpd_info_1[pubchem != "none"]
cpd_info_1 <- cpd_info_1[pubchem != "several"]
cpd_info_1$pubchem <- as.numeric(cpd_info_1$pubchem)
cpd_1_smiles <- webchem::pc_prop(cid = cpd_info_1$pubchem, properties = "CanonicalSMILES")
cpd_info_1 <- merge(cpd_info_1, cpd_1_smiles, by.x = "pubchem", by.y = "CID")
# Save
fwrite(cpd_info_1, "Data/GDSC/GDSC1_VALID_Drug_Info.csv")
cpd_info_2 <- fread(paste0(path, "Data/GDSC/GDSC2_Drug_Info.csv"))
cpd_info_2[drug_name == unique(cpd_info_2[, c("drug_name", "pubchem")])[anyDuplicated(unique(cpd_info_2[, c("drug_name", "pubchem")])$drug_name),]$drug_name]
cpd_info_2 <- cpd_info_2[drug_id != 1811]
cpd_info_2 <- cpd_info_2[drug_id != 1806]
cpd_info_2 <- cpd_info_2[drug_id != 1819]
cpd_info_2 <- cpd_info_2[drug_id != 1816]
cpd_info_2[pubchem == "25227436, 42602260"]$pubchem <- "25227436"
cpd_info_2[pubchem == "11719003, 58641927"]$pubchem <- "11719003"
cpd_info_2[pubchem == "66577015, 16654980"]$pubchem <- "66577015"
cpd_info_2[pubchem == "11719003, 58641927"]$pubchem <- "11719003"
nrow(cpd_info_2[pubchem == "-"])
sum(cpd_info_2$pubchem %in% cpd_info_1$pubchem) / nrow(cpd_info_2)
cpd_info_2 <- cpd_info_2[pubchem != "-"]
cpd_info_2 <- cpd_info_2[pubchem != "none"]
cpd_info_2 <- cpd_info_2[pubchem != "several"]
cpd_info_2$pubchem <- as.numeric(cpd_info_2$pubchem)
cpd_2_smiles <- webchem::pc_prop(cid = cpd_info_2$pubchem, properties = "CanonicalSMILES")
cpd_info_2 <- merge(cpd_info_2, cpd_2_smiles, by.x = "pubchem", by.y = "CID")
# Save
fwrite(cpd_info_2, "Data/GDSC/GDSC2_VALID_Drug_Info.csv")
depmap_samples <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_Line_Info.csv"))
# ==== GDSC ====
require(stringr)
gdsc1 <- fread(paste0(path, "Data/GDSC/GDSC1_Fitted_Dose_Response.csv"))
sum(unique(gdsc1$CELL_LINE_NAME) %in% depmap_samples$stripped_cell_line_name) / length(unique(gdsc1$CELL_LINE_NAME)) # 0.22
sum(toupper(unique(gdsc1$CELL_LINE_NAME)) %in% toupper(depmap_samples$stripped_cell_line_name)) / length(unique(gdsc1$CELL_LINE_NAME)) # 0.24
sum(str_remove_all(toupper(unique(gdsc1$CELL_LINE_NAME)), "-") %in% toupper(depmap_samples$stripped_cell_line_name)) / length(unique(gdsc1$CELL_LINE_NAME)) # 0.9696049
dim(gdsc1) # 310K Combinations
colnames(gdsc1)
sum(gdsc1$AUC == 0)
min(gdsc1$AUC)
max(gdsc1$AUC)
# Count unique combinations in GDSC1
length(unique(unique(gdsc1[, c("DRUG_NAME", "CELL_LINE_NAME")])$CELL_LINE_NAME)) # 987
length(unique(unique(gdsc1[, c("DRUG_NAME", "CELL_LINE_NAME")])$DRUG_NAME)) # 345
nrow(unique(unique(gdsc1[, c("DRUG_NAME", "CELL_LINE_NAME")]))) # 292,849
gdsc1_final <- merge(unique(gdsc1[, c("DRUG_NAME", "CELL_LINE_NAME", "AUC")]), unique(cpd_info_1[, c("drug_name", "CanonicalSMILES")]), by.x = "DRUG_NAME", by.y = "drug_name")
colnames(gdsc1_final) <- c("cpd_name", "ccl_name", "area_under_curve", "cpd_smiles")
# Save
fwrite(gdsc1_final, "Data/DRP_Training_Data/GDSC1_AUC_SMILES.txt")
unique(gdsc1_pubchem$DRUG_NAME)
# gdsc1_cs_ids <- webchem::get_csid(query = unique(gdsc1$DRUG_NAME), from = "name", match = "all", verbose = T)
gdsc1_cs_ids <- webchem::cir_query(identifier = unique(gdsc1$DRUG_NAME), representation = "smiles", verbose = T, )
# Count unique combinations in GDSC2
gdsc2 <- fread(paste0(path, "Data/GDSC/GDSC2_Fitted_Dose_Response.csv"))
sum(unique(gdsc2$CELL_LINE_NAME) %in% depmap_samples$stripped_cell_line_name) / length(unique(gdsc2$CELL_LINE_NAME)) # 0.2311496
sum(toupper(unique(gdsc2$CELL_LINE_NAME)) %in% toupper(depmap_samples$stripped_cell_line_name)) / length(unique(gdsc2$CELL_LINE_NAME)) # 0.2546354
sum(str_remove_all(toupper(unique(gdsc2$CELL_LINE_NAME)), "-") %in% toupper(depmap_samples$stripped_cell_line_name)) / length(unique(gdsc2$CELL_LINE_NAME)) # 0.9678616
gdsc2_cpd_smiles <- webchem::cir_query(identifier = unique(gdsc2$DRUG_NAME), representation = "smiles", verbose = T)
dim(gdsc2) # 135K Combinations
colnames(gdsc2)
length(unique(unique(gdsc2[, c("DRUG_NAME", "CELL_LINE_NAME")])$CELL_LINE_NAME)) # 809
length(unique(unique(gdsc2[, c("DRUG_NAME", "CELL_LINE_NAME")])$DRUG_NAME)) # 192
nrow(unique(unique(gdsc2[, c("DRUG_NAME", "CELL_LINE_NAME")]))) # 131,108
gdsc2_final <- merge(unique(gdsc2[, c("DRUG_NAME", "CELL_LINE_NAME", "AUC")]), unique(cpd_info_2[, c("drug_name", "CanonicalSMILES")]), by.x = "DRUG_NAME", by.y = "drug_name")
colnames(gdsc2_final) <- c("cpd_name", "ccl_name", "area_under_curve", "cpd_smiles")
# Save
fwrite(gdsc2_final, "Data/DRP_Training_Data/GDSC2_AUC_SMILES.txt")
# Count overlap of drugs and cell lines
sum(unique(gdsc1$DRUG_NAME) %in% unique(gdsc2$DRUG_NAME)) # Drug Overlap: 88
sum(unique(gdsc1$CELL_LINE_NAME) %in% unique(gdsc2$CELL_LINE_NAME)) # Cell Line Overlap: 808
# ==== CTRP ====
require(data.table)
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
# NOTE: Newer and better AUC calculation in PharmacoGx.R file!
ctrp_curves <- fread(paste0(path, "Data/CTRP/v20.data.curves_post_qc.txt"))
exper_data <- fread(paste0(path, "Data/CTRP/v20.meta.per_experiment.txt"))
cell_data <- fread(paste0(path, "Data/CTRP/v20.meta.per_cell_line.txt"))
table(cell_data$ccl_availability)
# Merge sensitivity, experimental and cell line data
temp <- merge(unique(ctrp_curves[, c("experiment_id", "master_cpd_id")]),
unique(exper_data[, c("experiment_id", "master_ccl_id")]),
by = "experiment_id")
ctrp <- merge(temp, cell_data[, c("master_ccl_id", "ccl_name")], by = "master_ccl_id")
sum(unique(ctrp$ccl_name) %in% depmap_samples$stripped_cell_line_name) / length(unique(ctrp$ccl_name)) # 0.9492672
sum(toupper(unique(ctrp$ccl_name)) %in% toupper(depmap_samples$stripped_cell_line_name)) / length(unique(ctrp$ccl_name)) # 0.9492672
sum(str_remove_all(toupper(unique(ctrp$ccl_name)), "-") %in% toupper(depmap_samples$stripped_cell_line_name)) / length(unique(ctrp$ccl_name)) # 0.9503946
# Add compound information
cpd_data <- fread(paste0(path, "Data/CTRP/v20.meta.per_compound.txt"))
ctrp <- merge(ctrp, cpd_data[, c("master_cpd_id", "cpd_name", "cpd_smiles")], by = "master_cpd_id")
# Add AUC curve information
ctrp_auc <- fread(paste0(path, "Data/CTRP/v20.data.curves_post_qc.txt"))
ctrp <- merge(ctrp, ctrp_auc[, c("experiment_id", "master_cpd_id", "area_under_curve")], by = c("experiment_id", "master_cpd_id"))
# Save
fwrite(ctrp, paste0(path, "Data/DRP_Training_Data/CTRP_AUC_SMILES.txt"))
# Add primary disease information. NOTE: This removes some DR data as 45 cell lines in CTRPv2 cannot be paired with DepMap!!!
line_info <- fread("Data/DRP_Training_Data/DepMap_20Q2_Line_Info.csv")
ctrp <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt")
sum(unique(ctrp$ccl_name) %in% unique(line_info$stripped_cell_line_name)) # 150
line_info$other_ccl_name <- str_replace(toupper(line_info$stripped_cell_line_name), "-", "")
ctrp$other_ccl_name <- str_replace(toupper(ctrp$ccl_name), "-", "")
ctrp <- merge(ctrp, line_info[, c("other_ccl_name", "primary_disease")], by = "other_ccl_name")
ctrp$other_ccl_name <- NULL
setcolorder(ctrp, neworder = c("cpd_name", "ccl_name", "primary_disease", "area_under_curve", "cpd_smiles"))
fwrite(ctrp, "Data/DRP_Training_Data/CTRP_AUC_SMILES.txt")
# Experiment ID
unique(ctrp[, c("master_ccl_id", "experiment_id")])
length(unique(ctrp$master_ccl_id))
length(unique(ctrp$experiment_id))
length(unique(ctrp$ccl_name))
length(unique(ctrp$master_cpd_id))
# Check overlap with GDSC 1 and 2
sum(unique(ctrp$ccl_name) %in% gdsc1$CELL_LINE_NAME)
sum(unique(ctrp$ccl_name) %in% gdsc2$CELL_LINE_NAME)
dim(ctrp) # 395K Combinations
# ==== Chemical Data Cleanup ====
require(data.table)
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
chembl <- fread(paste0(path, "Data/chembl_27_chemreps.txt"))
# ==== EDA ======
require(data.table)
require(stringr)
require(ggplot2)
line_info <- fread("Data/DRP_Training_Data/DepMap_20Q2_Line_Info.csv")
ctrp <- fread("Data/DRP_Training_Data/CTRP_AUC_SMILES.txt")
gdsc2 <- fread("Data/DRP_Training_Data/GDSC2_AUC_SMILES.txt")
exp <- fread("Data/DRP_Training_Data/DepMap_20Q2_Expression.csv")
mut <- fread("Data/DRP_Training_Data/DepMap_20Q2_CGC_Mutations_by_Cell.csv")
cnv <- fread("Data/DRP_Training_Data/DepMap_20Q2_CopyNumber.csv")
prot <- fread("Data/DRP_Training_Data/DepMap_20Q2_No_NA_ProteinQuant.csv")
pdb_table <- fread("Data/cell_annotation_table_1.1.1.csv")
pdb_sub <- pdb_table[, c("CTRPv2.cellid", "CCLE.cellid")]
pdb_sub <- pdb_sub[!is.na(CTRPv2.cellid) & !is.na(CCLE.cellid)]
exp[1:5., 1:5]
length(unique(ctrp$ccl_name))
length(unique(ctrp$cpd_name))
sum(unique(ctrp$ccl_name) %in% line_info$stripped_cell_line_name) / length(unique(ctrp$ccl_name))
ccl_names = toupper(ctrp$ccl_name)
ccl_names = unique(str_replace(ccl_names, "-", ""))
length(ccl_names)
sum(ccl_names %in% line_info$stripped_cell_line_name) / length(ccl_names)
line_info[!(stripped_cell_line_name %in% ccl_names)]
ctrp[ccl_name %like% "NIHOVCAR3"]
ctrp[ccl_name %like% "HEL"]
sum(exp$stripped_cell_line_name %in% pdb_sub$CCLE.cellid)
# Remove hyphens and convert all to upper case
pdb_ccl_names = pdb_sub$CCLE.cellid
pdb_ccl_names = str_replace(toupper(pdb_ccl_names), "-", "")
ctrp$ccl_name = str_replace(toupper(ctrp$ccl_name), "-", "")
exp_ccl_names = exp$stripped_cell_line_name
exp_ccl_names = str_replace(toupper(exp_ccl_names), "-", "")
mut_ccl_names = mut$stripped_cell_line_name
mut_ccl_names = str_replace(toupper(mut_ccl_names), "-", "")
cnv_ccl_names = cnv$stripped_cell_line_name
cnv_ccl_names = str_replace(toupper(cnv_ccl_names), "-", "")
sum(exp_ccl_names %in% ccl_names) / length(unique(ccl_names))
sum(exp_ccl_names %in% pdb_ccl_names) / length(unique(pdb_ccl_names))
sum(mut_ccl_names %in% ccl_names) / length(unique(ccl_names)) * length(unique(ccl_names))
sum(mut_ccl_names %in% pdb_ccl_names) / length(unique(pdb_ccl_names)) * length(unique(pdb_ccl_names))
ctrp[ccl_name %in% mut_ccl_names[mut_ccl_names %in% ccl_names]] ### 302K!!!!! Not 144K
ctrp[ccl_name %in% mut_ccl_names[mut_ccl_names %in% pdb_ccl_names]] ### 302K!!!!! Not 144K
sum(cnv_ccl_names %in% ccl_names) / length(unique(ccl_names))
sum(exp_ccl_names %in% cnv_ccl_names) / length(unique(exp_ccl_names))
sum(cnv_ccl_names %in% exp_ccl_names) / length(unique(cnv_ccl_names))
dir.create(path = "Plots")
dir.create(path = "Plots/DepMap")
ggplot(data = line_info) +
geom_bar(mapping = aes(x = primary_disease), stat = "count") +
xlab("Primary Disease") +
ylab("# of cell lines") +
ggtitle(label = "Proportion of Cancer Types in DepMap Data (overall)", subtitle = "20Q2 Version") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
ggsave(filename = "Plots/DepMap/DepMap_Cell_Lines_Proportion.pdf", device = "pdf")
prot[, 1:5]
unique(prot$stripped_cell_line_name)
mut$stripped_cell_line_name = str_replace(toupper(mut$stripped_cell_line_name), "-", "")
cnv$stripped_cell_line_name = str_replace(toupper(cnv$stripped_cell_line_name), "-", "")
exp$stripped_cell_line_name = str_replace(toupper(exp$stripped_cell_line_name), "-", "")
prot$stripped_cell_line_name = str_replace(toupper(prot$stripped_cell_line_name), "-", "")
ctrp$ccl_name = str_replace(toupper(ctrp$ccl_name), "-", "")
mut_line_info <- line_info[stripped_cell_line_name %in% unique(mut$stripped_cell_line_name)]
cnv_line_info <- line_info[stripped_cell_line_name %in% unique(cnv$stripped_cell_line_name)]
exp_line_info <- line_info[stripped_cell_line_name %in% unique(exp$stripped_cell_line_name)]
prot_line_info <- line_info[stripped_cell_line_name %in% unique(prot$stripped_cell_line_name)]
ctrp_line_info <- line_info[stripped_cell_line_name %in% unique(ctrp$ccl_name)]
mut_line_info <- mut_line_info[, c("stripped_cell_line_name", "primary_disease")]
mut_line_info$data_type <- "Mutational"
cnv_line_info <- cnv_line_info[, c("stripped_cell_line_name", "primary_disease")]
cnv_line_info$data_type <- "Copy Number"
exp_line_info <- exp_line_info[, c("stripped_cell_line_name", "primary_disease")]
exp_line_info$data_type <- "Gene Expression"
prot_line_info <- prot_line_info[, c("stripped_cell_line_name", "primary_disease")]
prot_line_info$data_type <- "Protein Quantification"
ctrp_line_info <- ctrp_line_info[, c("stripped_cell_line_name", "primary_disease")]
ctrp_line_info$data_type <- "Dose-Response"
datatype_line_info <- rbindlist(list(mut_line_info, cnv_line_info, exp_line_info, prot_line_info, ctrp_line_info))
ggplot(data = datatype_line_info) +
geom_bar(mapping = aes(x = primary_disease, fill = data_type), stat = "count", position = "dodge") +
xlab("Primary Disease") +
ylab("# of cell lines") +
labs(fill = "Data Type") +
ggtitle(label = "Proportion of Cancer Types in DepMap Data", subtitle = "By data type, 20Q2 Version - Overlap with CTRPv2: 79%") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
ggsave(filename = "Plots/DepMap/DepMap_CTRP_Cell_Lines_Proportion.pdf", device = "pdf")
BiocManager::install("VennDiagram")
require(VennDiagram)
library(RColorBrewer)
myCol <- brewer.pal(5, "Pastel2")
# NOTE: The CTRPv2 here is from before ctrp was merged with cell line info to add primary disease!
venn.diagram(x = list(mut_line_info$stripped_cell_line_name,
cnv_line_info$stripped_cell_line_name,
exp_line_info$stripped_cell_line_name,
prot_line_info$stripped_cell_line_name,
unique(ctrp$ccl_name)),
category.names = c("Mutational", "Copy Number", "Gene Expression", "Protein Quantification", "CTRPv2 Dose-Response"),
filename = "Plots/DepMap/DepMap_CTRP_Cell_Lines_Venn.png",
imagetype = "png",
output = TRUE,
height = 3000 ,
width = 3000 ,
resolution = 600,
# Circles
lwd = 2,
# lty = 'blank',
fill = myCol,
# Numbers
cex = .6,
fontface = "bold",
fontfamily = "sans",
# Set names
cat.cex = 0.6,
cat.fontface = "bold",
cat.default.pos = "outer",
cat.pos = c(0, 0, -130, 150, 0),
cat.dist = c(0.2, 0.2, 0.2, 0.2, 0.2),
cat.fontfamily = "sans",
# rotation = 1
)