|
a |
|
b/R/05_All_Comparison_Plots.R |
|
|
1 |
# Targeted_vs_Broad_Drugs.R |
|
|
2 |
require(data.table) |
|
|
3 |
setDTthreads(8) |
|
|
4 |
require(ggplot2) |
|
|
5 |
library(dplyr) |
|
|
6 |
targeted_drugs <- c("Idelalisib", "Olaparib", "Venetoclax", "Crizotinib", "Regorafenib", |
|
|
7 |
"Tretinoin", "Bortezomib", "Cabozantinib", "Dasatinib", "Erlotinib", |
|
|
8 |
"Sonidegib", "Vandetanib", "Axitinib", "Ibrutinib", "Gefitinib", |
|
|
9 |
"Nilotinib", "Tamoxifen", "Bosutinib", "Pazopanib", "Lapatinib", |
|
|
10 |
"Dabrafenib", "Bexarotene", "Temsirolimus", "Belinostat", |
|
|
11 |
"Sunitinib", "Vorinostat", "Trametinib", "Fulvestrant", "Sorafenib", |
|
|
12 |
"Vemurafenib", "Alpelisib") |
|
|
13 |
|
|
|
14 |
# mysubset <- function(df, ...) { |
|
|
15 |
# ssubset <- deparse(substitute(...)) |
|
|
16 |
# subset(df, eval(parse(text = ssubset))) |
|
|
17 |
# } |
|
|
18 |
|
|
|
19 |
dodge2 <- position_dodge2(width = 0.9, padding = 0) |
|
|
20 |
rsq <- function (x, y) cor(x, y, method = "pearson") ^ 2 |
|
|
21 |
rmse <- function(x, y) sqrt(mean((x - y)^2)) |
|
|
22 |
mae <- function(x, y) mean(abs(x - y)) |
|
|
23 |
# Moving average |
|
|
24 |
ma <- function(x, n = 5) filter(x, rep(1 / n, n), sides = 2) |
|
|
25 |
|
|
|
26 |
# install.packages("ggrepel") |
|
|
27 |
# require(ggrepel) |
|
|
28 |
my_plot_function <- function(avg_loss_by, sub_results_by, fill_by, data_order, bar_level_order, |
|
|
29 |
facet_by, facet_level_order, facet_nrow = 2, |
|
|
30 |
legend_title, y_lim = 0.1, y_lab = "Average MAE Loss", |
|
|
31 |
plot_type = "bar_plot", target_sub_by = "Target Above 0.7", |
|
|
32 |
cur_comparisons = NULL, test = "wilcox.test", paired = F, |
|
|
33 |
calculate_avg_mae = T, |
|
|
34 |
hide_outliers = F, step_increase = 0.1, |
|
|
35 |
add_mean = F, min_diff = 0.05) { |
|
|
36 |
|
|
|
37 |
if (plot_type == "bar_plot") { |
|
|
38 |
if (calculate_avg_mae == F) { |
|
|
39 |
y_lab <- "Total RMSE Loss" |
|
|
40 |
} |
|
|
41 |
|
|
|
42 |
# all_results_long_copy <- data.table::melt(unique(all_results_copy[, c(avg_loss_by, "loss_by_config"), with = F]), |
|
|
43 |
# id.vars = avg_loss_by) |
|
|
44 |
|
|
|
45 |
# all_results_long_copy[, cv_mean := mean(value), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
46 |
# all_results_long_copy[, cv_sd := sd(value), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
47 |
all_results_copy[, unique_sample := paste0(cpd_name, "_", cell_name)] |
|
|
48 |
shared_unique_samples <- Reduce(intersect, split(all_results_copy$unique_sample, all_results_copy$data_types)) |
|
|
49 |
# uniqueN(shared_unique_samples) |
|
|
50 |
all_results_copy <- all_results_copy[unique_sample %in% shared_unique_samples] |
|
|
51 |
|
|
|
52 |
if (calculate_avg_mae == T) { |
|
|
53 |
all_results_copy[, cv_mean := mean(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
54 |
all_results_copy[, cv_sd := sd(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
55 |
cur_data <- unique(all_results_copy[, c(eval(avg_loss_by[!avg_loss_by %in% c("fold")]), "cv_mean", "cv_sd"), with = F]) |
|
|
56 |
} else { |
|
|
57 |
# Calculate RMSE instead |
|
|
58 |
all_results_copy[, cv_mean := rmse(target, predicted), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
59 |
cur_data <- unique(all_results_copy[, c(eval(avg_loss_by[!avg_loss_by %in% c("fold")]), "cv_mean"), with = F]) |
|
|
60 |
# all_results_copy[, cv_sd := sd(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
61 |
} |
|
|
62 |
|
|
|
63 |
# ssubset <- deparse(substitute(sub_results_by)) |
|
|
64 |
# baseline <- subset.data.table(all_results_long_copy, eval(parse(text = ssubset))) |
|
|
65 |
cur_data <- subset(cur_data, eval(sub_results_by)) |
|
|
66 |
|
|
|
67 |
# baseline <- mysubset(all_results_long_copy, eval(sub_results_by)) |
|
|
68 |
|
|
|
69 |
# Order bars the same as the error bars by changing data frame order via left join |
|
|
70 |
bar_level_df <- data.frame(x1 = bar_level_order) |
|
|
71 |
colnames(bar_level_df) <- as.character(fill_by) |
|
|
72 |
cur_data <- left_join(bar_level_df, |
|
|
73 |
cur_data, |
|
|
74 |
by = as.character(fill_by)) |
|
|
75 |
|
|
|
76 |
cur_data <- as.data.table(cur_data) |
|
|
77 |
if (y_lim == "full") { |
|
|
78 |
cur_ylim <- ylim(0, 1) |
|
|
79 |
} else { |
|
|
80 |
if (add_mean == T) { |
|
|
81 |
cur_ylim <- ylim(0, max(cur_data$cv_mean) + y_lim) |
|
|
82 |
} else { |
|
|
83 |
if (calculate_avg_mae == T) { |
|
|
84 |
cur_ylim <- ylim(0, max(cur_data$cv_mean) + max(cur_data$cv_sd) + y_lim) |
|
|
85 |
} else { |
|
|
86 |
cur_ylim <- ylim(0, max(cur_data$cv_mean) + y_lim) |
|
|
87 |
} |
|
|
88 |
} |
|
|
89 |
} |
|
|
90 |
|
|
|
91 |
# cur_data[, diff := abs(cv_mean - shift(cv_mean)), by = c("data_types")] |
|
|
92 |
p <- ggplot(cur_data) |
|
|
93 |
|
|
|
94 |
if (add_mean == T) { |
|
|
95 |
if (!is.null(facet_by)) { |
|
|
96 |
cur_data[, diff := abs(diff(cv_mean)), by = c("data_types", facet_by)] |
|
|
97 |
cur_data[, max_y := max(cv_mean), by = c("data_types", facet_by)] |
|
|
98 |
# "first higher" depends on the bar order given to the function (left to right) |
|
|
99 |
cur_data[, first_higher := ifelse(diff(cv_mean) < 0, T, F), by = c("data_types", facet_by)] |
|
|
100 |
|
|
|
101 |
} else { |
|
|
102 |
cur_data[, diff := abs(diff(cv_mean)), by = c("data_types")] |
|
|
103 |
cur_data[, max_y := max(cv_mean), by = "data_types"] |
|
|
104 |
cur_data[, first_higher := ifelse(diff(cv_mean) < 0, T, F), by = c("data_types")] |
|
|
105 |
} |
|
|
106 |
cur_data[, diff_too_small := ifelse(diff < min_diff, T, F)] |
|
|
107 |
|
|
|
108 |
p <- p + geom_text(aes(x=data_types, |
|
|
109 |
label = round(cv_mean, 3), y = cv_mean), |
|
|
110 |
vjust = 1, hjust = -0.25, angle = 90, position = position_dodge2(width = .9)) + |
|
|
111 |
geom_bar(aes(x = data_types, y = max_y), |
|
|
112 |
stat = "identity", fill = "grey80", width = 0.4, position = "dodge") + |
|
|
113 |
# geom_text(data = cur_data[first_higher == T], |
|
|
114 |
geom_text(data = unique(cur_data[diff_too_small == F, |
|
|
115 |
c("data_types", "diff", "max_y", facet_by), with = F]), |
|
|
116 |
aes(x = data_types, label = round(diff, 3), y = max_y), |
|
|
117 |
vjust = 0.5, hjust = -0.25, angle = 45, color = "red") |
|
|
118 |
|
|
|
119 |
} else { |
|
|
120 |
if (calculate_avg_mae == T) { |
|
|
121 |
p <- p + geom_text(aes(x=factor(data_types, levels = bar_level_order), |
|
|
122 |
label = round(cv_mean, 3), y = cv_mean + cv_sd), |
|
|
123 |
vjust = 0.5, hjust = -0.25, angle = 90, position = position_dodge2(width = .9)) + |
|
|
124 |
geom_errorbar(aes(x=data_types, |
|
|
125 |
y=cv_mean, |
|
|
126 |
ymax=cv_mean + cv_sd, |
|
|
127 |
ymin=cv_mean - 0.01, col='black'), |
|
|
128 |
linetype=1, show.legend = FALSE, position = dodge2, width = 0.9) |
|
|
129 |
} else { |
|
|
130 |
p <- p + geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), |
|
|
131 |
vjust = 0.5, hjust = -0.1, angle = 90, position = position_dodge2(width = .9)) |
|
|
132 |
|
|
|
133 |
} |
|
|
134 |
} |
|
|
135 |
|
|
|
136 |
# Set bar order |
|
|
137 |
p <- p + geom_bar(mapping = aes(x = data_types, y = cv_mean, |
|
|
138 |
fill = factor(eval(fill_by), |
|
|
139 |
levels = bar_level_order)), |
|
|
140 |
stat = "identity", position="dodge", width = .9) + |
|
|
141 |
scale_x_discrete(limits = data_order) + |
|
|
142 |
scale_fill_discrete(name = legend_title) + |
|
|
143 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
144 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
145 |
theme(text = element_text(size = 14), |
|
|
146 |
# axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
147 |
axis.title.x = element_blank(), |
|
|
148 |
# legend.position = c(.85,.85), |
|
|
149 |
# legend.position=c(1,1), |
|
|
150 |
legend.direction="horizontal", |
|
|
151 |
legend.position="top", |
|
|
152 |
legend.justification="right", |
|
|
153 |
# legend.justification=c(1, 0), |
|
|
154 |
# plot.margin = unit(c(5, 1, 0.5, 0.5), "lines") |
|
|
155 |
) + |
|
|
156 |
# theme_gray(base_size = 14) + |
|
|
157 |
ylab(y_lab) + |
|
|
158 |
# ylim(0, max(cur_data$cv_mean) + max(cur_data$cv_sd) + 0.05) + |
|
|
159 |
# ylim(0, max(cur_data$cv_mean) + max(cur_data$cv_sd) + y_lim) + |
|
|
160 |
# ylim(0, 1) + |
|
|
161 |
cur_ylim |
|
|
162 |
|
|
|
163 |
if (!is.null(facet_by)) { |
|
|
164 |
if (length(facet_by) > 1) { |
|
|
165 |
for (i in 1:length(facet_by)) { |
|
|
166 |
# If the length is more than 1, it is assumed that facet_level_order is a list |
|
|
167 |
set(cur_data, j = eval(facet_by)[i], value = factor(unlist(cur_data[, as.character(facet_by)[i], with = F]), |
|
|
168 |
levels = facet_level_order[[i]])) |
|
|
169 |
} |
|
|
170 |
} else { |
|
|
171 |
set(cur_data, j = as.character(facet_by), value = factor(unlist(cur_data[, as.character(facet_by), with = F]), |
|
|
172 |
levels = facet_level_order)) |
|
|
173 |
|
|
|
174 |
} |
|
|
175 |
p <- p + facet_wrap(facet_by, |
|
|
176 |
ncol = length(facet_level_order), |
|
|
177 |
nrow = facet_nrow) |
|
|
178 |
} |
|
|
179 |
|
|
|
180 |
return(p) |
|
|
181 |
|
|
|
182 |
} else if (plot_type == "box_plot" | plot_type == "violin_plot") { |
|
|
183 |
# Subset all results |
|
|
184 |
require(ggpubr) |
|
|
185 |
all_results_subset <- subset(all_results_copy, eval(sub_results_by)) |
|
|
186 |
|
|
|
187 |
# Find unique samples shared between all given models that use different data types |
|
|
188 |
all_results_subset[, unique_sample := paste0(cpd_name, "_", cell_name)] |
|
|
189 |
|
|
|
190 |
if (uniqueN(all_results_subset$split_method) > 1) { |
|
|
191 |
all_results_subset[, unique_group := paste0(data_types, "_", split_method)] |
|
|
192 |
shared_unique_samples <- Reduce(intersect, split(all_results_subset$unique_sample, all_results_subset$unique_group)) |
|
|
193 |
} else { |
|
|
194 |
shared_unique_samples <- Reduce(intersect, split(all_results_subset$unique_sample, all_results_subset$data_types)) |
|
|
195 |
} |
|
|
196 |
# shared_unique_samples <- intersect(shared_unique_samples_by_data_types, shared_unique_samples_by_split_method) |
|
|
197 |
all_results_subset <- all_results_subset[unique_sample %in% shared_unique_samples] |
|
|
198 |
# uniqueN(all_results_subset) # 2003392 for cell line and drug scaffold, 2191444 for all 3 |
|
|
199 |
# all_results_subset[data_types == "PROT" & split_method == "Split By Cell Line"] |
|
|
200 |
# all_results_subset[data_types == "PROT" & split_method == "Split By Drug Scaffold"] |
|
|
201 |
# all_results_subset[data_types == "PROT" & split_method == "Split By Both Cell Line & Drug Scaffold"] |
|
|
202 |
if (length(target_sub_by) == 1) { |
|
|
203 |
all_results_sub_sub <- all_results_subset[TargetRange == target_sub_by] |
|
|
204 |
} else { |
|
|
205 |
all_results_sub_sub <- all_results_subset[TargetRange %in% target_sub_by] |
|
|
206 |
} |
|
|
207 |
# Order data for the facet |
|
|
208 |
all_results_sub_sub[, data_types := factor(data_types, levels = data_order)] |
|
|
209 |
all_results_sub_sub[, as.character(fill_by) := factor(unlist(all_results_sub_sub[, as.character(fill_by), with = F]), |
|
|
210 |
levels = bar_level_order)] |
|
|
211 |
# all_results_sub_sub[, cv_mean := mean(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
212 |
# all_results_sub_sub[, cv_sd := sd(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
213 |
|
|
|
214 |
if (paired == T) { |
|
|
215 |
# Set order within each group by the unique ID, so that each group has the same order (for pairing?) |
|
|
216 |
setorder(all_results_sub_sub, data_types, unique_sample) |
|
|
217 |
# uniqueN(all_results_sub_sub) / 8 |
|
|
218 |
|
|
|
219 |
# table(all_results_sub_sub[split_method == "Split By Drug Scaffold"]$data_types) |
|
|
220 |
# table(all_results_sub_sub$data_types) |
|
|
221 |
# # Confirm: |
|
|
222 |
# all_results_sub_sub[, head(unique_sample,2),by=data_types] |
|
|
223 |
|
|
|
224 |
} |
|
|
225 |
if (plot_type == "box_plot") { |
|
|
226 |
p <- ggboxplot(data = all_results_sub_sub, x = as.character(fill_by), |
|
|
227 |
y = "RMSELoss", color = as.character(fill_by), |
|
|
228 |
outlier.shape = ifelse(hide_outliers, NA, 19)) |
|
|
229 |
} else { |
|
|
230 |
p <- ggviolin(data = all_results_sub_sub, x = as.character(fill_by), |
|
|
231 |
y = "RMSELoss", color = as.character(fill_by), |
|
|
232 |
draw_quantiles = 0.5, |
|
|
233 |
# add = "mean_range" |
|
|
234 |
# add = "boxplot" |
|
|
235 |
) |
|
|
236 |
} |
|
|
237 |
p <- set_palette(p, "jco") |
|
|
238 |
p <- facet(p = p, facet.by = facet_by, nrow = 1, strip.position = "bottom") + |
|
|
239 |
theme( |
|
|
240 |
# axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
241 |
axis.text.x = element_blank(), |
|
|
242 |
axis.ticks.x = element_blank(), |
|
|
243 |
axis.title.x = element_blank(), |
|
|
244 |
text = element_text(size = 14) |
|
|
245 |
) + |
|
|
246 |
labs(color = legend_title) + |
|
|
247 |
ylab(y_lab) + |
|
|
248 |
scale_y_continuous(breaks = seq(0, 1, 0.2)) |
|
|
249 |
|
|
|
250 |
# if (plot_difference == T) { |
|
|
251 |
# p + geom_text(data = unique(all_results_sub_sub[, c("data_types", "cv_mean", "cv_sd")]), |
|
|
252 |
# aes(x = data_types, |
|
|
253 |
# label = round(cv_mean, 3), |
|
|
254 |
# y = cv_mean + cv_sd), |
|
|
255 |
# vjust = 0.5, hjust = -0.25, angle = 90, position = position_dodge2(width = .9)) |
|
|
256 |
# p + annotate("text", x=0.1, y=0.1, label= "boat") |
|
|
257 |
|
|
|
258 |
# } |
|
|
259 |
|
|
|
260 |
if (!is.null(cur_comparisons)) { |
|
|
261 |
if (test == "ks.test") { |
|
|
262 |
# facet_by |
|
|
263 |
# all_results_sub_sub[eval(fill_by) == cur_comparisons[[i]][1]]$RMSELoss |
|
|
264 |
# bar_level_order |
|
|
265 |
all_stats <- vector("list", length = length(cur_comparisons)) |
|
|
266 |
for (i in 1:length(cur_comparisons)) { |
|
|
267 |
all_results_sub_sub[eval(fill_by) %in% cur_comparisons[[i]], c("ks_D", "ks_p") := ks.test(x = .SD[eval(fill_by) == cur_comparisons[[i]][1]]$RMSELoss, |
|
|
268 |
y = .SD[eval(fill_by) == cur_comparisons[[i]][2]]$RMSELoss, |
|
|
269 |
alternative = "two.sided")[1:2], by = facet_by] |
|
|
270 |
cur_stat <- unique(all_results_sub_sub[!is.na(ks_D), c(facet_by, as.character(fill_by), "ks_D", "ks_p"), with = F]) |
|
|
271 |
all_results_sub_sub$ks_D <- NULL |
|
|
272 |
all_results_sub_sub$ks_p <- NULL |
|
|
273 |
|
|
|
274 |
cur_stat[, ks_D := round(ks_D, 3)] |
|
|
275 |
cur_stat[, ks_p := round(ks_p, 3)] |
|
|
276 |
temp <- melt(cur_stat, id.vars = c(facet_by, "ks_D", "ks_p")) |
|
|
277 |
|
|
|
278 |
dcast_formula <- as.formula(paste0(paste(facet_by, collapse=" + "), " + ks_D + ks_p ~ value")) |
|
|
279 |
final_stat <- dcast(temp, formula = dcast_formula) |
|
|
280 |
|
|
|
281 |
col_pos <- (length(facet_by) + 2 + 1) |
|
|
282 |
colnames(final_stat)[col_pos:(col_pos+1)] <- c("group1", "group2") |
|
|
283 |
all_stats[[i]] <- final_stat |
|
|
284 |
} |
|
|
285 |
all_stats <- rbindlist(all_stats) |
|
|
286 |
p <- p + stat_pvalue_manual( |
|
|
287 |
# data = all_stats, label = "KS D: {ks_D}", y.position = 1, step.increase = step_increase |
|
|
288 |
data = all_stats, label = "D = {ks_D}\np: {ks_p}", y.position = 1, |
|
|
289 |
step.group.by = facet_by[length(facet_by)], step.increase = step_increase, |
|
|
290 |
) |
|
|
291 |
} else { |
|
|
292 |
# Add pairwise comparisons p-value |
|
|
293 |
p <- p + stat_compare_means(comparisons = cur_comparisons, |
|
|
294 |
method = test, |
|
|
295 |
method.args = list(alternative = "two.sided"), |
|
|
296 |
# label.y.npc = "top", |
|
|
297 |
paired = paired) |
|
|
298 |
# compare_means(RMSELoss ~ data_types, data = all_results_sub_sub, group.by = c("data_types", "Targeted")) |
|
|
299 |
} |
|
|
300 |
} |
|
|
301 |
return(p) |
|
|
302 |
} |
|
|
303 |
} |
|
|
304 |
|
|
|
305 |
|
|
|
306 |
# Generate shared unique cell line and drug combinations between data specific models |
|
|
307 |
# all_results <- fread("Data/all_results.csv") |
|
|
308 |
|
|
|
309 |
temp <- all_results[merge_method == "Base Model" & |
|
|
310 |
loss_type == "Base Model" & |
|
|
311 |
drug_type == "Base Model" & |
|
|
312 |
bottleneck != "With Data Bottleneck" & |
|
|
313 |
nchar(data_types) <= 5] |
|
|
314 |
table(temp$split_method) |
|
|
315 |
all_results_subset <- subset(all_results, |
|
|
316 |
(split_method == "Split By Cell Line" & |
|
|
317 |
merge_method == "Base Model" & |
|
|
318 |
loss_type == "Base Model" & |
|
|
319 |
drug_type == "Base Model" & |
|
|
320 |
bottleneck != "With Data Bottleneck" & |
|
|
321 |
nchar(data_types) <= 5)) |
|
|
322 |
all_results_subset$fold <- NULL |
|
|
323 |
all_results_subset <- unique(all_results_subset) |
|
|
324 |
# Find samples that are shared between all data types |
|
|
325 |
all_results_subset[, unique_sample := paste0(cpd_name, "_", cell_name)] |
|
|
326 |
shared_unique_samples <- Reduce(intersect, split(all_results_subset$unique_sample, all_results_subset$data_types)) |
|
|
327 |
all_results_subset <- all_results_subset[unique_sample %in% shared_unique_samples] |
|
|
328 |
# all_results_shared_subset$unique_sample <- NULL |
|
|
329 |
uniqueN(all_results_subset) / 8 # 125,212 samples in each model that are paired |
|
|
330 |
table(all_results_subset$data_types) |
|
|
331 |
|
|
|
332 |
|
|
|
333 |
# Save unique samples |
|
|
334 |
fwrite(unique(all_results_subset[, c("cpd_name", "cell_name")]), "Data/shared_unique_combinations.csv") |
|
|
335 |
|
|
|
336 |
|
|
|
337 |
# all_results <- fread("Data/all_results.csv") |
|
|
338 |
# CTRPv2 Targeted vs Untargeted Therapeutics Distributions ==== |
|
|
339 |
drug_info <- fread("Data/DRP_Training_Data/CTRP_DRUG_INFO.csv") |
|
|
340 |
|
|
|
341 |
# drug_info$gene_symbol_of_protein_target |
|
|
342 |
# drug_info[target_or_activity_of_compound == "inhibitor of p53-MDM2 interaction"] |
|
|
343 |
# table(targeted_drugs <- drug_info[gene_symbol_of_protein_target != "" & (cpd_status == "clinical" | cpd_status == "FDA")]$target_or_activity_of_compound) |
|
|
344 |
# |
|
|
345 |
# # TODO: Get the list of targeted therapies from NCI-MATCH |
|
|
346 |
# # Drugs with shared targets or activities |
|
|
347 |
# drug_info[target_or_activity_of_compound == "inhibitor of BCL2, BCL-xL, and BCL-W"] |
|
|
348 |
# drug_info[target_or_activity_of_compound == "inhibitor of BRAF"] |
|
|
349 |
# drug_info[target_or_activity_of_compound == "inhibitor of cyclin-dependent kinases"] |
|
|
350 |
# drug_info[target_or_activity_of_compound == "inhibitor of DNA methyltransferase"] |
|
|
351 |
# drug_info[target_or_activity_of_compound == "inhibitor of EGFR and HER2"] |
|
|
352 |
# drug_info[target_or_activity_of_compound == "inhibitor of gamma-secretase"] |
|
|
353 |
# drug_info[target_or_activity_of_compound == "inhibitor of HDAC1, HDAC2, HDAC3, HDAC6, and HDAC8"] |
|
|
354 |
# drug_info[target_or_activity_of_compound == "inhibitor of HMG-CoA reductase"] |
|
|
355 |
# drug_info[target_or_activity_of_compound == "inhibitor of HSP90"] |
|
|
356 |
# drug_info[target_or_activity_of_compound == "inhibitor of Janus kinases 1 and 2"] |
|
|
357 |
# drug_info[target_or_activity_of_compound == "inhibitor of Janus kinase 2"] |
|
|
358 |
# drug_info[target_or_activity_of_compound == "inhibitor of MEK1 and MEK2"] |
|
|
359 |
# drug_info[target_or_activity_of_compound == "inhibitor of mTOR"] |
|
|
360 |
# drug_info[target_or_activity_of_compound == "inhibitor of nicotinamide phosphoribosyltransferase"] |
|
|
361 |
# drug_info[target_or_activity_of_compound == "inhibitor of PI3K and mTOR kinase activity"] |
|
|
362 |
# drug_info[target_or_activity_of_compound == "inhibitor of polo-like kinase 1 (PLK1)"] |
|
|
363 |
# drug_info[target_or_activity_of_compound == "inhibitor of VEGFRs"] |
|
|
364 |
# drug_info[target_or_activity_of_compound == "inhibitor of VEGFRs, c-KIT, and PDGFR alpha and beta"] |
|
|
365 |
|
|
|
366 |
|
|
|
367 |
table(drug_info$target_or_activity_of_compound) |
|
|
368 |
# targeted_drugs <- drug_info[gene_symbol_of_protein_target != ""]$rn |
|
|
369 |
ctrp <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt") |
|
|
370 |
# ctrp[ , mean_by_drug := mean(area_above_curve), by = "cpd_name"] |
|
|
371 |
# ctrp[ , mean_by_cell := mean(area_above_curve), by = "ccl_name"] |
|
|
372 |
# ctrp[, Dataset := "CTRPv2"] |
|
|
373 |
|
|
|
374 |
|
|
|
375 |
# mean(ctrp[Targeted == T]$area_above_curve) |
|
|
376 |
# mean(ctrp[Targeted == F]$area_above_curve) |
|
|
377 |
ctrp[, Targeted := ifelse(cpd_name %in% targeted_drugs, "TargetedDrug", "UntargetedDrug")] |
|
|
378 |
|
|
|
379 |
unique(ctrp[, c("cpd_name", "Targeted")]) |
|
|
380 |
unique(ctrp[Targeted == "TargetedDrug"]$cpd_name) |
|
|
381 |
unique(ctrp[Targeted == "UntargetedDrug"]$cpd_name) |
|
|
382 |
table(ctrp$Targeted) |
|
|
383 |
|
|
|
384 |
ctrp[Targeted == "UntargetedDrug", Targeted := "Untargeted Drug"] |
|
|
385 |
ctrp[Targeted == "TargetedDrug", Targeted := "Targeted Drug"] |
|
|
386 |
colnames(ctrp)[8] <- "Drug Type" |
|
|
387 |
|
|
|
388 |
ggplot(ctrp, aes(x = area_above_curve, colour = Targeted)) + |
|
|
389 |
# geom_density(bins=100) + |
|
|
390 |
geom_freqpoly(bins=100) + |
|
|
391 |
geom_vline(aes(xintercept = mean(area_above_curve)), color="blue", linetype="dashed", size=1) + |
|
|
392 |
geom_vline(aes(xintercept = median(area_above_curve)), color="blue", linetype="dashed", size=1) + |
|
|
393 |
scale_x_continuous(breaks=c(0, round(median(ctrp$area_above_curve), 3), round(mean(ctrp$area_above_curve), 3), 0.25, 0.5, 0.75, 1)) + |
|
|
394 |
annotate(x=mean(ctrp$area_above_curve), y=20000,label="CTRPv2 Mean",vjust=1.5,geom="text", angle = 90) + |
|
|
395 |
annotate(x=median(ctrp$area_above_curve), y=20000,label="CTRPv2 Median",vjust=1.5,geom="text", angle = 90) + |
|
|
396 |
ggtitle(label = "AAC Frequency Polygon for CTRPv2: Targeted vs Untargeted Drugs") + |
|
|
397 |
xlab("Area Above Curve") + ylab("Count") |
|
|
398 |
|
|
|
399 |
ggsave(filename = "Plots/Dataset_Exploration/CTRP_AAC_Distribution_Targeted_vs_Untargeted.pdf") |
|
|
400 |
|
|
|
401 |
ggplot(ctrp, aes(x = `Drug Type`, y = area_above_curve)) + |
|
|
402 |
geom_boxplot() + |
|
|
403 |
ylab("Area Above Curve") |
|
|
404 |
# theme(legend.position = c(.9,.85)) + |
|
|
405 |
# geom_vline(aes(xintercept = mean(area_above_curve)), color="blue", linetype="dashed", size=1) + |
|
|
406 |
# geom_vline(aes(xintercept = median(area_above_curve)), color="blue", linetype="dashed", size=1) + |
|
|
407 |
# scale_x_continuous(breaks=c(0, round(median(ctrp$area_above_curve), 3), |
|
|
408 |
# round(mean(ctrp$area_above_curve), 3), |
|
|
409 |
# 0.25, 0.5, 0.75, 1)) + |
|
|
410 |
# scale_fill_discrete(name = "Drug Type:") + |
|
|
411 |
# annotate(x=mean(ctrp$area_above_curve), y=20000,label="CTRPv2 Mean",vjust=1.5,geom="text", angle = 90) + |
|
|
412 |
# annotate(x=median(ctrp$area_above_curve), y=20000,label="CTRPv2 Median",vjust=1.5,geom="text", angle = 90) + |
|
|
413 |
# ggtitle(label = "AAC Frequency Polygon for CTRPv2: Targeted vs Untargeted Drugs") + |
|
|
414 |
|
|
|
415 |
ggsave(filename = "Plots/Dataset_Exploration/CTRP_AAC_Distribution_Targeted_vs_Untargeted_BoxPlot.pdf") |
|
|
416 |
|
|
|
417 |
|
|
|
418 |
# ggplot(ctrp, aes(x = `Drug Type`, y = area_above_curve)) + |
|
|
419 |
# geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) + |
|
|
420 |
# # geom_boxplot() + |
|
|
421 |
# ylab("Area Above Curve") |
|
|
422 |
|
|
|
423 |
require(ggpubr) |
|
|
424 |
p <- ggviolin(data = ctrp, x = "Drug Type", y = "area_above_curve", |
|
|
425 |
add = "boxplot") + |
|
|
426 |
stat_compare_means(comparisons = list(c("Targeted Drug", "Untargeted Drug")), |
|
|
427 |
method = "wilcox.test", |
|
|
428 |
method.args = list(alternative = "two.sided")) + |
|
|
429 |
ylab("Area Above Curve") + |
|
|
430 |
xlab("") + |
|
|
431 |
scale_y_continuous(breaks = c(seq(0, 1, 0.2), |
|
|
432 |
round(median(ctrp[`Drug Type` == "Targeted Drug"]$area_above_curve), 3), |
|
|
433 |
round(median(ctrp[`Drug Type` == "Untargeted Drug"]$area_above_curve), 3))) + |
|
|
434 |
geom_hline(yintercept = median(ctrp[`Drug Type` == "Targeted Drug"]$area_above_curve), linetype = "dotted") + |
|
|
435 |
geom_hline(yintercept = median(ctrp[`Drug Type` == "Untargeted Drug"]$area_above_curve), linetype = "dotted") + |
|
|
436 |
theme(text = element_text(size = 18)) |
|
|
437 |
|
|
|
438 |
# p <- set_palette(p, "jco") |
|
|
439 |
ggsave(plot = p, filename = "Plots/Dataset_Exploration/CTRP_AAC_Distribution_Targeted_vs_Untargeted_ViolinPlot.pdf") |
|
|
440 |
|
|
|
441 |
## Validation Subset ==== |
|
|
442 |
require(data.table) |
|
|
443 |
require(ggpubr) |
|
|
444 |
ctrp <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt") |
|
|
445 |
drug_info <- fread("Data/DRP_Training_Data/CTRP_DRUG_INFO.csv") |
|
|
446 |
shared_valid <- fread("Data/shared_unique_combinations.csv") |
|
|
447 |
shared_valid[, unique_sample := paste0(cpd_name, "_", cell_name)] |
|
|
448 |
|
|
|
449 |
ctrp[, Targeted := ifelse(cpd_name %in% targeted_drugs, "TargetedDrug", "UntargetedDrug")] |
|
|
450 |
ctrp[Targeted == "UntargetedDrug", Targeted := "Untargeted Drug"] |
|
|
451 |
ctrp[Targeted == "TargetedDrug", Targeted := "Targeted Drug"] |
|
|
452 |
colnames(ctrp)[8] <- "Drug Type" |
|
|
453 |
|
|
|
454 |
ctrp[, unique_sample := paste0(cpd_name, "_", ccl_name)] |
|
|
455 |
|
|
|
456 |
ctrp_sub <- ctrp[unique_sample %in% shared_valid$unique_sample] |
|
|
457 |
|
|
|
458 |
table(ctrp_sub$`Drug Type`) |
|
|
459 |
table(ctrp$`Drug Type`) |
|
|
460 |
# Subset CTRPv2 by shared validation samples |
|
|
461 |
p <- ggviolin(data = ctrp_sub, x = "Drug Type", y = "area_above_curve", |
|
|
462 |
add = "boxplot") + |
|
|
463 |
stat_compare_means(comparisons = list(c("Targeted Drug", "Untargeted Drug")), |
|
|
464 |
method = "wilcox.test", |
|
|
465 |
method.args = list(alternative = "two.sided")) + |
|
|
466 |
ylab("Area Above Curve") + |
|
|
467 |
xlab("") + |
|
|
468 |
scale_y_continuous(breaks = c(seq(0, 1, 0.2), |
|
|
469 |
round(median(ctrp[`Drug Type` == "Targeted Drug"]$area_above_curve), 3), |
|
|
470 |
round(median(ctrp[`Drug Type` == "Untargeted Drug"]$area_above_curve), 3))) + |
|
|
471 |
geom_hline(yintercept = median(ctrp[`Drug Type` == "Targeted Drug"]$area_above_curve), linetype = "dotted") + |
|
|
472 |
geom_hline(yintercept = median(ctrp[`Drug Type` == "Untargeted Drug"]$area_above_curve), linetype = "dotted") + |
|
|
473 |
theme(text = element_text(size = 18)) |
|
|
474 |
|
|
|
475 |
ggsave(plot = p, filename = "Plots/Dataset_Exploration/CTRP_AAC_Distribution_Targeted_vs_Untargeted_Validation_Subset_ViolinPlot.pdf") |
|
|
476 |
|
|
|
477 |
# Combine and compare both |
|
|
478 |
ctrp_sub[, Type := "Validation Subset"] |
|
|
479 |
ctrp[, Type := "All Training Data"] |
|
|
480 |
|
|
|
481 |
both_combined <- rbindlist(list(ctrp, ctrp_sub)) |
|
|
482 |
|
|
|
483 |
require(rstatix) |
|
|
484 |
|
|
|
485 |
ks_results_targeted <- ks.test(both_combined[DrugType == "Targeted Drug" & Type == "All Training Data"]$area_above_curve, |
|
|
486 |
both_combined[DrugType == "Targeted Drug" & Type == "Validation Subset"]$area_above_curve, |
|
|
487 |
alternative = "two.sided") |
|
|
488 |
ks_results_untargeted <- ks.test(both_combined[DrugType == "Untargeted Drug" & Type == "All Training Data"]$area_above_curve, |
|
|
489 |
both_combined[DrugType == "Untargeted Drug" & Type == "Validation Subset"]$area_above_curve, |
|
|
490 |
alternative = "two.sided") |
|
|
491 |
|
|
|
492 |
stat_test <- both_combined %>% |
|
|
493 |
group_by(DrugType) %>% |
|
|
494 |
wilcox_test(area_above_curve ~ Type, |
|
|
495 |
p.adjust.method = "fdr", alternative = "two.sided") |
|
|
496 |
|
|
|
497 |
stat_test %>% adjust_pvalue(method = "fdr") |
|
|
498 |
|
|
|
499 |
stat_test <- tibble::tribble( |
|
|
500 |
~DrugType, ~group1, ~group2, ~`D`, |
|
|
501 |
"Targeted Drug", "All Training Data", "Validation Subset", round(ks_results_targeted$statistic, 5), |
|
|
502 |
"Untargeted Drug", "All Training Data", "Validation Subset", round(ks_results_untargeted$statistic, 5), |
|
|
503 |
) |
|
|
504 |
|
|
|
505 |
|
|
|
506 |
colnames(both_combined)[8] <- "DrugType" |
|
|
507 |
p <- ggviolin(data = both_combined, x = "Type", y = "area_above_curve", |
|
|
508 |
add = "boxplot", facet.by = "DrugType") + |
|
|
509 |
stat_pvalue_manual(data = stat_test, |
|
|
510 |
# label = "D Statistic", |
|
|
511 |
label = "KS-test, D = {D}", |
|
|
512 |
y.position = 1.1, ) + |
|
|
513 |
# stat_compare_means(comparisons = list(c("Validation Subset", "All Training Data")), |
|
|
514 |
# method = "wilcox.test", |
|
|
515 |
# method.args = list(alternative = "two.sided")) + |
|
|
516 |
ylab("Area Above Curve") + |
|
|
517 |
xlab("") + |
|
|
518 |
scale_y_continuous(breaks = c(seq(0, 1, 0.2), |
|
|
519 |
round(median(ctrp[`Drug Type` == "Targeted Drug"]$area_above_curve), 3), |
|
|
520 |
round(median(ctrp[`Drug Type` == "Untargeted Drug"]$area_above_curve), 3))) + |
|
|
521 |
geom_hline(yintercept = median(ctrp[`Drug Type` == "Targeted Drug"]$area_above_curve), linetype = "dotted", color = "red") + |
|
|
522 |
geom_hline(yintercept = median(ctrp[`Drug Type` == "Untargeted Drug"]$area_above_curve), linetype = "dotted", color = "red") + |
|
|
523 |
theme(text = element_text(size = 18)) |
|
|
524 |
|
|
|
525 |
ggsave(plot = p, filename = "Plots/Dataset_Exploration/CTRP_AAC_Distribution_Targeted_vs_Untargeted_Validation_Subset_Comparison_ViolinPlot.pdf") |
|
|
526 |
|
|
|
527 |
# Load CV Fold Results ==== |
|
|
528 |
# Select per fold validation files |
|
|
529 |
all_cv_files <- list.files("Data/CV_Results/", recursive = T, |
|
|
530 |
pattern = ".*final_validation.*", full.names = T) |
|
|
531 |
# ".+drug_.{3,5}_HyperOpt.+" |
|
|
532 |
# bimodal_cv_files <- grep(pattern = ".+_.*drug_\\w{3,5}_HyperOpt.+", all_cv_files, value = T) |
|
|
533 |
# bimodal_baseline_cv_files <- grep(pattern = ".+_.*drug_\\w{3,5}_HyperOpt.+MergeByConcat_RMSELoss_MorganDrugs.+", all_cv_files, value = T) |
|
|
534 |
# trimodal_baseline_cv_files <- grep(pattern = ".+_.*drug_\\w{6,11}_HyperOpt.+MergeByConcat_RMSELoss_MorganDrugs.+", all_cv_files, value = T) |
|
|
535 |
|
|
|
536 |
# cur_cv_files <- grep(pattern = ".ResponseOnly_.*drug_\\w{3,5}_.+", cur_cv_files, value = T) |
|
|
537 |
# cur_cv_files <- grep(pattern = ".ResponseOnly_+drug_exp_HyperOpt.+", cur_cv_files, value = T) |
|
|
538 |
# cur_cv_files_2 <- grep(pattern = ".Baseline_ElasticNet.+", all_cv_files, value = T) |
|
|
539 |
# lineage_cv_files <- grep(pattern = ".LINEAGE.+", all_cv_files, value = T) |
|
|
540 |
# bottleneck_cv_files <- grep(pattern = ".WithBottleNeck.+", all_cv_files, value = T) |
|
|
541 |
# final_cv_files <- c(bimodal_cv_files, cur_cv_files_2) |
|
|
542 |
# final_cv_files <- bimodal_cv_files |
|
|
543 |
# trimodal_cv_files <- grep(pattern = ".ResponseOnly_.*gnndrug_.{6,11}_HyperOpt.+", all_cv_files, value = T) |
|
|
544 |
# multimodal_cv_files <- grep(pattern = ".ResponseOnly_.*gnndrug_.{12,}_HyperOpt.+", all_cv_files, value = T) |
|
|
545 |
# final_cv_files <- lineage_cv_files |
|
|
546 |
# final_cv_files <- bottleneck_cv_files |
|
|
547 |
# final_cv_files <- bimodal_cv_files |
|
|
548 |
# final_cv_files <- trimodal_baseline_cv_files |
|
|
549 |
# final_cv_files <- trimodal_cv_files |
|
|
550 |
final_cv_files <- all_cv_files |
|
|
551 |
length(final_cv_files) |
|
|
552 |
sum(grepl(".*ElasticNet.*", final_cv_files)) |
|
|
553 |
sum(grepl(".*WithBottleNeck.*", final_cv_files)) |
|
|
554 |
sum(grepl(".*NoBottleNeck.*", final_cv_files)) |
|
|
555 |
|
|
|
556 |
# Read all data |
|
|
557 |
all_results <- vector(mode = "list", length = length(final_cv_files)) |
|
|
558 |
rm(list = c("all_results_copy", "all_results_long_copy", "all_results_sub", "cur_res", "cur_p", "unique_combos")) |
|
|
559 |
gc() |
|
|
560 |
for (i in 1:length(final_cv_files)) { |
|
|
561 |
cur_res <- fread(final_cv_files[i]) |
|
|
562 |
if (!grepl(".*Baseline_ElasticNet.*", final_cv_files[i])) { |
|
|
563 |
data_types <- gsub(".+_\\w*drug_(.+)_HyperOpt.+", "\\1", final_cv_files[i]) |
|
|
564 |
data_types <- toupper(data_types) |
|
|
565 |
merge_method <- gsub(".+MergeBy(\\w+)_.*RMSE.+", "\\1", final_cv_files[i]) |
|
|
566 |
loss_method <- gsub(".+_(.*)RMSE.+", "\\1RMSE", final_cv_files[i]) |
|
|
567 |
drug_type <- gsub(".+_(\\w*)drug.+_HyperOpt.+", "\\1drug", final_cv_files[i]) |
|
|
568 |
drug_type <- toupper(drug_type) |
|
|
569 |
split_method <- gsub(".+Split_(\\w+)_\\w+BottleNeck.+", "\\1", final_cv_files[i]) |
|
|
570 |
bottleneck <- gsub(".+Split_\\w+_(\\w+BottleNeck).+", "\\1", final_cv_files[i]) |
|
|
571 |
# data_types <- strsplit(data_types, "_")[[1]] |
|
|
572 |
# cur_res$epoch <- as.integer(epoch) |
|
|
573 |
cur_res$data_types <- data_types |
|
|
574 |
cur_res$merge_method <- merge_method |
|
|
575 |
cur_res$loss_type <- loss_method |
|
|
576 |
cur_res$drug_type <- drug_type |
|
|
577 |
cur_res$split_method <- split_method |
|
|
578 |
cur_res$bottleneck <- bottleneck |
|
|
579 |
|
|
|
580 |
} else { |
|
|
581 |
split_method <- gsub(".+Baseline_ElasticNet_Split_(\\w+)_drug_.+", "\\1", final_cv_files[i]) |
|
|
582 |
data_types <- gsub(".+Baseline_ElasticNet_Split_\\w+_drug_(\\w+).+", "\\1", final_cv_files[i]) |
|
|
583 |
data_types <- toupper(data_types) |
|
|
584 |
cur_res$data_types <- data_types |
|
|
585 |
cur_res$split_method <- split_method |
|
|
586 |
cur_res$merge_method <- "Merge By Early Concat" |
|
|
587 |
cur_res$loss_type <- "Base Model" |
|
|
588 |
cur_res$drug_type <- "Base Model" |
|
|
589 |
cur_res$bottleneck <- "No Data Bottleneck" |
|
|
590 |
} |
|
|
591 |
|
|
|
592 |
cur_fold <- gsub(".+CV_Index_(\\d)_.+", "\\1", final_cv_files[i]) |
|
|
593 |
cur_res$fold <- cur_fold |
|
|
594 |
|
|
|
595 |
all_results[[i]] <- cur_res |
|
|
596 |
} |
|
|
597 |
rm(cur_res) |
|
|
598 |
gc() |
|
|
599 |
|
|
|
600 |
all_results <- rbindlist(all_results, fill = T) |
|
|
601 |
if (any(all_results$merge_method == "Merge By Early Concat")) { |
|
|
602 |
all_results[is.na(rmse_loss), RMSELoss := abs(target - predicted), by = .I] |
|
|
603 |
all_results[!is.na(rmse_loss), RMSELoss := rmse_loss, by = .I] |
|
|
604 |
all_results$rmse_loss <- NULL |
|
|
605 |
} else { |
|
|
606 |
all_results[, RMSELoss := abs(target - predicted), by = .I] |
|
|
607 |
} |
|
|
608 |
|
|
|
609 |
# all_results[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold")] |
|
|
610 |
all_results$V1 <- NULL |
|
|
611 |
|
|
|
612 |
# Update CV splitting method names |
|
|
613 |
all_results[split_method == "BOTH", split_method := "Split By Both Cell Line & Drug Scaffold"] |
|
|
614 |
all_results[split_method == "DRUG", split_method := "Split By Drug Scaffold"] |
|
|
615 |
all_results[split_method == "CELL_LINE", split_method := "Split By Cell Line"] |
|
|
616 |
all_results[split_method == "LINEAGE", split_method := "Split By Cancer Type"] |
|
|
617 |
|
|
|
618 |
# all_results[merge_method == "MergeByEarlyConcat"]$merge_method <- "Merge By Early Concat" |
|
|
619 |
# Update model names based on used techniques |
|
|
620 |
all_results[loss_type == "RMSE", loss_type := "Base Model"] |
|
|
621 |
all_results[loss_type == "WeightedRMSE", loss_type := "Base Model + LDS"] |
|
|
622 |
all_results[merge_method == "Concat", merge_method := "Base Model"] |
|
|
623 |
all_results[merge_method == "LMF", merge_method := "Base Model + LMF"] |
|
|
624 |
all_results[merge_method == "Sum", merge_method := "Base Model + Sum"] |
|
|
625 |
all_results[drug_type == "DRUG", drug_type := "Base Model"] |
|
|
626 |
all_results[drug_type == "GNNDRUG", drug_type := "Base Model + GNN"] |
|
|
627 |
|
|
|
628 |
# Update data bottleneck names |
|
|
629 |
all_results[bottleneck == "NoBottleNeck", bottleneck := "No Data Bottleneck"] |
|
|
630 |
all_results[bottleneck == "WithBottleNeck", bottleneck := "With Data Bottleneck"] |
|
|
631 |
|
|
|
632 |
all_results[, Targeted := fifelse(cpd_name %in% targeted_drugs, "Targeted Drug", "Untargeted Drug")] |
|
|
633 |
|
|
|
634 |
all_results[, TargetRange := fifelse(target >= 0.7, "Target Above 0.7", "Target Below 0.7")] |
|
|
635 |
|
|
|
636 |
# table(all_results$Targeted) |
|
|
637 |
# table(all_results$TargetRange) |
|
|
638 |
# |
|
|
639 |
# all_results[RMSELoss > 1] |
|
|
640 |
# table(all_results[RMSELoss > 1]$data_types) |
|
|
641 |
# table(all_results$data_types) |
|
|
642 |
|
|
|
643 |
|
|
|
644 |
# Save |
|
|
645 |
fwrite(all_results, "Data/all_results.csv") |
|
|
646 |
# fwrite(all_results, "Data/all_bimodal_results.csv") |
|
|
647 |
|
|
|
648 |
# Identify duplicated folds |
|
|
649 |
unique_combos <- fread("Data/shared_unique_combinations.csv") |
|
|
650 |
unique_combos[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
651 |
all_results[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
652 |
all_results_sub <- all_results[unique_samples %in% unique_combos$unique_samples] |
|
|
653 |
|
|
|
654 |
all_results_sub[, num_samples := .N, by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck")] |
|
|
655 |
unique(all_results_sub[num_samples > 125212][, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck", "num_samples")]) |
|
|
656 |
|
|
|
657 |
# Check for missing folds per config |
|
|
658 |
all_results[, num_folds := uniqueN(fold), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck")] |
|
|
659 |
|
|
|
660 |
unique(all_results[num_folds != 5][, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck", "num_folds")]) |
|
|
661 |
# data_types merge_method loss_type drug_type split_method bottleneck |
|
|
662 |
# 1: CNV_METAB Base Model Base Model Base Model Split By Cell Line With Data Bottleneck |
|
|
663 |
# 2: CNV Base Model + Sum Base Model + LDS Base Model + GNN Split By Cell Line No Data Bottleneck |
|
|
664 |
# 3: CNV Base Model + LMF Base Model Base Model + GNN Split By Drug Scaffold No Data Bottleneck |
|
|
665 |
# 4: HIST_RPPA Base Model + LMF Base Model + LDS Base Model + GNN Split By Cell Line No Data Bottleneck |
|
|
666 |
# 5: HIST_RPPA Base Model + LMF Base Model + LDS Base Model + GNN Split By Drug Scaffold No Data Bottleneck |
|
|
667 |
# 6: MIRNA_HIST Base Model + LMF Base Model + LDS Base Model + GNN Split By Cell Line No Data Bottleneck |
|
|
668 |
# 7: MIRNA Base Model + LMF Base Model Base Model + GNN Split By Drug Scaffold No Data Bottleneck |
|
|
669 |
# 8: MIRNA_RPPA Base Model + LMF Base Model + LDS Base Model + GNN Split By Cell Line No Data Bottleneck |
|
|
670 |
# 9: MIRNA_RPPA Base Model + LMF Base Model + LDS Base Model + GNN Split By Drug Scaffold No Data Bottleneck |
|
|
671 |
# 10: MUT_CNV Base Model + LMF Base Model + LDS Base Model + GNN Split By Both Cell Line & Drug Scaffold No Data Bottleneck |
|
|
672 |
# 11: MUT Base Model Base Model + LDS Base Model + GNN Split By Both Cell Line & Drug Scaffold No Data Bottleneck |
|
|
673 |
# 12: PROT Base Model + LMF Base Model Base Model + GNN Split By Drug Scaffold No Data Bottleneck |
|
|
674 |
|
|
|
675 |
# Targeted vs Untargeted in Baseline ==== |
|
|
676 |
# targeted_drugs <- fread("Data/DRP_Training_Data/CANCER_GOV_TARGETED_DRUGS.csv", fill = T) |
|
|
677 |
# targeted_drugs <- targeted_drugs$Targeted_Drugs |
|
|
678 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
679 |
all_results_copy <- all_results[nchar(data_types) <= 5] |
|
|
680 |
# all_results_copy[, cv_mean := mean(RMSELoss), by = c("cpd_name", "cell_name", "data_types", "merge_method", "loss_type", "drug_type", "split_method")] |
|
|
681 |
|
|
|
682 |
# baseline_with_gnn <- all_results_long_copy[(merge_method == "Concat" & loss_type == "RMSE" & split_method == "DRUG")] |
|
|
683 |
baseline <- all_results_copy[merge_method == "MergeByConcat" & loss_type == "UnweightedLoss" & data_types %in% c("EXP", "PROT") & |
|
|
684 |
drug_type == "Morgan" & split_method == "SplitByBoth" & nchar(data_types) <= 5] |
|
|
685 |
|
|
|
686 |
p <- ggplot(baseline, mapping = aes(x = Targeted, y = cv_mean)) + |
|
|
687 |
geom_boxplot() + |
|
|
688 |
facet_wrap(~data_types+TargetRange, ncol = 2) + |
|
|
689 |
ggtitle(label = tools::toTitleCase("Comparison of GNN drug representation on targeted and untargeted drugs"), |
|
|
690 |
subtitle = "5-fold validation RMSE loss using strict splitting, True Target >= 0.7") + |
|
|
691 |
|
|
|
692 |
|
|
|
693 |
scale_fill_discrete(name = "CV Fold:") + |
|
|
694 |
scale_x_discrete() + |
|
|
695 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
696 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
697 |
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
|
|
698 |
geom_errorbar(aes(x=data_types, |
|
|
699 |
y=cv_mean, |
|
|
700 |
ymax=cv_mean, |
|
|
701 |
ymin=cv_mean, col='red'), linetype=2, show.legend = FALSE) + |
|
|
702 |
geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), vjust = -0.5) |
|
|
703 |
# targeted_drug_results <- all_results[cpd_name %in% targeted_drugs] |
|
|
704 |
|
|
|
705 |
# all_results_copy[, Targeted := ifelse(cpd_name %ilike% paste0(targeted_drugs, collapse = "|"), T, F)] |
|
|
706 |
|
|
|
707 |
|
|
|
708 |
# unique(all_results_copy[Targeted == T]$cpd_name) |
|
|
709 |
# dput(unique(all_results_copy[Targeted == T]$cpd_name)) |
|
|
710 |
# all_results_copy <- all_results_copy[Targeted == T] |
|
|
711 |
# all_results_copy <- all_results_copy[target >= 0.9] |
|
|
712 |
|
|
|
713 |
# all_results_copy_sub <- all_results_copy[target >= 0.7] |
|
|
714 |
# all_results_copy_sub <- all_results_copy[target >= 0.7] |
|
|
715 |
|
|
|
716 |
# temp <- all_results_copy_sub[data_types == "EXP" & merge_method == "Concat"] |
|
|
717 |
# temp[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "Targeted")] |
|
|
718 |
|
|
|
719 |
|
|
|
720 |
|
|
|
721 |
# Bi-modal Baseline Bottleneck Comparison (split by cell line) ==== |
|
|
722 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
723 |
all_results_copy <- all_results[nchar(data_types) <= 5] |
|
|
724 |
# all_results_copy <- all_results |
|
|
725 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange", "bottleneck") |
|
|
726 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
727 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
728 |
|
|
|
729 |
# Bar plot |
|
|
730 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
731 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
732 |
merge_method == "Base Model" & |
|
|
733 |
loss_type == "Base Model" & |
|
|
734 |
drug_type == "Base Model" & |
|
|
735 |
nchar(data_types) <= 5)), |
|
|
736 |
fill_by = quote(bottleneck), |
|
|
737 |
bar_level_order = c("With Data Bottleneck", "No Data Bottleneck"), |
|
|
738 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
739 |
data_order = data_order, |
|
|
740 |
facet_by = quote(TargetRange), |
|
|
741 |
legend_title = "Data Type:", |
|
|
742 |
calculate_avg_mae = F, |
|
|
743 |
) |
|
|
744 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
745 |
|
|
|
746 |
ggsave(plot = cur_p, |
|
|
747 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_Bottleneck_Comparison_BarPlot.pdf") |
|
|
748 |
|
|
|
749 |
# Violin plot |
|
|
750 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
751 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
752 |
merge_method == "Base Model" & |
|
|
753 |
loss_type == "Base Model" & |
|
|
754 |
drug_type == "Base Model" & |
|
|
755 |
nchar(data_types) <= 5)), |
|
|
756 |
fill_by = quote(bottleneck), |
|
|
757 |
bar_level_order = c("With Data Bottleneck", "No Data Bottleneck"), |
|
|
758 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
759 |
data_order = data_order, |
|
|
760 |
facet_by = c("TargetRange", "data_types"), |
|
|
761 |
legend_title = "Data Type:", |
|
|
762 |
plot_type = "violin_plot", |
|
|
763 |
target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
764 |
# target_sub_by = "Target Above 0.7", |
|
|
765 |
cur_comparisons = list(c("With Data Bottleneck", "No Data Bottleneck")), |
|
|
766 |
test = "ks.test", |
|
|
767 |
paired = T |
|
|
768 |
) |
|
|
769 |
|
|
|
770 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) + expand_limits(y = c(0, 1.5)) |
|
|
771 |
ggsave(plot = cur_p, |
|
|
772 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_Bottleneck_Comparison_ViolinPlot.pdf", |
|
|
773 |
height = 8) |
|
|
774 |
|
|
|
775 |
## Concordance between different models ==== |
|
|
776 |
all_results_copy <- all_results[bottleneck == "With Data Bottleneck"] |
|
|
777 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange", "bottleneck") |
|
|
778 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
779 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
780 |
all_comparisons <- utils::combn(data_order, 2, simplify = T) |
|
|
781 |
all_comparisons <- list(c("MUT", "CNV"), c("CNV", "EXP"), c("HIST", "RPPA")) |
|
|
782 |
|
|
|
783 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
784 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
785 |
merge_method == "Base Model" & |
|
|
786 |
loss_type == "Base Model" & |
|
|
787 |
drug_type == "Base Model" & |
|
|
788 |
nchar(data_types) <= 5)), |
|
|
789 |
fill_by = quote(data_types), |
|
|
790 |
# bar_level_order = c("With Data Bottleneck", "No Data Bottleneck"), |
|
|
791 |
bar_level_order = data_order, |
|
|
792 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
793 |
data_order = data_order, |
|
|
794 |
# facet_by = c("TargetRange"), |
|
|
795 |
facet_by = NULL, |
|
|
796 |
legend_title = "Model:", |
|
|
797 |
plot_type = "box_plot", |
|
|
798 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
799 |
target_sub_by = "Target Above 0.7", |
|
|
800 |
cur_comparisons = NULL, |
|
|
801 |
test = "ks.test", |
|
|
802 |
paired = T, |
|
|
803 |
) |
|
|
804 |
|
|
|
805 |
all_results_subset <- subset(all_results_copy, (split_method == "Split By Cell Line" & |
|
|
806 |
merge_method == "Base Model" & |
|
|
807 |
loss_type == "Base Model" & |
|
|
808 |
drug_type == "Base Model" & |
|
|
809 |
nchar(data_types) <= 5)) |
|
|
810 |
# all_results_sub_sub <- all_results_subset[TargetRange %in% c("Target Above 0.7", "Target Below 0.7")] |
|
|
811 |
# Order data for the facet |
|
|
812 |
all_results_subset[, data_types := factor(data_types, levels = data_order)] |
|
|
813 |
all_results_subset[, TargetRange := factor(unlist(all_results_subset[, "TargetRange", with = F]), |
|
|
814 |
levels = c("Target Above 0.7", "Target Below 0.7"))] |
|
|
815 |
all_results_subset[, cv_mean := mean(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
816 |
|
|
|
817 |
# all_results_sub_sub[, cv_sd := sd(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
818 |
|
|
|
819 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
820 |
all_comparisons <- utils::combn(data_order, 2, simplify = F) |
|
|
821 |
all_stat_tests <- vector(mode = "list", length = length(all_comparisons)) |
|
|
822 |
for (i in 1:length(all_stat_tests)) { |
|
|
823 |
all_stat_tests[[i]] <- ks.test(all_results_subset[data_types == all_comparisons[[i]][1]]$RMSELoss, |
|
|
824 |
all_results_subset[data_types == all_comparisons[[i]][2]]$RMSELoss,) |
|
|
825 |
} |
|
|
826 |
|
|
|
827 |
|
|
|
828 |
all_stat_tests <- vector(mode = "list", length = 8) |
|
|
829 |
for (i in 1:length(data_order)) { |
|
|
830 |
all_stat_tests[[i]] <- compare_means(RMSELoss ~ data_types, all_results_subset, |
|
|
831 |
ref.group = data_order[i], |
|
|
832 |
method = "wilcox.test", alternative = "two.sided", |
|
|
833 |
p.adjust.method = "fdr", paired = F) |
|
|
834 |
} |
|
|
835 |
|
|
|
836 |
|
|
|
837 |
cur_palette <- get_palette(palette = "jco", 8) |
|
|
838 |
|
|
|
839 |
final_p <- cur_p + theme(axis.text.x = element_text(), legend.position = "none") |
|
|
840 |
for (i in 1:length(data_order)) { |
|
|
841 |
final_p <- final_p + |
|
|
842 |
# theme(axis.text.x = element_text()) + |
|
|
843 |
geom_bracket( |
|
|
844 |
aes(xmin = group1, |
|
|
845 |
xmax = group2, |
|
|
846 |
# label = p.adj), |
|
|
847 |
label = signif(p.adj, 2)), position = "identity", |
|
|
848 |
data = all_stat_tests[[i]], y.position = 0.3 + (0.3 * i), |
|
|
849 |
step.increase = 0.015, |
|
|
850 |
label.size = 3, |
|
|
851 |
tip.length = 0.01, color = cur_palette[i]) |
|
|
852 |
} |
|
|
853 |
final_p |
|
|
854 |
|
|
|
855 |
ggsave(plot = final_p, |
|
|
856 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_Bottleneck_Concordance_Comparison_BoxPlot.pdf", |
|
|
857 |
height = 12) |
|
|
858 |
|
|
|
859 |
## R-squared Plot ==== |
|
|
860 |
all_results_subset <- subset(all_results_copy, (split_method == "Split By Cell Line" & |
|
|
861 |
merge_method == "Base Model" & |
|
|
862 |
loss_type == "Base Model" & |
|
|
863 |
drug_type == "Base Model" & |
|
|
864 |
nchar(data_types) <= 5)) |
|
|
865 |
# all_results_sub_sub <- all_results_subset[TargetRange %in% c("Target Above 0.7", "Target Below 0.7")] |
|
|
866 |
# Order data for the facet |
|
|
867 |
# all_results_subset[, data_types := factor(data_types, levels = data_order)] |
|
|
868 |
# all_results_subset[, TargetRange := factor(unlist(all_results_subset[, "TargetRange", with = F]), |
|
|
869 |
# levels = c("Target Above 0.7", "Target Below 0.7"))] |
|
|
870 |
# all_results_subset[, cv_mean := mean(RMSELoss), by = eval(avg_loss_by[!avg_loss_by %in% c("fold")])] |
|
|
871 |
|
|
|
872 |
# Find samples that are shared between all data types |
|
|
873 |
all_results_subset[, unique_sample := paste0(cpd_name, "_", cell_name)] |
|
|
874 |
shared_unique_samples <- Reduce(intersect, split(all_results_subset$unique_sample, all_results_subset$data_types)) |
|
|
875 |
all_results_copy <- all_results_subset[unique_sample %in% shared_unique_samples] |
|
|
876 |
# all_results_shared_subset$unique_sample <- NULL |
|
|
877 |
uniqueN(all_results_copy) / 8 # 125,212 samples in each model that are paired |
|
|
878 |
|
|
|
879 |
# Set order within each group by the unique ID, so that each group has the same order (for pairing?) |
|
|
880 |
setorder(all_results_copy, data_types, unique_sample) |
|
|
881 |
# Confirm: |
|
|
882 |
all_results_copy[, head(unique_sample,2),by=data_types] |
|
|
883 |
|
|
|
884 |
|
|
|
885 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
886 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
887 |
merge_method == "Base Model" & |
|
|
888 |
loss_type == "Base Model" & |
|
|
889 |
drug_type == "Base Model" & |
|
|
890 |
nchar(data_types) <= 5)), |
|
|
891 |
fill_by = quote(data_types), |
|
|
892 |
# bar_level_order = c("With Data Bottleneck", "No Data Bottleneck"), |
|
|
893 |
bar_level_order = data_order, |
|
|
894 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
895 |
data_order = data_order, |
|
|
896 |
# facet_by = c("TargetRange"), |
|
|
897 |
facet_by = NULL, |
|
|
898 |
legend_title = "Model:", |
|
|
899 |
plot_type = "box_plot", |
|
|
900 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
901 |
target_sub_by = "Target Above 0.7", |
|
|
902 |
cur_comparisons = NULL, |
|
|
903 |
test = "wilcox.test", |
|
|
904 |
paired = F, hide_outliers = T |
|
|
905 |
) |
|
|
906 |
|
|
|
907 |
all_stat_tests <- vector(mode = "list", length = 8) |
|
|
908 |
for (i in 1:length(data_order)) { |
|
|
909 |
all_stat_tests[[i]] <- compare_means(RMSELoss ~ data_types, all_results_copy, |
|
|
910 |
ref.group = data_order[i], |
|
|
911 |
method = "wilcox.test", alternative = "two.sided", |
|
|
912 |
p.adjust.method = "fdr", paired = T) |
|
|
913 |
} |
|
|
914 |
|
|
|
915 |
|
|
|
916 |
cur_palette <- get_palette(palette = "jco", 8) |
|
|
917 |
|
|
|
918 |
final_p <- cur_p + theme(axis.text.x = element_text(), legend.position = "none") |
|
|
919 |
for (i in 1:length(data_order)) { |
|
|
920 |
final_p <- final_p + |
|
|
921 |
# theme(axis.text.x = element_text()) + |
|
|
922 |
geom_bracket( |
|
|
923 |
aes(xmin = group1, |
|
|
924 |
xmax = group2, |
|
|
925 |
# label = p.adj), |
|
|
926 |
label = signif(p.adj, 2)), position = "identity", |
|
|
927 |
data = all_stat_tests[[i]], y.position = 0.3 + (0.3 * i), |
|
|
928 |
step.increase = 0.015, |
|
|
929 |
label.size = 2, vjust = 1, |
|
|
930 |
tip.length = 0.01, color = cur_palette[i]) |
|
|
931 |
} |
|
|
932 |
final_p |
|
|
933 |
|
|
|
934 |
rsq <- function (x, y) cor(x, y, method = "pearson") ^ 2 |
|
|
935 |
rmse <- function(x, y) sqrt(mean((x - y)^2)) |
|
|
936 |
mae <- function(x, y) mean(abs(x - y)) |
|
|
937 |
|
|
|
938 |
all_results_copy[, r2_by_range := rsq(target, predicted), by = c("data_types", "TargetRange", "Targeted")] |
|
|
939 |
all_results_copy[, rmse_by_range := rmse(target, predicted), by = c("data_types", "TargetRange", "Targeted")] |
|
|
940 |
all_results_copy[, avg_rmseloss_by_range := mean(RMSELoss), by = c("data_types", "TargetRange", "Targeted")] |
|
|
941 |
all_results_copy[, mae_by_range := mae(target, predicted), by = c("data_types", "TargetRange", "Targeted")] |
|
|
942 |
# all_results_copy[, avg_rmseloss_by_range := mean(RMSELoss), by = c("data_types", "TargetRange")] |
|
|
943 |
unique(all_results_copy[, c("data_types", "mae_by_range", "avg_rmseloss_by_range", "rmse_by_range", "r2_by_range", "TargetRange", "Targeted")]) |
|
|
944 |
|
|
|
945 |
# Upper AAC range correlation, targeted |
|
|
946 |
all_upper_targeted_results_copy <- all_results_copy[TargetRange == "Target Above 0.7" & Targeted == "Targeted Drug"] |
|
|
947 |
# upper_targeted_cors <- all_upper_targeted_results_copy[all_upper_targeted_results_copy, allow.cartesian=T, on = "unique_sample"][, cor(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
948 |
upper_targeted_r2 <- all_upper_targeted_results_copy[all_upper_targeted_results_copy, allow.cartesian=T, on = "unique_sample"][, rsq(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
949 |
upper_targeted_r2_dt <- dcast(upper_targeted_r2, data_types~i.data_types, value.var = "V1") |
|
|
950 |
upper_targeted_r2_mat <- as.matrix(upper_targeted_r2_dt[, 2:9]) |
|
|
951 |
rownames(upper_targeted_r2_mat) <- upper_targeted_r2_dt$data_types |
|
|
952 |
|
|
|
953 |
# Upper AAC range correlation, untargeted |
|
|
954 |
all_upper_untargeted_results_copy <- all_results_copy[TargetRange == "Target Above 0.7" & Targeted == "Untargeted Drug"] |
|
|
955 |
# upper_untargeted_cors <- all_upper_untargeted_results_copy[all_upper_untargeted_results_copy, allow.cartesian=T, on = "unique_sample"][, cor(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
956 |
upper_untargeted_r2 <- all_upper_untargeted_results_copy[all_upper_untargeted_results_copy, allow.cartesian=T, on = "unique_sample"][, rsq(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
957 |
upper_untargeted_r2_dt <- dcast(upper_untargeted_r2, data_types~i.data_types, value.var = "V1") |
|
|
958 |
upper_untargeted_r2_mat <- as.matrix(upper_untargeted_r2_dt[, 2:9]) |
|
|
959 |
rownames(upper_untargeted_r2_mat) <- upper_untargeted_r2_dt$data_types |
|
|
960 |
|
|
|
961 |
# Lower AAC range correlation, targeted |
|
|
962 |
all_lower_targeted_results_copy <- all_results_copy[TargetRange == "Target Below 0.7" & Targeted == "Targeted Drug"] |
|
|
963 |
# lower_targeted_cors <- all_lower_targeted_results_copy[all_lower_targeted_results_copy, allow.cartesian=T, on = "unique_sample"][, cor(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
964 |
lower_targeted_r2 <- all_lower_targeted_results_copy[all_lower_targeted_results_copy, allow.cartesian=T, on = "unique_sample"][, rsq(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
965 |
|
|
|
966 |
lower_targeted_r2_dt <- dcast(lower_targeted_r2, data_types~i.data_types, value.var = "V1") |
|
|
967 |
lower_targeted_r2_mat <- as.matrix(lower_targeted_r2_dt[, 2:9]) |
|
|
968 |
rownames(lower_targeted_r2_mat) <- lower_targeted_r2_dt$data_types |
|
|
969 |
|
|
|
970 |
# Lower AAC range correlation, untargeted |
|
|
971 |
all_lower_untargeted_results_copy <- all_results_copy[TargetRange == "Target Below 0.7" & Targeted == "Untargeted Drug"] |
|
|
972 |
# lower_untargeted_cors <- all_lower_untargeted_results_copy[all_lower_untargeted_results_copy, allow.cartesian=T, on = "unique_sample"][, cor(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
973 |
lower_untargeted_r2 <- all_lower_untargeted_results_copy[all_lower_untargeted_results_copy, allow.cartesian=T, on = "unique_sample"][, rsq(predicted, i.predicted), by=list(data_types, i.data_types)] |
|
|
974 |
|
|
|
975 |
lower_untargeted_r2_dt <- dcast(lower_untargeted_r2, data_types~i.data_types, value.var = "V1") |
|
|
976 |
lower_untargeted_r2_mat <- as.matrix(lower_untargeted_r2_dt[, 2:9]) |
|
|
977 |
rownames(lower_untargeted_r2_mat) <- lower_untargeted_r2_dt$data_types |
|
|
978 |
|
|
|
979 |
# install.packages("corrplot") |
|
|
980 |
# require(corrplot) |
|
|
981 |
# install.packages("ggcorrplot") |
|
|
982 |
# install.packages("patchwork") |
|
|
983 |
require(ggcorrplot) |
|
|
984 |
require(patchwork) |
|
|
985 |
require(ggplot2) |
|
|
986 |
|
|
|
987 |
g_upper_targeted <- ggcorrplot(upper_targeted_r2_mat, hc.order = TRUE, outline.color = "white", |
|
|
988 |
type = "lower", |
|
|
989 |
ggtheme = ggplot2::theme_gray, |
|
|
990 |
colors = c("#E46726", "white", "#6D9EC1"), |
|
|
991 |
lab = TRUE) + ggtitle("AAC >= 0.7, Targeted") + |
|
|
992 |
theme(text = element_text(size = 12, face = "bold"), |
|
|
993 |
legend.position = 'none') |
|
|
994 |
g_upper_untargeted <- ggcorrplot(upper_untargeted_r2_mat, hc.order = TRUE, outline.color = "white", |
|
|
995 |
type = "lower", |
|
|
996 |
ggtheme = ggplot2::theme_gray, |
|
|
997 |
colors = c("#E46726", "white", "#6D9EC1"), |
|
|
998 |
lab = TRUE) + ggtitle("AAC >= 0.7, Untargeted") + |
|
|
999 |
theme(text = element_text(size = 12, face = "bold"), |
|
|
1000 |
legend.position = 'none') |
|
|
1001 |
|
|
|
1002 |
# g_upper <- ggplot(upper_r2, aes(data_types, i.data_types, fill = V1)) + |
|
|
1003 |
# geom_tile() + |
|
|
1004 |
# ggtitle("AAC >= 0.7") + |
|
|
1005 |
# theme(text = element_text(size = 14, face = "bold"), |
|
|
1006 |
# legend.position = 'none') |
|
|
1007 |
|
|
|
1008 |
g_lower_targeted <- ggcorrplot(lower_targeted_r2_mat, hc.order = TRUE, outline.color = "white", |
|
|
1009 |
type = "lower", |
|
|
1010 |
ggtheme = ggplot2::theme_gray, |
|
|
1011 |
colors = c("#E46726", "white", "#6D9EC1"), |
|
|
1012 |
lab = TRUE) + ggtitle("AAC < 0.7, Targeted") + |
|
|
1013 |
theme(text = element_text(size = 12, face = "bold"), |
|
|
1014 |
legend.position = 'none') |
|
|
1015 |
g_lower_untargeted <- ggcorrplot(lower_untargeted_r2_mat, hc.order = TRUE, outline.color = "white", |
|
|
1016 |
type = "lower", |
|
|
1017 |
ggtheme = ggplot2::theme_gray, |
|
|
1018 |
colors = c("#E46726", "white", "#6D9EC1"), |
|
|
1019 |
lab = TRUE) + ggtitle("AAC < 0.7, Untargeted") + |
|
|
1020 |
theme(text = element_text(size = 12, face = "bold"), |
|
|
1021 |
legend.position = 'none') |
|
|
1022 |
|
|
|
1023 |
|
|
|
1024 |
full <- (g_upper_targeted | g_upper_untargeted) / (g_lower_targeted | g_lower_untargeted) |
|
|
1025 |
|
|
|
1026 |
|
|
|
1027 |
ggsave("Plots/CV_Results/Baseline_R2_Matrix_ByDataType.pdf", |
|
|
1028 |
height = 8, width = 8, units = "in", |
|
|
1029 |
full) |
|
|
1030 |
# corrplot(final_cor_mat, method = 'square', order = 'AOE', type = "lower", |
|
|
1031 |
# addCoef.col = 'white') |
|
|
1032 |
|
|
|
1033 |
# pdf(file = "Plots/CV_Results/Baseline_Correlation_Matrix_ByDataType.pdf") |
|
|
1034 |
|
|
|
1035 |
corrplot(final_cor_mat, method = 'square', order = 'AOE', type = "lower", |
|
|
1036 |
addCoef.col = 'white') |
|
|
1037 |
|
|
|
1038 |
dev.off() |
|
|
1039 |
|
|
|
1040 |
|
|
|
1041 |
|
|
|
1042 |
|
|
|
1043 |
rsq(all_results_copy[data_types == "EXP"]$target, all_results_copy[data_types == "EXP"]$predicted) |
|
|
1044 |
rsq(all_results_copy[data_types == "CNV"]$target, all_results_copy[data_types == "CNV"]$predicted) |
|
|
1045 |
rsq(all_results_copy[data_types == "PROT"]$target, all_results_copy[data_types == "PROT"]$predicted) |
|
|
1046 |
rsq(all_results_copy[data_types == "MUT"]$target, all_results_copy[data_types == "MUT"]$predicted) |
|
|
1047 |
rsq(all_results_copy[data_types == "MUT"]$target, all_results_copy[data_types == "MUT"]$predicted) |
|
|
1048 |
|
|
|
1049 |
ggsave(plot = final_p, |
|
|
1050 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_Bottleneck_Paired_Concordance_Comparison_BoxPlot.pdf", |
|
|
1051 |
height = 12) |
|
|
1052 |
|
|
|
1053 |
|
|
|
1054 |
# Bi-Modal Baseline Upper vs Lower AAC Range Comparison ==== |
|
|
1055 |
all_results_copy <- all_results |
|
|
1056 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange", "bottleneck") |
|
|
1057 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
1058 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
1059 |
|
|
|
1060 |
# Violin plot |
|
|
1061 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1062 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
1063 |
merge_method == "Base Model" & |
|
|
1064 |
loss_type == "Base Model" & |
|
|
1065 |
drug_type == "Base Model" & |
|
|
1066 |
bottleneck == "No Data Bottleneck" & |
|
|
1067 |
nchar(data_types) <= 5)), |
|
|
1068 |
fill_by = quote(TargetRange), |
|
|
1069 |
bar_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1070 |
# facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1071 |
data_order = data_order, |
|
|
1072 |
facet_by = "data_types", |
|
|
1073 |
legend_title = "AAC Range:", |
|
|
1074 |
plot_type = "violin_plot", |
|
|
1075 |
target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1076 |
# target_sub_by = "Target Above 0.7", |
|
|
1077 |
cur_comparisons = list(c("Target Above 0.7", "Target Below 0.7")), |
|
|
1078 |
test = "ks.test", |
|
|
1079 |
paired = T |
|
|
1080 |
) |
|
|
1081 |
|
|
|
1082 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) |
|
|
1083 |
# + |
|
|
1084 |
# geom_text(data = all_results_copy, aes(x=data_types, label = round(cv_mean, 3), y = cv_mean + cv_sd), |
|
|
1085 |
# vjust = 0.5, hjust = -0.25, angle = 90, position = position_dodge2(width = .9)) |
|
|
1086 |
|
|
|
1087 |
|
|
|
1088 |
ggsave(plot = cur_p, |
|
|
1089 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_UpperVsLower_Comparison_ViolinPlot.pdf", |
|
|
1090 |
height = 8) |
|
|
1091 |
|
|
|
1092 |
# Bar plot |
|
|
1093 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1094 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
1095 |
merge_method == "Base Model" & |
|
|
1096 |
loss_type == "Base Model" & |
|
|
1097 |
drug_type == "Base Model" & |
|
|
1098 |
bottleneck == "No Data Bottleneck" & |
|
|
1099 |
nchar(data_types) <= 5)), |
|
|
1100 |
fill_by = quote(TargetRange), |
|
|
1101 |
bar_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1102 |
# facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1103 |
data_order = data_order, |
|
|
1104 |
facet_by = NULL, |
|
|
1105 |
legend_title = "AAC Range:", |
|
|
1106 |
plot_type = "bar_plot", |
|
|
1107 |
add_mean = T, |
|
|
1108 |
calculate_avg_mae = F, |
|
|
1109 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1110 |
# # target_sub_by = "Target Above 0.7", |
|
|
1111 |
# cur_comparisons = list(c("Target Above 0.7", "Target Below 0.7")), |
|
|
1112 |
# test = "wilcox.test", |
|
|
1113 |
# paired = F |
|
|
1114 |
) |
|
|
1115 |
|
|
|
1116 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) |
|
|
1117 |
ggsave(plot = cur_p, |
|
|
1118 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_UpperVsLower_Diff_Comparison_BarPlot.pdf") |
|
|
1119 |
|
|
|
1120 |
# Bi-Modal Baseline Targeted vs Untargeted Drug Comparison ==== |
|
|
1121 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
1122 |
all_results_copy <- all_results[nchar(data_types) <= 5] |
|
|
1123 |
|
|
|
1124 |
all_results_copy <- all_results[bottleneck == "No Data Bottleneck"] |
|
|
1125 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
1126 |
"split_method", "fold", "TargetRange", "bottleneck", "Targeted") |
|
|
1127 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
1128 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
1129 |
# merge_method %in% c("Base Model") & |
|
|
1130 |
# loss_type == "Base Model" & drug_type == "Base Model" & |
|
|
1131 |
# split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
1132 |
# nchar(data_types) <= 5 & data_types != "MUT" |
|
|
1133 |
|
|
|
1134 |
# Box plot |
|
|
1135 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1136 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
1137 |
merge_method == "Base Model" & |
|
|
1138 |
loss_type == "Base Model" & |
|
|
1139 |
drug_type == "Base Model" & |
|
|
1140 |
bottleneck == "No Data Bottleneck" & |
|
|
1141 |
nchar(data_types) <= 5)), |
|
|
1142 |
fill_by = quote(Targeted), |
|
|
1143 |
bar_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
1144 |
# facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1145 |
data_order = data_order, |
|
|
1146 |
facet_by = c("TargetRange", "data_types"), |
|
|
1147 |
legend_title = "AAC Range:", |
|
|
1148 |
plot_type = "box_plot", |
|
|
1149 |
target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1150 |
# target_sub_by = "Target Above 0.7", |
|
|
1151 |
cur_comparisons = list(c("Targeted Drug", "Untargeted Drug")), |
|
|
1152 |
test = "ks.test", |
|
|
1153 |
paired = T, |
|
|
1154 |
hide_outliers = T |
|
|
1155 |
) |
|
|
1156 |
|
|
|
1157 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) + expand_limits(y = c(0, 1.5)) |
|
|
1158 |
|
|
|
1159 |
ggsave(plot = cur_p, |
|
|
1160 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_UpperVsLower_Comparison_BoxPlot.pdf", |
|
|
1161 |
height = 8) |
|
|
1162 |
|
|
|
1163 |
## Difference between models ==== |
|
|
1164 |
all_results_copy <- all_results_copy[TargetRange == "Target Above 0.7"] |
|
|
1165 |
# Box plot |
|
|
1166 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1167 |
sub_results_by = quote((split_method == "Split By Cell Line" & |
|
|
1168 |
merge_method == "Base Model" & |
|
|
1169 |
loss_type == "Base Model" & |
|
|
1170 |
drug_type == "Base Model" & |
|
|
1171 |
bottleneck == "No Data Bottleneck" & |
|
|
1172 |
nchar(data_types) <= 5)), |
|
|
1173 |
fill_by = quote(Targeted), |
|
|
1174 |
bar_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
1175 |
facet_level_order = c("Target Above 0.7"), |
|
|
1176 |
data_order = data_order, |
|
|
1177 |
facet_by = "TargetRange", |
|
|
1178 |
legend_title = "AAC Range:", |
|
|
1179 |
plot_type = "bar_plot", |
|
|
1180 |
add_mean = T, |
|
|
1181 |
calculate_avg_mae = F |
|
|
1182 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1183 |
# target_sub_by = "Target Above 0.7", |
|
|
1184 |
# cur_comparisons = list(c("Targeted Drug", "Untargeted Drug")), |
|
|
1185 |
# test = "wilcox.test", |
|
|
1186 |
# paired = F, |
|
|
1187 |
# hide_outliers = T, |
|
|
1188 |
|
|
|
1189 |
) |
|
|
1190 |
|
|
|
1191 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) |
|
|
1192 |
|
|
|
1193 |
ggsave(plot = cur_p, |
|
|
1194 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_TargetedVsUntargeted_Upper0.7_Comparison_BarPlot.pdf") |
|
|
1195 |
|
|
|
1196 |
# Bi-modal Baseline Split Comparison ==== |
|
|
1197 |
all_results_copy <- all_results |
|
|
1198 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange", "Targeted", "bottleneck") |
|
|
1199 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
1200 |
|
|
|
1201 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
1202 |
|
|
|
1203 |
# TODO Must ensure different splitting methods also are compared on the same validation data |
|
|
1204 |
## Wilcox box plot (cell line and drug scaffold) ==== |
|
|
1205 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1206 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1207 |
loss_type == "Base Model" & |
|
|
1208 |
drug_type == "Base Model" & |
|
|
1209 |
nchar(data_types) <= 5 & |
|
|
1210 |
bottleneck == "No Data Bottleneck" & |
|
|
1211 |
# split_method %in% c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"))), |
|
|
1212 |
split_method %in% c("Split By Cell Line", "Split By Drug Scaffold"))), |
|
|
1213 |
facet_by = c("Targeted", "data_types"), |
|
|
1214 |
fill_by = quote(split_method), |
|
|
1215 |
data_order = data_order, |
|
|
1216 |
# bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1217 |
bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1218 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1219 |
plot_type = "box_plot", |
|
|
1220 |
legend_title = "Splitting Method:", |
|
|
1221 |
hide_outliers = T, |
|
|
1222 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1223 |
# cur_comparisons = c("Targeted Drug", "Untargeted Drug"), |
|
|
1224 |
# cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1225 |
# c("Split By Cell Line", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1226 |
# c("Split By Both Cell Line & Drug Scaffold", "Split By Drug Scaffold")), |
|
|
1227 |
cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold")), |
|
|
1228 |
test = "wilcox.test", |
|
|
1229 |
paired = T, step_increase = 0.01, |
|
|
1230 |
y_lim = 0.05) |
|
|
1231 |
|
|
|
1232 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1233 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_Split_CellLineDrugScaffold_Wilcox_Comparison_BoxPlot.pdf", |
|
|
1234 |
height = 8) |
|
|
1235 |
|
|
|
1236 |
## KS boxplot (cell line and drug scaffold) ==== |
|
|
1237 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1238 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1239 |
loss_type == "Base Model" & |
|
|
1240 |
drug_type == "Base Model" & |
|
|
1241 |
nchar(data_types) <= 5 & |
|
|
1242 |
bottleneck == "No Data Bottleneck" & |
|
|
1243 |
# split_method %in% c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"))), |
|
|
1244 |
split_method %in% c("Split By Cell Line", "Split By Drug Scaffold"))), |
|
|
1245 |
facet_by = c("Targeted", "data_types"), |
|
|
1246 |
fill_by = quote(split_method), |
|
|
1247 |
data_order = data_order, |
|
|
1248 |
# bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1249 |
bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1250 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1251 |
plot_type = "box_plot", |
|
|
1252 |
legend_title = "Splitting Method:", |
|
|
1253 |
hide_outliers = T, |
|
|
1254 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1255 |
# cur_comparisons = c("Targeted Drug", "Untargeted Drug"), |
|
|
1256 |
# cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1257 |
# c("Split By Cell Line", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1258 |
# c("Split By Both Cell Line & Drug Scaffold", "Split By Drug Scaffold")), |
|
|
1259 |
cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold")), |
|
|
1260 |
test = "ks.test", |
|
|
1261 |
paired = T, step_increase = 0.01, |
|
|
1262 |
y_lim = 0.05) |
|
|
1263 |
|
|
|
1264 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1265 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_Split_CellLineDrugScaffold_KS_Comparison_BoxPlot.pdf", |
|
|
1266 |
height = 8) |
|
|
1267 |
|
|
|
1268 |
## KS violin plot (cell line and drug scaffold) ==== |
|
|
1269 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1270 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1271 |
loss_type == "Base Model" & |
|
|
1272 |
drug_type == "Base Model" & |
|
|
1273 |
nchar(data_types) <= 5 & |
|
|
1274 |
bottleneck == "No Data Bottleneck" & |
|
|
1275 |
# split_method %in% c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"))), |
|
|
1276 |
split_method %in% c("Split By Cell Line", "Split By Drug Scaffold"))), |
|
|
1277 |
facet_by = c("Targeted", "data_types"), |
|
|
1278 |
fill_by = quote(split_method), |
|
|
1279 |
data_order = data_order, |
|
|
1280 |
# bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1281 |
bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1282 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1283 |
plot_type = "violin_plot", |
|
|
1284 |
legend_title = "Splitting Method:", |
|
|
1285 |
hide_outliers = T, |
|
|
1286 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1287 |
# cur_comparisons = c("Targeted Drug", "Untargeted Drug"), |
|
|
1288 |
# cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1289 |
# c("Split By Cell Line", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1290 |
# c("Split By Both Cell Line & Drug Scaffold", "Split By Drug Scaffold")), |
|
|
1291 |
cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold")), |
|
|
1292 |
test = "ks.test", |
|
|
1293 |
paired = T, step_increase = 0.00, |
|
|
1294 |
y_lim = 0.05) |
|
|
1295 |
|
|
|
1296 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) + expand_limits(y = c(0, 1.5)) |
|
|
1297 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_Split_CellLineDrugScaffold_KS_Comparison_ViolinPlot.pdf", |
|
|
1298 |
height = 8) |
|
|
1299 |
|
|
|
1300 |
## Bar plot RMSE (cell line and drug scaffold) ==== |
|
|
1301 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1302 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1303 |
loss_type == "Base Model" & |
|
|
1304 |
drug_type == "Base Model" & |
|
|
1305 |
nchar(data_types) <= 5 & |
|
|
1306 |
bottleneck == "No Data Bottleneck" & |
|
|
1307 |
# split_method %in% c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"))), |
|
|
1308 |
split_method %in% c("Split By Cell Line", "Split By Drug Scaffold"))), |
|
|
1309 |
facet_by = c("Targeted", "TargetRange"), |
|
|
1310 |
fill_by = quote(split_method), |
|
|
1311 |
data_order = data_order, |
|
|
1312 |
# bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1313 |
bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1314 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
1315 |
c("Target Above 0.7", "Target Below 0.7")), |
|
|
1316 |
plot_type = "bar_plot", |
|
|
1317 |
legend_title = "Splitting Method:", |
|
|
1318 |
hide_outliers = T, |
|
|
1319 |
calculate_avg_mae = F, |
|
|
1320 |
y_lab = "Total RMSE Loss", |
|
|
1321 |
# target_sub_by = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1322 |
# cur_comparisons = c("Targeted Drug", "Untargeted Drug"), |
|
|
1323 |
# cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1324 |
# c("Split By Cell Line", "Split By Both Cell Line & Drug Scaffold"), |
|
|
1325 |
# c("Split By Both Cell Line & Drug Scaffold", "Split By Drug Scaffold")), |
|
|
1326 |
# cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold")), |
|
|
1327 |
# test = "ks.test", |
|
|
1328 |
# paired = T, step_increase = 0.01, |
|
|
1329 |
y_lim = 0.1) |
|
|
1330 |
|
|
|
1331 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1332 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_Split_CellLineDrugScaffold_RMSE_Comparison_BarPlot.pdf", |
|
|
1333 |
height = 8) |
|
|
1334 |
|
|
|
1335 |
|
|
|
1336 |
# Bi-modal Baseline vs ElasticNet Baseline (Split By Cell Line) ==== |
|
|
1337 |
|
|
|
1338 |
## Without separating target ranges ==== |
|
|
1339 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
1340 |
all_results_copy <- all_results_copy[nchar(data_types) <= 5] |
|
|
1341 |
|
|
|
1342 |
# Don't average loss by TargetRange |
|
|
1343 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck") |
|
|
1344 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
1345 |
all_results_copy[merge_method == "Base Model", merge_method := "Baseline Neural Network"] |
|
|
1346 |
all_results_copy[merge_method == "Merge By Early Concat", merge_method := "Elastic Net"] |
|
|
1347 |
all_results_copy[merge_method == "Elastic Net", bottleneck := "No Data Bottleneck"] |
|
|
1348 |
all_results_copy <- all_results_copy[data_types != "MUT"] |
|
|
1349 |
# Order data types by mut, cnv, exp, prot, mirna, metab, hist, rppa |
|
|
1350 |
data_order <- c('CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA') |
|
|
1351 |
|
|
|
1352 |
# Bar plot |
|
|
1353 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1354 |
sub_results_by = quote((merge_method %in% c("Baseline Neural Network", "Elastic Net") & |
|
|
1355 |
loss_type == "Base Model" & |
|
|
1356 |
drug_type == "Base Model" & |
|
|
1357 |
nchar(data_types) <= 5 & |
|
|
1358 |
split_method == "Split By Cell Line" & |
|
|
1359 |
bottleneck == "No Data Bottleneck")), |
|
|
1360 |
fill_by = quote(merge_method), |
|
|
1361 |
bar_level_order = c("Elastic Net", "Baseline Neural Network"), |
|
|
1362 |
data_order = data_order, |
|
|
1363 |
facet_by = NULL, |
|
|
1364 |
facet_level_order = NULL, |
|
|
1365 |
legend_title = "Model Type:", |
|
|
1366 |
plot_type = "bar_plot", |
|
|
1367 |
calculate_avg_mae = F, |
|
|
1368 |
add_mean = T, |
|
|
1369 |
y_lim = 0.05) |
|
|
1370 |
|
|
|
1371 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1372 |
|
|
|
1373 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_ANN_Baseline_vs_ElasticNet_No_TargetRange_Separation_SplitByCellLine_Comparison.pdf") |
|
|
1374 |
|
|
|
1375 |
# my_comparisons <- list( c("Base Model", "Base Model + LMF"), c("Base Model + Sum", "Base Model + LMF"), c("Base Model", "Base Model + Sum")) |
|
|
1376 |
# my_comparisons <- list( c("Elastic Net", "Baseline Neural Network")) |
|
|
1377 |
|
|
|
1378 |
# Box plot |
|
|
1379 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1380 |
sub_results_by = quote((merge_method %in% c("Baseline Neural Network", "Elastic Net") & |
|
|
1381 |
loss_type == "Base Model" & |
|
|
1382 |
drug_type == "Base Model" & |
|
|
1383 |
nchar(data_types) <= 5 & |
|
|
1384 |
split_method == "Split By Cell Line" & |
|
|
1385 |
bottleneck == "No Data Bottleneck")), |
|
|
1386 |
fill_by = quote(merge_method), |
|
|
1387 |
bar_level_order = c("Baseline Neural Network", "Elastic Net"), |
|
|
1388 |
data_order = data_order, |
|
|
1389 |
facet_by = "data_types", |
|
|
1390 |
facet_level_order = NULL, |
|
|
1391 |
legend_title = "Model Type:", |
|
|
1392 |
y_lim = 0.05, |
|
|
1393 |
plot_type = "box_plot", |
|
|
1394 |
cur_comparisons = list(c("Elastic Net", "Baseline Neural Network"))) |
|
|
1395 |
|
|
|
1396 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1397 |
ggsave(plot = cur_p, |
|
|
1398 |
filename = "Plots/CV_Results/Bimodal_CV_ANN_Baseline_vs_ElasticNet_No_TargetRange_Separation_SplitByBoth_Comparison_BoxPlot.pdf") |
|
|
1399 |
|
|
|
1400 |
|
|
|
1401 |
## with separating target ranges ==== |
|
|
1402 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
1403 |
all_results_copy <- all_results_copy[nchar(data_types) <= 5] |
|
|
1404 |
|
|
|
1405 |
# Average loss by TargetRange |
|
|
1406 |
all_results_copy <- all_results[merge_method %in% c("Base Model", "Merge By Early Concat") & |
|
|
1407 |
loss_type == "Base Model" & drug_type == "Base Model" & |
|
|
1408 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
1409 |
nchar(data_types) <= 5 & data_types != "MUT"] |
|
|
1410 |
all_results_copy[merge_method == "Base Model", merge_method := "Baseline Neural Network"] |
|
|
1411 |
all_results_copy[merge_method == "Merge By Early Concat", merge_method := "Elastic Net"] |
|
|
1412 |
all_results_copy[merge_method == "Elastic Net", bottleneck := "No Data Bottleneck"] |
|
|
1413 |
|
|
|
1414 |
# all_results_copy_sub <- all_results_copy[TargetRange == "TargetAbove 0.7"] |
|
|
1415 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck", "TargetRange") |
|
|
1416 |
all_results_copy <- all_results_copy[data_types != "MUT"] |
|
|
1417 |
data_order <- c('CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA') |
|
|
1418 |
|
|
|
1419 |
# Bar plot |
|
|
1420 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1421 |
sub_results_by = quote((merge_method %in% c("Baseline Neural Network", "Elastic Net") & |
|
|
1422 |
loss_type == "Base Model" & |
|
|
1423 |
drug_type == "Base Model" & |
|
|
1424 |
nchar(data_types) <= 5 & |
|
|
1425 |
split_method == "Split By Cell Line" & |
|
|
1426 |
bottleneck == "No Data Bottleneck")), |
|
|
1427 |
fill_by = quote(merge_method), |
|
|
1428 |
bar_level_order = c("Elastic Net", "Baseline Neural Network"), |
|
|
1429 |
data_order = data_order, |
|
|
1430 |
facet_by = c("TargetRange"), |
|
|
1431 |
facet_level_order = c("Target Above 0.7", "Target Below 0.7"), |
|
|
1432 |
legend_title = "Model Type:", |
|
|
1433 |
plot_type = "bar_plot", |
|
|
1434 |
calculate_avg_mae = F, |
|
|
1435 |
add_mean = T, |
|
|
1436 |
# facet_nrow = 1, |
|
|
1437 |
y_lim = 0.05, |
|
|
1438 |
min_diff = 0.03) |
|
|
1439 |
|
|
|
1440 |
|
|
|
1441 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) |
|
|
1442 |
|
|
|
1443 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_ANN_Baseline_vs_ElasticNet_SplitByCellLine_Comparison.pdf") |
|
|
1444 |
|
|
|
1445 |
# Violin plot |
|
|
1446 |
all_results_copy <- all_results_copy[TargetRange == "Target Above 0.7"] |
|
|
1447 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1448 |
sub_results_by = quote((merge_method %in% c("Baseline Neural Network", "Elastic Net") & |
|
|
1449 |
loss_type == "Base Model" & |
|
|
1450 |
drug_type == "Base Model" & |
|
|
1451 |
nchar(data_types) <= 5 & |
|
|
1452 |
split_method == "Split By Cell Line" & |
|
|
1453 |
bottleneck == "No Data Bottleneck")), |
|
|
1454 |
fill_by = quote(merge_method), |
|
|
1455 |
bar_level_order = c("Baseline Neural Network", "Elastic Net"), |
|
|
1456 |
data_order = data_order, |
|
|
1457 |
facet_by = "data_types", |
|
|
1458 |
facet_level_order = NULL, |
|
|
1459 |
legend_title = "Model Type:", |
|
|
1460 |
y_lim = 0.05, |
|
|
1461 |
plot_type = "violin_plot", |
|
|
1462 |
cur_comparisons = list(c("Elastic Net", "Baseline Neural Network")), |
|
|
1463 |
test = "ks.test", |
|
|
1464 |
paired = T) |
|
|
1465 |
|
|
|
1466 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) |
|
|
1467 |
|
|
|
1468 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_ANN_Baseline_vs_ElasticNet_SplitByCellLine_Upper_0.7_Comparison_ViolinPlot.pdf") |
|
|
1469 |
|
|
|
1470 |
## Separating Targeted vs Untargeted drugs in upper AAC ==== |
|
|
1471 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
1472 |
all_results_copy <- all_results_copy[nchar(data_types) <= 5] |
|
|
1473 |
|
|
|
1474 |
all_results_copy[merge_method == "Base Model", merge_method := "Baseline Neural Network"] |
|
|
1475 |
all_results_copy[merge_method == "Merge By Early Concat", merge_method := "Elastic Net"] |
|
|
1476 |
all_results_copy[merge_method == "Elastic Net", bottleneck := "No Data Bottleneck"] |
|
|
1477 |
|
|
|
1478 |
# all_results_copy_sub <- all_results_copy[TargetRange == "TargetAbove 0.7"] |
|
|
1479 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
1480 |
"split_method", "fold", "bottleneck", "Targeted", "TargetRange") |
|
|
1481 |
all_results_copy <- all_results_copy[data_types != "MUT"] |
|
|
1482 |
data_order <- c('CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA') |
|
|
1483 |
|
|
|
1484 |
|
|
|
1485 |
# Bar plot |
|
|
1486 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1487 |
sub_results_by = quote((merge_method %in% c("Baseline Neural Network", "Elastic Net") & |
|
|
1488 |
loss_type == "Base Model" & |
|
|
1489 |
drug_type == "Base Model" & |
|
|
1490 |
nchar(data_types) <= 5 & |
|
|
1491 |
TargetRange == "Target Above 0.7" & |
|
|
1492 |
split_method == "Split By Cell Line" & |
|
|
1493 |
bottleneck == "No Data Bottleneck")), |
|
|
1494 |
fill_by = quote(merge_method), |
|
|
1495 |
bar_level_order = c("Elastic Net", "Baseline Neural Network"), |
|
|
1496 |
data_order = data_order, |
|
|
1497 |
facet_by = "Targeted", |
|
|
1498 |
facet_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
1499 |
legend_title = "Model Type:", |
|
|
1500 |
plot_type = "bar_plot", |
|
|
1501 |
add_mean = T, |
|
|
1502 |
calculate_avg_mae = F, |
|
|
1503 |
facet_nrow = 1, |
|
|
1504 |
min_diff = 0.03, |
|
|
1505 |
y_lim = 0.05) |
|
|
1506 |
|
|
|
1507 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) |
|
|
1508 |
|
|
|
1509 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_ANN_Baseline_vs_ElasticNet_Targeted_vs_Untargeted_Upper_SplitByCellLine_Comparison_BarPlot.pdf") |
|
|
1510 |
|
|
|
1511 |
# violin plot |
|
|
1512 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1513 |
sub_results_by = quote((merge_method %in% c("Baseline Neural Network", "Elastic Net") & |
|
|
1514 |
loss_type == "Base Model" & |
|
|
1515 |
drug_type == "Base Model" & |
|
|
1516 |
nchar(data_types) <= 5 & |
|
|
1517 |
TargetRange == "Target Above 0.7" & |
|
|
1518 |
split_method == "Split By Cell Line" & |
|
|
1519 |
bottleneck == "No Data Bottleneck")), |
|
|
1520 |
fill_by = quote(merge_method), |
|
|
1521 |
bar_level_order = c("Elastic Net", "Baseline Neural Network"), |
|
|
1522 |
data_order = data_order, |
|
|
1523 |
facet_by = c("Targeted", "data_types"), |
|
|
1524 |
facet_level_order = NULL, |
|
|
1525 |
legend_title = "Model Type:", |
|
|
1526 |
y_lim = 0.05, |
|
|
1527 |
plot_type = "violin_plot", |
|
|
1528 |
cur_comparisons = list(c("Elastic Net", "Baseline Neural Network")), |
|
|
1529 |
test = "ks.test", |
|
|
1530 |
paired = T) |
|
|
1531 |
|
|
|
1532 |
cur_p <- cur_p + theme(text = element_text(size = 18, face = "bold")) + |
|
|
1533 |
expand_limits(y = c(0, 1.5)) |
|
|
1534 |
|
|
|
1535 |
ggsave(plot = cur_p, |
|
|
1536 |
filename = "Plots/CV_Results/Bimodal_CV_ANN_Baseline_Targeted_vs_Untargeted_Upper_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
1537 |
height = 8) |
|
|
1538 |
|
|
|
1539 |
# Bi-Modal Baseline vs LDS ==== |
|
|
1540 |
all_results <- fread("Data/all_results.csv") |
|
|
1541 |
all_results <- all_results[nchar(data_types) <= 5] |
|
|
1542 |
|
|
|
1543 |
all_results_copy <- all_results |
|
|
1544 |
all_results_copy[target > 0.7 & target < 0.9, TargetRange := "Target Between 0.7 & 0.9"] |
|
|
1545 |
all_results_copy[target >= 0.9, TargetRange := "Target Above 0.9"] |
|
|
1546 |
|
|
|
1547 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
1548 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
1549 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
1550 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
1551 |
|
|
|
1552 |
## Split By Both Cell Line & Drug Scaffold ==== |
|
|
1553 |
# Bar plot |
|
|
1554 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1555 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1556 |
drug_type == "Base Model" & |
|
|
1557 |
nchar(data_types) <= 5 & |
|
|
1558 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
1559 |
bottleneck == "No Data Bottleneck")), |
|
|
1560 |
fill_by = quote(loss_type), |
|
|
1561 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1562 |
data_order = data_order, |
|
|
1563 |
facet_by = quote(TargetRange), |
|
|
1564 |
facet_level_order = c("Target Above 0.9", |
|
|
1565 |
"Target Between 0.7 & 0.9", |
|
|
1566 |
"Target Below 0.7"), |
|
|
1567 |
legend_title = "Model Type:", |
|
|
1568 |
y_lim = 0.05) |
|
|
1569 |
|
|
|
1570 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_LDS_SplitByBoth_Comparison.pdf") |
|
|
1571 |
|
|
|
1572 |
# Box plot |
|
|
1573 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1574 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1575 |
drug_type == "Base Model" & |
|
|
1576 |
nchar(data_types) <= 5 & |
|
|
1577 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
1578 |
bottleneck == "No Data Bottleneck")), |
|
|
1579 |
fill_by = quote(loss_type), |
|
|
1580 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1581 |
data_order = data_order, |
|
|
1582 |
facet_by = c("TargetRange", "data_types"), |
|
|
1583 |
facet_level_order = NULL, |
|
|
1584 |
legend_title = "Model Type:", |
|
|
1585 |
y_lim = 0.05, |
|
|
1586 |
plot_type = "box_plot", |
|
|
1587 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
1588 |
cur_comparisons = list(c("Base Model", "Base Model + LDS")), |
|
|
1589 |
test = "wilcox.test", |
|
|
1590 |
paired = F |
|
|
1591 |
) |
|
|
1592 |
|
|
|
1593 |
ggsave(plot = cur_p, |
|
|
1594 |
filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_LDS_SplitByBoth_Comparison_BoxPlot.pdf", |
|
|
1595 |
height = 8) |
|
|
1596 |
|
|
|
1597 |
# Violin plot |
|
|
1598 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1599 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1600 |
drug_type == "Base Model" & |
|
|
1601 |
nchar(data_types) <= 5 & |
|
|
1602 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
1603 |
bottleneck == "No Data Bottleneck")), |
|
|
1604 |
fill_by = quote(loss_type), |
|
|
1605 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1606 |
data_order = data_order, |
|
|
1607 |
facet_by = c("TargetRange", "data_types"), |
|
|
1608 |
facet_level_order = NULL, |
|
|
1609 |
legend_title = "Model Type:", |
|
|
1610 |
y_lim = 0.05, |
|
|
1611 |
plot_type = "violin_plot", |
|
|
1612 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
1613 |
cur_comparisons = list(c("Base Model", "Base Model + LDS")), |
|
|
1614 |
test = "wilcox.test", |
|
|
1615 |
paired = F |
|
|
1616 |
) |
|
|
1617 |
|
|
|
1618 |
ggsave(plot = cur_p, |
|
|
1619 |
filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_LDS_SplitByBoth_Comparison_ViolinPlot.pdf", |
|
|
1620 |
height = 8) |
|
|
1621 |
|
|
|
1622 |
## Split By Drug Scaffold ==== |
|
|
1623 |
# Bar plot |
|
|
1624 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1625 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1626 |
drug_type == "Base Model" & |
|
|
1627 |
nchar(data_types) <= 5 & |
|
|
1628 |
split_method == "Split By Drug Scaffold" & |
|
|
1629 |
bottleneck == "No Data Bottleneck")), |
|
|
1630 |
fill_by = quote(loss_type), |
|
|
1631 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1632 |
data_order = data_order, |
|
|
1633 |
facet_by = quote(TargetRange), |
|
|
1634 |
facet_level_order = c("Target Above 0.9", |
|
|
1635 |
"Target Between 0.7 & 0.9", |
|
|
1636 |
"Target Below 0.7"), |
|
|
1637 |
legend_title = "Model Type:", |
|
|
1638 |
y_lim = 0.05) |
|
|
1639 |
|
|
|
1640 |
ggsave(plot = p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_LDS_SplitByDrug_Comparison.pdf") |
|
|
1641 |
|
|
|
1642 |
# Box plot |
|
|
1643 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1644 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1645 |
drug_type == "Base Model" & |
|
|
1646 |
nchar(data_types) <= 5 & |
|
|
1647 |
split_method == "Split By Drug Scaffold" & |
|
|
1648 |
bottleneck == "No Data Bottleneck")), |
|
|
1649 |
fill_by = quote(loss_type), |
|
|
1650 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1651 |
data_order = data_order, |
|
|
1652 |
facet_by = c("TargetRange", "data_types"), |
|
|
1653 |
facet_level_order = NULL, |
|
|
1654 |
legend_title = "Model Type:", |
|
|
1655 |
y_lim = 0.05, |
|
|
1656 |
plot_type = "box_plot", |
|
|
1657 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
1658 |
cur_comparisons = list(c("Base Model", "Base Model + LDS")), |
|
|
1659 |
test = "wilcox.test", |
|
|
1660 |
paired = F |
|
|
1661 |
) |
|
|
1662 |
|
|
|
1663 |
ggsave(plot = cur_p, |
|
|
1664 |
filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_LDS_SplitByDrug_Comparison_BoxPlot.pdf", |
|
|
1665 |
height = 8) |
|
|
1666 |
## Split By Cell Line ==== |
|
|
1667 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
1668 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
1669 |
|
|
|
1670 |
# Bar plot |
|
|
1671 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1672 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1673 |
drug_type == "Base Model" & |
|
|
1674 |
nchar(data_types) <= 5 & |
|
|
1675 |
split_method == "Split By Cell Line" & |
|
|
1676 |
bottleneck == "No Data Bottleneck")), |
|
|
1677 |
fill_by = quote(loss_type), |
|
|
1678 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1679 |
data_order = data_order, |
|
|
1680 |
facet_by = c("TargetRange", "Targeted"), |
|
|
1681 |
facet_level_order = list(c("Target Above 0.9", "Target Between 0.7 & 0.9","Target Below 0.7"), |
|
|
1682 |
c("Targeted Drug", "Untargeted Drug")), |
|
|
1683 |
facet_nrow = 3, |
|
|
1684 |
legend_title = "Model Type:", |
|
|
1685 |
plot_type = "bar_plot", |
|
|
1686 |
calculate_avg_mae = F, y_lab = "Total RMSE Loss", |
|
|
1687 |
y_lim = 0.1) |
|
|
1688 |
|
|
|
1689 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1690 |
|
|
|
1691 |
ggsave(plot = cur_p, |
|
|
1692 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LDS_Upper_SplitByCellLine_Comparison_BarPlot.pdf", |
|
|
1693 |
height = 12) |
|
|
1694 |
|
|
|
1695 |
# Box plot |
|
|
1696 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1697 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1698 |
drug_type == "Base Model" & |
|
|
1699 |
nchar(data_types) <= 5 & |
|
|
1700 |
split_method == "Split By Cell Line" & |
|
|
1701 |
bottleneck == "No Data Bottleneck")), |
|
|
1702 |
fill_by = quote(loss_type), |
|
|
1703 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1704 |
data_order = data_order, |
|
|
1705 |
facet_by = c("TargetRange", "data_types"), |
|
|
1706 |
facet_level_order = NULL, |
|
|
1707 |
legend_title = "Model Type:", |
|
|
1708 |
y_lim = 0.05, |
|
|
1709 |
plot_type = "box_plot", |
|
|
1710 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
1711 |
cur_comparisons = list(c("Base Model", "Base Model + LDS")), |
|
|
1712 |
test = "wilcox.test", |
|
|
1713 |
paired = T |
|
|
1714 |
) |
|
|
1715 |
|
|
|
1716 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1717 |
ggsave(plot = cur_p, |
|
|
1718 |
filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_LDS_SplitByCellLine_Comparison_BoxPlot.pdf", |
|
|
1719 |
height = 8) |
|
|
1720 |
|
|
|
1721 |
# Violin plot |
|
|
1722 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1723 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1724 |
drug_type == "Base Model" & |
|
|
1725 |
nchar(data_types) <= 5 & |
|
|
1726 |
split_method == "Split By Cell Line" & |
|
|
1727 |
bottleneck == "No Data Bottleneck")), |
|
|
1728 |
fill_by = quote(loss_type), |
|
|
1729 |
bar_level_order = c("Base Model", "Base Model + LDS"), |
|
|
1730 |
data_order = data_order, |
|
|
1731 |
facet_by = c("TargetRange", "data_types"), |
|
|
1732 |
facet_level_order = NULL, |
|
|
1733 |
legend_title = "Model Type:", |
|
|
1734 |
y_lim = 0.05, |
|
|
1735 |
plot_type = "violin_plot", |
|
|
1736 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
1737 |
cur_comparisons = list(c("Base Model", "Base Model + LDS")), |
|
|
1738 |
test = "ks.test", |
|
|
1739 |
paired = T |
|
|
1740 |
) |
|
|
1741 |
|
|
|
1742 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) + |
|
|
1743 |
expand_limits(y = c(0, 1.5)) |
|
|
1744 |
ggsave(plot = cur_p, |
|
|
1745 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LDS_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
1746 |
height = 8) |
|
|
1747 |
|
|
|
1748 |
## Split Comparison ==== |
|
|
1749 |
# Bar plot |
|
|
1750 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1751 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1752 |
drug_type == "Base Model" & |
|
|
1753 |
loss_type == "Base Model + LDS" & |
|
|
1754 |
nchar(data_types) <= 5 & |
|
|
1755 |
bottleneck == "No Data Bottleneck")), |
|
|
1756 |
fill_by = quote(split_method), |
|
|
1757 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1758 |
data_order = data_order, |
|
|
1759 |
facet_by = quote(TargetRange), |
|
|
1760 |
facet_level_order = c("Target Above 0.9", |
|
|
1761 |
"Target Between 0.7 & 0.9", |
|
|
1762 |
"Target Below 0.7"), |
|
|
1763 |
legend_title = "Split Method:", |
|
|
1764 |
y_lim = 0.05) |
|
|
1765 |
|
|
|
1766 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_with_LDS_Split_Comparison.pdf") |
|
|
1767 |
|
|
|
1768 |
# Box plot |
|
|
1769 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1770 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
1771 |
drug_type == "Base Model" & |
|
|
1772 |
nchar(data_types) <= 5 & |
|
|
1773 |
bottleneck == "No Data Bottleneck")), |
|
|
1774 |
fill_by = quote(split_method), |
|
|
1775 |
bar_level_order = c("Split By Cell Line", "Split By Drug Scaffold", "Split By Both Cell Line and Drug Scaffold"), |
|
|
1776 |
data_order = data_order, |
|
|
1777 |
facet_by = c("TargetRange", "data_types"), |
|
|
1778 |
facet_level_order = NULL, |
|
|
1779 |
legend_title = "Split Type:", |
|
|
1780 |
y_lim = 0.05, |
|
|
1781 |
plot_type = "box_plot", |
|
|
1782 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
1783 |
cur_comparisons = list(c("Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1784 |
c("Split By Cell Line", "Split By Both Cell Line and Drug Scaffold"), |
|
|
1785 |
c("Split By Drug Scaffold", "Split By Both Cell Line and Drug Scaffold")), |
|
|
1786 |
test = "t.test", |
|
|
1787 |
paired = F |
|
|
1788 |
) |
|
|
1789 |
|
|
|
1790 |
ggsave(plot = cur_p, |
|
|
1791 |
filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_with_LDS_Split_Comparison_BoxPlot.pdf", |
|
|
1792 |
height = 8) |
|
|
1793 |
|
|
|
1794 |
# Bi-modal Baseline vs LMF ==== |
|
|
1795 |
all_results <- fread("Data/all_results.csv") |
|
|
1796 |
all_results <- all_results[nchar(data_types) <= 5] |
|
|
1797 |
all_results_copy <- all_results |
|
|
1798 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck", "TargetRange") |
|
|
1799 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
1800 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
1801 |
|
|
|
1802 |
## Split By Both Cell Line & Drug Scaffold ==== |
|
|
1803 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1804 |
sub_results_by = quote((merge_method != "Merge By Early Concat" & |
|
|
1805 |
drug_type == "Base Model" & |
|
|
1806 |
loss_type == "Base Model" & |
|
|
1807 |
nchar(data_types) <= 5 & |
|
|
1808 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
1809 |
bottleneck == "No Data Bottleneck")), |
|
|
1810 |
fill_by = quote(merge_method), |
|
|
1811 |
bar_level_order = c("Base Model", "Base Model + LMF", "Base Model + Sum"), |
|
|
1812 |
data_order = data_order, |
|
|
1813 |
facet_by = quote(TargetRange), |
|
|
1814 |
facet_level_order = c("Target Above 0.7", |
|
|
1815 |
"Target Below 0.7"), |
|
|
1816 |
legend_title = "Merge Method:", |
|
|
1817 |
y_lim = 0.05) |
|
|
1818 |
|
|
|
1819 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_LMF_SplitByBoth_Comparison.pdf") |
|
|
1820 |
|
|
|
1821 |
# Box plot |
|
|
1822 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1823 |
sub_results_by = quote((merge_method != "Merge By Early Concat" & |
|
|
1824 |
drug_type == "Base Model" & |
|
|
1825 |
loss_type == "Base Model" & |
|
|
1826 |
nchar(data_types) <= 5 & |
|
|
1827 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
1828 |
bottleneck == "No Data Bottleneck")), |
|
|
1829 |
fill_by = quote(merge_method), |
|
|
1830 |
bar_level_order = c("Base Model", "Base Model + Sum", "Base Model + LMF"), |
|
|
1831 |
data_order = data_order, |
|
|
1832 |
facet_by = "data_types", |
|
|
1833 |
facet_level_order = NULL, |
|
|
1834 |
legend_title = "Model Type:", |
|
|
1835 |
y_lim = 0.05, |
|
|
1836 |
plot_type = "box_plot", |
|
|
1837 |
target_sub_by = "Target Above 0.7", |
|
|
1838 |
cur_comparisons = list(c("Base Model", "Base Model + Sum"), |
|
|
1839 |
c("Base Model + Sum", "Base Model + LMF"), |
|
|
1840 |
c("Base Model", "Base Model + LMF")), |
|
|
1841 |
test = "wilcox.test", |
|
|
1842 |
paired = F |
|
|
1843 |
) |
|
|
1844 |
|
|
|
1845 |
ggsave(plot = cur_p, |
|
|
1846 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LMF_SplitByBoth_Comparison_BoxPlot.pdf", |
|
|
1847 |
height = 8) |
|
|
1848 |
|
|
|
1849 |
## Split By Drug Scaffold ==== |
|
|
1850 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1851 |
sub_results_by = quote((merge_method != "Merge By Early Concat" & |
|
|
1852 |
drug_type == "Base Model" & |
|
|
1853 |
loss_type == "Base Model" & |
|
|
1854 |
nchar(data_types) <= 5 & |
|
|
1855 |
split_method == "Split By Drug Scaffold" & |
|
|
1856 |
bottleneck == "No Data Bottleneck")), |
|
|
1857 |
fill_by = quote(merge_method), |
|
|
1858 |
bar_level_order = c("Base Model", "Base Model + LMF", "Base Model + Sum"), |
|
|
1859 |
data_order = data_order, |
|
|
1860 |
facet_by = quote(TargetRange), |
|
|
1861 |
facet_level_order = c("Target Above 0.7", |
|
|
1862 |
"Target Below 0.7"), |
|
|
1863 |
legend_title = "Merge Method:", |
|
|
1864 |
y_lim = 0.05) |
|
|
1865 |
|
|
|
1866 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LMF_SplitByDrugScaffold_Comparison.pdf") |
|
|
1867 |
|
|
|
1868 |
# Box plot |
|
|
1869 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1870 |
sub_results_by = quote((merge_method != "Merge By Early Concat" & |
|
|
1871 |
drug_type == "Base Model" & |
|
|
1872 |
loss_type == "Base Model" & |
|
|
1873 |
nchar(data_types) <= 5 & |
|
|
1874 |
split_method == "Split By Drug Scaffold" & |
|
|
1875 |
bottleneck == "No Data Bottleneck")), |
|
|
1876 |
fill_by = quote(merge_method), |
|
|
1877 |
bar_level_order = c("Base Model", "Base Model + Sum", "Base Model + LMF"), |
|
|
1878 |
data_order = data_order, |
|
|
1879 |
facet_by = "data_types", |
|
|
1880 |
facet_level_order = NULL, |
|
|
1881 |
legend_title = "Model Type:", |
|
|
1882 |
y_lim = 0.05, |
|
|
1883 |
plot_type = "box_plot", |
|
|
1884 |
target_sub_by = "Target Above 0.7", |
|
|
1885 |
cur_comparisons = list(c("Base Model", "Base Model + Sum"), |
|
|
1886 |
c("Base Model + Sum", "Base Model + LMF"), |
|
|
1887 |
c("Base Model", "Base Model + LMF")), |
|
|
1888 |
test = "wilcox.test", |
|
|
1889 |
paired = F |
|
|
1890 |
) |
|
|
1891 |
|
|
|
1892 |
ggsave(plot = cur_p, |
|
|
1893 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LMF_SplitByDrugScaffold_Comparison_BoxPlot.pdf", |
|
|
1894 |
height = 8) |
|
|
1895 |
|
|
|
1896 |
## Split By Cell Line ==== |
|
|
1897 |
# Bar plot |
|
|
1898 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
1899 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
1900 |
|
|
|
1901 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1902 |
sub_results_by = quote((merge_method != "Merge By Early Concat" & |
|
|
1903 |
drug_type == "Base Model" & |
|
|
1904 |
loss_type == "Base Model" & |
|
|
1905 |
nchar(data_types) <= 5 & |
|
|
1906 |
split_method == "Split By Cell Line" & |
|
|
1907 |
bottleneck == "No Data Bottleneck")), |
|
|
1908 |
fill_by = quote(merge_method), |
|
|
1909 |
bar_level_order = c("Base Model", "Base Model + LMF", "Base Model + Sum"), |
|
|
1910 |
data_order = data_order, |
|
|
1911 |
facet_by = c("Targeted", "TargetRange"), |
|
|
1912 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
1913 |
c("Target Above 0.7","Target Below 0.7")), |
|
|
1914 |
legend_title = "Model Type:", |
|
|
1915 |
plot_type = "bar_plot", |
|
|
1916 |
calculate_avg_mae = F, y_lab = "Total RMSE Loss", |
|
|
1917 |
y_lim = 0.1) |
|
|
1918 |
|
|
|
1919 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
1920 |
|
|
|
1921 |
ggsave(plot = cur_p, |
|
|
1922 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LMF_SplitByCellLine_Comparison_BarPlot.pdf", |
|
|
1923 |
height = 8) |
|
|
1924 |
|
|
|
1925 |
# Box plot |
|
|
1926 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1927 |
sub_results_by = quote((merge_method != "Merge By Early Concat" & |
|
|
1928 |
drug_type == "Base Model" & |
|
|
1929 |
loss_type == "Base Model" & |
|
|
1930 |
nchar(data_types) <= 5 & |
|
|
1931 |
split_method == "Split By Cell Line" & |
|
|
1932 |
bottleneck == "No Data Bottleneck")), |
|
|
1933 |
fill_by = quote(merge_method), |
|
|
1934 |
bar_level_order = c("Base Model", "Base Model + Sum", "Base Model + LMF"), |
|
|
1935 |
data_order = data_order, |
|
|
1936 |
facet_by = "data_types", |
|
|
1937 |
facet_level_order = NULL, |
|
|
1938 |
legend_title = "Model Type:", |
|
|
1939 |
y_lim = 0.05, |
|
|
1940 |
plot_type = "box_plot", |
|
|
1941 |
target_sub_by = "Target Above 0.7", |
|
|
1942 |
cur_comparisons = list(c("Base Model", "Base Model + Sum"), |
|
|
1943 |
c("Base Model + Sum", "Base Model + LMF"), |
|
|
1944 |
c("Base Model", "Base Model + LMF")), |
|
|
1945 |
test = "wilcox.test", |
|
|
1946 |
paired = F |
|
|
1947 |
) |
|
|
1948 |
|
|
|
1949 |
ggsave(plot = cur_p, |
|
|
1950 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LMF_SplitByCellLine_Comparison_BoxPlot.pdf", |
|
|
1951 |
width = 15) |
|
|
1952 |
|
|
|
1953 |
# Violin plot |
|
|
1954 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1955 |
sub_results_by = quote((merge_method != "Merge By Early Concat" & |
|
|
1956 |
drug_type == "Base Model" & |
|
|
1957 |
loss_type == "Base Model" & |
|
|
1958 |
nchar(data_types) <= 5 & |
|
|
1959 |
split_method == "Split By Cell Line" & |
|
|
1960 |
bottleneck == "No Data Bottleneck")), |
|
|
1961 |
fill_by = quote(merge_method), |
|
|
1962 |
bar_level_order = c("Base Model", "Base Model + Sum", "Base Model + LMF"), |
|
|
1963 |
data_order = data_order, |
|
|
1964 |
facet_by = "data_types", |
|
|
1965 |
facet_level_order = NULL, |
|
|
1966 |
legend_title = "Model Type:", |
|
|
1967 |
y_lim = 0.05, |
|
|
1968 |
plot_type = "violin_plot", |
|
|
1969 |
target_sub_by = "Target Above 0.7", |
|
|
1970 |
cur_comparisons = list(c("Base Model", "Base Model + Sum"), |
|
|
1971 |
c("Base Model + Sum", "Base Model + LMF"), |
|
|
1972 |
c("Base Model", "Base Model + LMF")), |
|
|
1973 |
test = "ks.test", |
|
|
1974 |
paired = T |
|
|
1975 |
) |
|
|
1976 |
|
|
|
1977 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) + expand_limits(y = c(0, 1.5)) |
|
|
1978 |
|
|
|
1979 |
ggsave(plot = cur_p, |
|
|
1980 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_LMF_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
1981 |
height = 10) |
|
|
1982 |
|
|
|
1983 |
## Split Comparison ==== |
|
|
1984 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
1985 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
1986 |
drug_type == "Base Model" & |
|
|
1987 |
loss_type == "Base Model" & |
|
|
1988 |
nchar(data_types) <= 5 & |
|
|
1989 |
bottleneck == "No Data Bottleneck")), |
|
|
1990 |
fill_by = quote(split_method), |
|
|
1991 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
1992 |
data_order = data_order, |
|
|
1993 |
facet_by = quote(TargetRange), |
|
|
1994 |
facet_level_order = c("Target Above 0.7", |
|
|
1995 |
"Target Below 0.7"), |
|
|
1996 |
legend_title = "Split Method:", |
|
|
1997 |
y_lim = 0.05) |
|
|
1998 |
|
|
|
1999 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_with_LMF_Split_Comparison.pdf") |
|
|
2000 |
|
|
|
2001 |
# Bi-Modal Baseline vs GNN ==== |
|
|
2002 |
all_results <- fread("Data/all_results.csv") |
|
|
2003 |
all_results <- all_results[nchar(data_types) <= 5] |
|
|
2004 |
|
|
|
2005 |
all_results_copy <- all_results |
|
|
2006 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck", "TargetRange") |
|
|
2007 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
2008 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
2009 |
|
|
|
2010 |
## Split By Both Cell Line & Drug Scaffold ==== |
|
|
2011 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2012 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2013 |
loss_type == "Base Model" & |
|
|
2014 |
nchar(data_types) <= 5 & |
|
|
2015 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2016 |
bottleneck == "No Data Bottleneck")), |
|
|
2017 |
fill_by = quote(drug_type), |
|
|
2018 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2019 |
data_order = data_order, |
|
|
2020 |
facet_by = quote(TargetRange), |
|
|
2021 |
facet_level_order = c("Target Above 0.7", |
|
|
2022 |
"Target Below 0.7"), |
|
|
2023 |
legend_title = "Drug Model:", |
|
|
2024 |
y_lim = 0.05) |
|
|
2025 |
|
|
|
2026 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_GNN_SplitByBoth_Comparison.pdf") |
|
|
2027 |
|
|
|
2028 |
# Box plot |
|
|
2029 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2030 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2031 |
loss_type == "Base Model" & |
|
|
2032 |
nchar(data_types) <= 5 & |
|
|
2033 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2034 |
bottleneck == "No Data Bottleneck")), |
|
|
2035 |
fill_by = quote(drug_type), |
|
|
2036 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2037 |
data_order = data_order, |
|
|
2038 |
facet_by = "data_types", |
|
|
2039 |
facet_level_order = NULL, |
|
|
2040 |
legend_title = "Model Type:", |
|
|
2041 |
y_lim = 0.05, |
|
|
2042 |
plot_type = "box_plot", |
|
|
2043 |
target_sub_by = "Target Above 0.7", |
|
|
2044 |
cur_comparisons = list(c("Base Model", "Base Model + GNN")), |
|
|
2045 |
test = "wilcox.test", |
|
|
2046 |
paired = F |
|
|
2047 |
) |
|
|
2048 |
|
|
|
2049 |
ggsave(plot = cur_p, |
|
|
2050 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_GNN_SplitByBoth_Comparison_BoxPlot.pdf", |
|
|
2051 |
height = 8) |
|
|
2052 |
## Split By Drug Scaffold ==== |
|
|
2053 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
2054 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
2055 |
|
|
|
2056 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2057 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2058 |
loss_type == "Base Model" & |
|
|
2059 |
nchar(data_types) <= 5 & |
|
|
2060 |
split_method == "Split By Drug Scaffold" & |
|
|
2061 |
bottleneck == "No Data Bottleneck")), |
|
|
2062 |
fill_by = quote(drug_type), |
|
|
2063 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2064 |
data_order = data_order, |
|
|
2065 |
facet_by = c("Targeted", "TargetRange"), |
|
|
2066 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2067 |
c("Target Above 0.7", "Target Below 0.7")), |
|
|
2068 |
legend_title = "Model Type:", |
|
|
2069 |
plot_type = "bar_plot", |
|
|
2070 |
calculate_avg_mae = F, |
|
|
2071 |
y_lab = "Total RMSE Loss", |
|
|
2072 |
y_lim = 0.1) |
|
|
2073 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2074 |
|
|
|
2075 |
ggsave(plot = cur_p, |
|
|
2076 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_GNN_SplitByDrugScaffold_Comparison_BarPlot.pdf", |
|
|
2077 |
height = 8) |
|
|
2078 |
|
|
|
2079 |
# Box plot |
|
|
2080 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2081 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2082 |
loss_type == "Base Model" & |
|
|
2083 |
nchar(data_types) <= 5 & |
|
|
2084 |
split_method == "Split By Drug Scaffold" & |
|
|
2085 |
bottleneck == "No Data Bottleneck")), |
|
|
2086 |
fill_by = quote(drug_type), |
|
|
2087 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2088 |
data_order = data_order, |
|
|
2089 |
facet_by = "data_types", |
|
|
2090 |
facet_level_order = NULL, |
|
|
2091 |
legend_title = "Model Type:", |
|
|
2092 |
y_lim = 0.05, |
|
|
2093 |
plot_type = "box_plot", |
|
|
2094 |
target_sub_by = "Target Above 0.7", |
|
|
2095 |
cur_comparisons = list(c("Base Model", "Base Model + GNN")), |
|
|
2096 |
test = "wilcox.test", |
|
|
2097 |
paired = F |
|
|
2098 |
) |
|
|
2099 |
|
|
|
2100 |
ggsave(plot = cur_p, |
|
|
2101 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_GNN_SplitByDrugScaffold_Comparison_BoxPlot.pdf", |
|
|
2102 |
height = 8) |
|
|
2103 |
|
|
|
2104 |
## Split By Cell Line ==== |
|
|
2105 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
2106 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
2107 |
|
|
|
2108 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2109 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2110 |
loss_type == "Base Model" & |
|
|
2111 |
nchar(data_types) <= 5 & |
|
|
2112 |
split_method == "Split By Cell Line" & |
|
|
2113 |
bottleneck == "No Data Bottleneck")), |
|
|
2114 |
fill_by = quote(drug_type), |
|
|
2115 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2116 |
data_order = data_order, |
|
|
2117 |
facet_by = c("Targeted", "TargetRange"), |
|
|
2118 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2119 |
c("Target Above 0.7","Target Below 0.7")), |
|
|
2120 |
legend_title = "Model Type:", |
|
|
2121 |
plot_type = "bar_plot", |
|
|
2122 |
calculate_avg_mae = F, y_lab = "Total RMSE Loss", |
|
|
2123 |
y_lim = 0.1) |
|
|
2124 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2125 |
|
|
|
2126 |
ggsave(plot = cur_p, |
|
|
2127 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_GNN_SplitByCellLine_Comparison_BarPlot.pdf", |
|
|
2128 |
height = 8) |
|
|
2129 |
|
|
|
2130 |
# Box plot |
|
|
2131 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2132 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2133 |
loss_type == "Base Model" & |
|
|
2134 |
nchar(data_types) <= 5 & |
|
|
2135 |
split_method == "Split By Cell Line" & |
|
|
2136 |
bottleneck == "No Data Bottleneck")), |
|
|
2137 |
fill_by = quote(drug_type), |
|
|
2138 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2139 |
data_order = data_order, |
|
|
2140 |
facet_by = "data_types", |
|
|
2141 |
facet_level_order = NULL, |
|
|
2142 |
legend_title = "Model Type:", |
|
|
2143 |
y_lim = 0.05, |
|
|
2144 |
plot_type = "box_plot", |
|
|
2145 |
target_sub_by = "Target Above 0.7", |
|
|
2146 |
cur_comparisons = list(c("Base Model", "Base Model + GNN")), |
|
|
2147 |
test = "wilcox.test", |
|
|
2148 |
paired = F |
|
|
2149 |
) |
|
|
2150 |
|
|
|
2151 |
ggsave(plot = cur_p, |
|
|
2152 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_GNN_SplitByCellLine_Comparison_BoxPlot.pdf", |
|
|
2153 |
height = 8) |
|
|
2154 |
|
|
|
2155 |
# Violin plot |
|
|
2156 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2157 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2158 |
loss_type == "Base Model" & |
|
|
2159 |
nchar(data_types) <= 5 & |
|
|
2160 |
split_method == "Split By Cell Line" & |
|
|
2161 |
bottleneck == "No Data Bottleneck")), |
|
|
2162 |
fill_by = quote(drug_type), |
|
|
2163 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2164 |
data_order = data_order, |
|
|
2165 |
facet_by = c("Targeted","data_types"), |
|
|
2166 |
facet_level_order = NULL, |
|
|
2167 |
legend_title = "Model Type:", |
|
|
2168 |
y_lim = 0.05, |
|
|
2169 |
plot_type = "violin_plot", |
|
|
2170 |
target_sub_by = "Target Above 0.7", |
|
|
2171 |
cur_comparisons = list(c("Base Model", "Base Model + GNN")), |
|
|
2172 |
test = "ks.test", |
|
|
2173 |
paired = T |
|
|
2174 |
) |
|
|
2175 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2176 |
|
|
|
2177 |
ggsave(plot = cur_p, |
|
|
2178 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_GNN_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
2179 |
height = 8) |
|
|
2180 |
## Split Comparison ==== |
|
|
2181 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2182 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2183 |
loss_type == "Base Model" & |
|
|
2184 |
drug_type == "Base Model + GNN" & |
|
|
2185 |
nchar(data_types) <= 5 & |
|
|
2186 |
bottleneck == "No Data Bottleneck")), |
|
|
2187 |
fill_by = quote(split_method), |
|
|
2188 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
2189 |
data_order = data_order, |
|
|
2190 |
facet_by = quote(TargetRange), |
|
|
2191 |
facet_level_order = c("Target Above 0.7", |
|
|
2192 |
"Target Below 0.7"), |
|
|
2193 |
legend_title = "Split Method:", |
|
|
2194 |
y_lim = 0.05) |
|
|
2195 |
|
|
|
2196 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_with_GNN_Split_Comparison.pdf") |
|
|
2197 |
|
|
|
2198 |
## Targeted and Untargeted drugs in upper AAC range ==== |
|
|
2199 |
all_results_copy <- all_results[TargetRange == "Target Above 0.7"] |
|
|
2200 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck", "Targeted") |
|
|
2201 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
2202 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
2203 |
|
|
|
2204 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2205 |
sub_results_by = quote((merge_method == "Base Model" & |
|
|
2206 |
loss_type == "Base Model" & |
|
|
2207 |
nchar(data_types) <= 5 & |
|
|
2208 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2209 |
bottleneck == "No Data Bottleneck")), |
|
|
2210 |
fill_by = quote(drug_type), |
|
|
2211 |
bar_level_order = c("Base Model", "Base Model + GNN"), |
|
|
2212 |
data_order = data_order, |
|
|
2213 |
facet_by = quote(Targeted), |
|
|
2214 |
facet_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
2215 |
legend_title = "Drug Model:", |
|
|
2216 |
y_lim = 0.05) |
|
|
2217 |
|
|
|
2218 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_vs_GNN_Targeted_vs_Untargeted_SplitByBoth_Comparison.pdf") |
|
|
2219 |
|
|
|
2220 |
# Bi-modal LMF + GNN without LDS (Split By Both Cell Line & Drug Scaffold) ==== |
|
|
2221 |
all_results <- fread("Data/all_results.csv") |
|
|
2222 |
all_results <- all_results[nchar(data_types) <= 5] |
|
|
2223 |
|
|
|
2224 |
all_results_copy <- all_results |
|
|
2225 |
# all_results_copy[target > 0.7 & target < 0.9]$TargetRange <- "Target Between 0.7 & 0.9" |
|
|
2226 |
# all_results_copy[target >= 0.9]$TargetRange <- "Target Above 0.9" |
|
|
2227 |
|
|
|
2228 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
2229 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
2230 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
2231 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
2232 |
|
|
|
2233 |
# Must rename some columns to better distinguish differences on the plot |
|
|
2234 |
all_results_copy[loss_type == "Base Model", loss_type := "LMF + GNN"] |
|
|
2235 |
all_results_copy[loss_type == "Base Model + LDS", loss_type := "LDS + LMF + GNN"] |
|
|
2236 |
|
|
|
2237 |
## Split By Both Cell Line & Drug Scaffold ==== |
|
|
2238 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2239 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2240 |
drug_type == "Base Model + GNN" & |
|
|
2241 |
nchar(data_types) <= 5 & |
|
|
2242 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2243 |
bottleneck == "No Data Bottleneck")), |
|
|
2244 |
fill_by = quote(loss_type), |
|
|
2245 |
bar_level_order = c("LMF + GNN", "LDS + LMF + GNN"), |
|
|
2246 |
data_order = data_order, |
|
|
2247 |
facet_by = quote(TargetRange), |
|
|
2248 |
facet_level_order = c("Target Above 0.9", |
|
|
2249 |
"Target Between 0.7 & 0.9", |
|
|
2250 |
"Target Below 0.7"), |
|
|
2251 |
legend_title = "Loss Type:", |
|
|
2252 |
y_lim = 0.05) |
|
|
2253 |
|
|
|
2254 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LDS_SplitByBoth_Comparison.pdf") |
|
|
2255 |
|
|
|
2256 |
# Box plot |
|
|
2257 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2258 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2259 |
drug_type == "Base Model + GNN" & |
|
|
2260 |
nchar(data_types) <= 5 & |
|
|
2261 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2262 |
bottleneck == "No Data Bottleneck")), |
|
|
2263 |
fill_by = quote(loss_type), |
|
|
2264 |
bar_level_order = c("LMF + GNN", "LDS + LMF + GNN"), |
|
|
2265 |
data_order = data_order, |
|
|
2266 |
facet_by = c("TargetRange", "data_types"), |
|
|
2267 |
facet_level_order = NULL, |
|
|
2268 |
legend_title = "Model Type:", |
|
|
2269 |
y_lim = 0.05, |
|
|
2270 |
plot_type = "box_plot", |
|
|
2271 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
2272 |
cur_comparisons = list(c("LMF + GNN", "LDS + LMF + GNN")), |
|
|
2273 |
test = "wilcox.test", |
|
|
2274 |
paired = F |
|
|
2275 |
) |
|
|
2276 |
|
|
|
2277 |
ggsave(plot = cur_p, |
|
|
2278 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LDS_SplitByBoth_Comparison_BoxPlot.pdf", |
|
|
2279 |
height = 8) |
|
|
2280 |
|
|
|
2281 |
## Split By Drug Scaffold ==== |
|
|
2282 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2283 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2284 |
drug_type == "Base Model + GNN" & |
|
|
2285 |
nchar(data_types) <= 5 & |
|
|
2286 |
split_method == "Split By Drug Scaffold" & |
|
|
2287 |
bottleneck == "No Data Bottleneck")), |
|
|
2288 |
fill_by = quote(loss_type), |
|
|
2289 |
bar_level_order = c("LMF + GNN", "LDS + LMF + GNN"), |
|
|
2290 |
data_order = data_order, |
|
|
2291 |
facet_by = quote(TargetRange), |
|
|
2292 |
facet_level_order = c("Target Above 0.9", |
|
|
2293 |
"Target Between 0.7 & 0.9", |
|
|
2294 |
"Target Below 0.7"), |
|
|
2295 |
legend_title = "Model Type:", |
|
|
2296 |
y_lim = 0.05) |
|
|
2297 |
|
|
|
2298 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LDS_SplitByDrugScaffold_Comparison.pdf") |
|
|
2299 |
|
|
|
2300 |
# Box plot |
|
|
2301 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2302 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2303 |
drug_type == "Base Model + GNN" & |
|
|
2304 |
nchar(data_types) <= 5 & |
|
|
2305 |
split_method == "Split By Drug Scaffold" & |
|
|
2306 |
bottleneck == "No Data Bottleneck")), |
|
|
2307 |
fill_by = quote(loss_type), |
|
|
2308 |
bar_level_order = c("LMF + GNN", "LDS + LMF + GNN"), |
|
|
2309 |
data_order = data_order, |
|
|
2310 |
facet_by = c("TargetRange", "data_types"), |
|
|
2311 |
facet_level_order = NULL, |
|
|
2312 |
legend_title = "Model Type:", |
|
|
2313 |
y_lim = 0.05, |
|
|
2314 |
plot_type = "box_plot", |
|
|
2315 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
2316 |
cur_comparisons = list(c("LMF + GNN", "LDS + LMF + GNN")), |
|
|
2317 |
test = "wilcox.test", |
|
|
2318 |
paired = F |
|
|
2319 |
) |
|
|
2320 |
|
|
|
2321 |
ggsave(plot = cur_p, |
|
|
2322 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LDS_SplitByDrugScaffold_Comparison_BoxPlot.pdf", |
|
|
2323 |
height = 8) |
|
|
2324 |
|
|
|
2325 |
## Split By Cell Line ==== |
|
|
2326 |
|
|
|
2327 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2328 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2329 |
drug_type == "Base Model + GNN" & |
|
|
2330 |
nchar(data_types) <= 5 & |
|
|
2331 |
split_method == "Split By Cell Line" & |
|
|
2332 |
bottleneck == "No Data Bottleneck")), |
|
|
2333 |
fill_by = quote(loss_type), |
|
|
2334 |
bar_level_order = c("LMF + GNN", "LDS + LMF + GNN"), |
|
|
2335 |
data_order = data_order, |
|
|
2336 |
facet_by = c("Targeted", "TargetRange"), |
|
|
2337 |
# facet_level_order = c("Target Above 0.9", |
|
|
2338 |
# "Target Between 0.7 & 0.9", |
|
|
2339 |
# "Target Below 0.7"), |
|
|
2340 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2341 |
c("Target Above 0.7", "Target Below 0.7")), |
|
|
2342 |
# target_sub_by = c("Target Above 0.9", "Target Between 0.7 & 0.9"), |
|
|
2343 |
legend_title = "Model Type:", |
|
|
2344 |
calculate_avg_mae = F, y_lab = "Total RMSE Loss", |
|
|
2345 |
y_lim = 0.1) |
|
|
2346 |
|
|
|
2347 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2348 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LDS_SplitByCellLine_Comparison_BarPlot.pdf", |
|
|
2349 |
height = 8) |
|
|
2350 |
|
|
|
2351 |
# Box plot |
|
|
2352 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2353 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2354 |
drug_type == "Base Model + GNN" & |
|
|
2355 |
nchar(data_types) <= 5 & |
|
|
2356 |
split_method == "Split By Cell Line" & |
|
|
2357 |
bottleneck == "No Data Bottleneck")), |
|
|
2358 |
fill_by = quote(loss_type), |
|
|
2359 |
bar_level_order = c("LMF + GNN", "LDS + LMF + GNN"), |
|
|
2360 |
data_order = data_order, |
|
|
2361 |
facet_by = c("TargetRange", "data_types"), |
|
|
2362 |
facet_level_order = NULL, |
|
|
2363 |
legend_title = "Model Type:", |
|
|
2364 |
y_lim = 0.05, |
|
|
2365 |
plot_type = "box_plot", |
|
|
2366 |
target_sub_by = c("Target Between 0.7 & 0.9", "Target Above 0.9"), |
|
|
2367 |
cur_comparisons = list(c("LMF + GNN", "LDS + LMF + GNN")), |
|
|
2368 |
test = "wilcox.test", |
|
|
2369 |
paired = F |
|
|
2370 |
) |
|
|
2371 |
|
|
|
2372 |
ggsave(plot = cur_p, |
|
|
2373 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LDS_SplitByCellLine_Comparison_BoxPlot.pdf", |
|
|
2374 |
height = 8) |
|
|
2375 |
|
|
|
2376 |
# Violin plot |
|
|
2377 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2378 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2379 |
drug_type == "Base Model + GNN" & |
|
|
2380 |
nchar(data_types) <= 5 & |
|
|
2381 |
split_method == "Split By Cell Line" & |
|
|
2382 |
bottleneck == "No Data Bottleneck")), |
|
|
2383 |
fill_by = quote(loss_type), |
|
|
2384 |
bar_level_order = c("LMF + GNN", "LDS + LMF + GNN"), |
|
|
2385 |
data_order = data_order, |
|
|
2386 |
facet_by = c("Targeted", "data_types"), |
|
|
2387 |
plot_type = "violin_plot", |
|
|
2388 |
# facet_level_order = c("Target Above 0.9", |
|
|
2389 |
# "Target Between 0.7 & 0.9", |
|
|
2390 |
# "Target Below 0.7"), |
|
|
2391 |
# facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2392 |
# c("Target Above 0.7", "Target Below 0.7")), |
|
|
2393 |
cur_comparisons = list(c("LMF + GNN", "LDS + LMF + GNN")), |
|
|
2394 |
target_sub_by = c("Target Above 0.7"), |
|
|
2395 |
legend_title = "Model Type:", |
|
|
2396 |
calculate_avg_mae = F, y_lab = "Total RMSE Loss", |
|
|
2397 |
test = "ks.test", paired = T, |
|
|
2398 |
y_lim = 0.1) |
|
|
2399 |
|
|
|
2400 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2401 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LDS_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
2402 |
height = 8) |
|
|
2403 |
|
|
|
2404 |
|
|
|
2405 |
## Split Comparison ==== |
|
|
2406 |
# GNN + LMF - LDS |
|
|
2407 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2408 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2409 |
drug_type == "Base Model + GNN" & |
|
|
2410 |
loss_type == "Base Model" & |
|
|
2411 |
nchar(data_types) <= 5 & |
|
|
2412 |
bottleneck == "No Data Bottleneck")), |
|
|
2413 |
fill_by = quote(split_method), |
|
|
2414 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
2415 |
data_order = data_order, |
|
|
2416 |
facet_by = quote(TargetRange), |
|
|
2417 |
facet_level_order = c("Target Above 0.9", |
|
|
2418 |
"Target Between 0.7 & 0.9", |
|
|
2419 |
"Target Below 0.7"), |
|
|
2420 |
legend_title = "Split Method:", |
|
|
2421 |
y_lim = 0.05) |
|
|
2422 |
|
|
|
2423 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Trifecta_without_LDS_Split_Comparison.pdf") |
|
|
2424 |
|
|
|
2425 |
# Bi-modal LMF + LDS without GNN ==== |
|
|
2426 |
all_results <- fread("Data/all_results.csv") |
|
|
2427 |
all_results <- all_results[nchar(data_types) <= 5] |
|
|
2428 |
|
|
|
2429 |
## Upper vs Lower AAC Range ==== |
|
|
2430 |
all_results_copy <- all_results |
|
|
2431 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
2432 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
2433 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
2434 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
2435 |
|
|
|
2436 |
# Must rename some columns to better distinguish differences on the plot |
|
|
2437 |
all_results_copy[drug_type == "Base Model", drug_type := "LDS + LMF"] |
|
|
2438 |
all_results_copy[drug_type == "Base Model + GNN", drug_type := "LDS + LMF + GNN"] |
|
|
2439 |
|
|
|
2440 |
table(all_results_copy[merge_method == "Base Model + LMF" & |
|
|
2441 |
loss_type == "Base Model + LDS" & nchar(data_types) <= 5 & |
|
|
2442 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2443 |
bottleneck == "No Data Bottleneck"]$drug_type) |
|
|
2444 |
### Split By Both Cell Line & Drug Scaffold ==== |
|
|
2445 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2446 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2447 |
loss_type == "Base Model + LDS" & |
|
|
2448 |
nchar(data_types) <= 5 & |
|
|
2449 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2450 |
bottleneck == "No Data Bottleneck")), |
|
|
2451 |
fill_by = quote(drug_type), |
|
|
2452 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2453 |
data_order = data_order, |
|
|
2454 |
facet_by = quote(TargetRange), |
|
|
2455 |
facet_level_order = c("Target Above 0.7", |
|
|
2456 |
"Target Below 0.7"), |
|
|
2457 |
legend_title = "Model Type:", |
|
|
2458 |
y_lim = 0.05) |
|
|
2459 |
|
|
|
2460 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_Upper_vs_Lower_SplitByBoth_Comparison.pdf") |
|
|
2461 |
|
|
|
2462 |
# Box plot |
|
|
2463 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2464 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2465 |
loss_type == "Base Model + LDS" & |
|
|
2466 |
nchar(data_types) <= 5 & |
|
|
2467 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2468 |
bottleneck == "No Data Bottleneck")), |
|
|
2469 |
fill_by = quote(drug_type), |
|
|
2470 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2471 |
data_order = data_order, |
|
|
2472 |
facet_by = "data_types", |
|
|
2473 |
facet_level_order = NULL, |
|
|
2474 |
legend_title = "Model Type:", |
|
|
2475 |
y_lim = 0.05, |
|
|
2476 |
plot_type = "box_plot", |
|
|
2477 |
target_sub_by = "Target Above 0.7", |
|
|
2478 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2479 |
test = "wilcox.test", |
|
|
2480 |
paired = F |
|
|
2481 |
) |
|
|
2482 |
|
|
|
2483 |
ggsave(plot = cur_p, |
|
|
2484 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_SplitByBoth_Comparison_BoxPlot.pdf") |
|
|
2485 |
|
|
|
2486 |
### Split By Drug Scaffold ==== |
|
|
2487 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2488 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2489 |
loss_type == "Base Model + LDS" & |
|
|
2490 |
nchar(data_types) <= 5 & |
|
|
2491 |
split_method == "Split By Drug Scaffold" & |
|
|
2492 |
TargetRange == "Target Above 0.7" & |
|
|
2493 |
bottleneck == "No Data Bottleneck")), |
|
|
2494 |
fill_by = quote(drug_type), |
|
|
2495 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2496 |
data_order = data_order, |
|
|
2497 |
facet_by = c("Targeted", "TargetRange"), |
|
|
2498 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2499 |
c("Target Above 0.7", "Target Below 0.7")), |
|
|
2500 |
legend_title = "Model Type:", |
|
|
2501 |
calculate_avg_mae = F, |
|
|
2502 |
y_lab = "Total RMSE Loss", |
|
|
2503 |
add_mean = F, |
|
|
2504 |
y_lim = 0.05) |
|
|
2505 |
|
|
|
2506 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2507 |
ggsave(plot = cur_p, |
|
|
2508 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_Upper_vs_Lower_SplitByDrugScaffold_Comparison_BarPlot.pdf") |
|
|
2509 |
|
|
|
2510 |
# Box plot |
|
|
2511 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2512 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2513 |
loss_type == "Base Model + LDS" & |
|
|
2514 |
nchar(data_types) <= 5 & |
|
|
2515 |
split_method == "Split By Drug Scaffold" & |
|
|
2516 |
bottleneck == "No Data Bottleneck")), |
|
|
2517 |
fill_by = quote(drug_type), |
|
|
2518 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2519 |
data_order = data_order, |
|
|
2520 |
facet_by = "data_types", |
|
|
2521 |
facet_level_order = NULL, |
|
|
2522 |
legend_title = "Model Type:", |
|
|
2523 |
y_lim = 0.05, |
|
|
2524 |
plot_type = "box_plot", |
|
|
2525 |
target_sub_by = "Target Above 0.7", |
|
|
2526 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2527 |
test = "wilcox.test", |
|
|
2528 |
paired = F |
|
|
2529 |
) |
|
|
2530 |
|
|
|
2531 |
ggsave(plot = cur_p, |
|
|
2532 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_SplitByDrugScaffold_Comparison_BoxPlot.pdf") |
|
|
2533 |
|
|
|
2534 |
# Violin plot |
|
|
2535 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2536 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2537 |
loss_type == "Base Model + LDS" & |
|
|
2538 |
nchar(data_types) <= 5 & |
|
|
2539 |
split_method == "Split By Drug Scaffold" & |
|
|
2540 |
TargetRange == "Target Above 0.7" & |
|
|
2541 |
bottleneck == "No Data Bottleneck")), |
|
|
2542 |
fill_by = quote(drug_type), |
|
|
2543 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2544 |
data_order = data_order, |
|
|
2545 |
facet_by = c("Targeted", "data_types"), |
|
|
2546 |
facet_level_order = NULL, |
|
|
2547 |
# facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2548 |
# c("Target Above 0.7", "Target Below 0.7")), |
|
|
2549 |
legend_title = "Model Type:", |
|
|
2550 |
y_lab = "Total RMSE Loss", |
|
|
2551 |
add_mean = F, |
|
|
2552 |
plot_type = "violin_plot", |
|
|
2553 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2554 |
test = "ks.test", |
|
|
2555 |
paired = T, |
|
|
2556 |
y_lim = 0.05) |
|
|
2557 |
|
|
|
2558 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2559 |
ggsave(plot = cur_p, |
|
|
2560 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_Upper_vs_Lower_SplitByDrugScaffold_Comparison_ViolinPlot.pdf") |
|
|
2561 |
|
|
|
2562 |
### Split By Cell Line ==== |
|
|
2563 |
table(all_results_copy[merge_method == "Base Model + LMF" & |
|
|
2564 |
loss_type == "Base Model + LDS" & nchar(data_types) <= 5 & |
|
|
2565 |
split_method == "Split By Cell Line" & |
|
|
2566 |
bottleneck == "No Data Bottleneck"]$drug_type) |
|
|
2567 |
|
|
|
2568 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2569 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2570 |
loss_type == "Base Model + LDS" & |
|
|
2571 |
nchar(data_types) <= 5 & |
|
|
2572 |
split_method == "Split By Cell Line" & |
|
|
2573 |
TargetRange == "Target Above 0.7" & |
|
|
2574 |
bottleneck == "No Data Bottleneck")), |
|
|
2575 |
fill_by = quote(drug_type), |
|
|
2576 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2577 |
data_order = data_order, |
|
|
2578 |
facet_by = c("Targeted", "TargetRange"), |
|
|
2579 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2580 |
c("Target Above 0.7", "Target Below 0.7")), |
|
|
2581 |
legend_title = "Model Type:", |
|
|
2582 |
calculate_avg_mae = F, y_lab = "Total RMSE Loss", |
|
|
2583 |
add_mean = T, |
|
|
2584 |
y_lim = 0.05) |
|
|
2585 |
|
|
|
2586 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2587 |
ggsave(plot = cur_p, |
|
|
2588 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_Upper_vs_Lower_SplitByCellLine_Comparison_BarPlot.pdf", |
|
|
2589 |
height = 10) |
|
|
2590 |
|
|
|
2591 |
# Box plot |
|
|
2592 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2593 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2594 |
loss_type == "Base Model + LDS" & |
|
|
2595 |
nchar(data_types) <= 5 & |
|
|
2596 |
split_method == "Split By Cell Line" & |
|
|
2597 |
bottleneck == "No Data Bottleneck")), |
|
|
2598 |
fill_by = quote(drug_type), |
|
|
2599 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2600 |
data_order = data_order, |
|
|
2601 |
facet_by = "data_types", |
|
|
2602 |
facet_level_order = NULL, |
|
|
2603 |
legend_title = "Model Type:", |
|
|
2604 |
y_lim = 0.05, |
|
|
2605 |
plot_type = "box_plot", |
|
|
2606 |
target_sub_by = "Target Above 0.7", |
|
|
2607 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2608 |
test = "wilcox.test", |
|
|
2609 |
paired = F |
|
|
2610 |
) |
|
|
2611 |
|
|
|
2612 |
ggsave(plot = cur_p, |
|
|
2613 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_SplitByCellLine_Comparison_BoxPlot.pdf") |
|
|
2614 |
|
|
|
2615 |
# Violin plot |
|
|
2616 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2617 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2618 |
loss_type == "Base Model + LDS" & |
|
|
2619 |
nchar(data_types) <= 5 & |
|
|
2620 |
split_method == "Split By Cell Line" & |
|
|
2621 |
bottleneck == "No Data Bottleneck")), |
|
|
2622 |
fill_by = quote(drug_type), |
|
|
2623 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2624 |
data_order = data_order, |
|
|
2625 |
facet_by = c("Targeted", "data_types"), |
|
|
2626 |
facet_level_order = NULL, |
|
|
2627 |
legend_title = "Model Type:", |
|
|
2628 |
y_lim = 0.05, |
|
|
2629 |
plot_type = "violin_plot", |
|
|
2630 |
target_sub_by = "Target Above 0.7", |
|
|
2631 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2632 |
test = "ks.test", |
|
|
2633 |
paired = T |
|
|
2634 |
) |
|
|
2635 |
|
|
|
2636 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2637 |
ggsave(plot = cur_p, |
|
|
2638 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_GNN_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
2639 |
height = 8) |
|
|
2640 |
|
|
|
2641 |
### Split Comparison ==== |
|
|
2642 |
# LDS + LMF - GNN |
|
|
2643 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2644 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2645 |
loss_type == "Base Model + LDS" & |
|
|
2646 |
drug_type == "Base Model" & |
|
|
2647 |
nchar(data_types) <= 5 & |
|
|
2648 |
bottleneck == "No Data Bottleneck")), |
|
|
2649 |
fill_by = quote(split_method), |
|
|
2650 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
2651 |
data_order = data_order, |
|
|
2652 |
facet_by = quote(TargetRange), |
|
|
2653 |
facet_level_order = c("Target Above 0.7", |
|
|
2654 |
"Target Below 0.7"), |
|
|
2655 |
legend_title = "Split Method:", |
|
|
2656 |
y_lim = 0.05) |
|
|
2657 |
|
|
|
2658 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Trifecta_without_GNN_Upper_vs_Lower_Split_Comparison.pdf") |
|
|
2659 |
|
|
|
2660 |
## Targeted vs Untargeted Drugs ==== |
|
|
2661 |
all_results_copy <- all_results[TargetRange == "Target Above 0.7"] |
|
|
2662 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck", "Targeted") |
|
|
2663 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
2664 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
2665 |
|
|
|
2666 |
### Split By Both Cell Line & Drug Scaffold ==== |
|
|
2667 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2668 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2669 |
loss_type == "Base Model + LDS" & |
|
|
2670 |
nchar(data_types) <= 5 & |
|
|
2671 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2672 |
bottleneck == "No Data Bottleneck")), |
|
|
2673 |
fill_by = quote(drug_type), |
|
|
2674 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2675 |
data_order = data_order, |
|
|
2676 |
facet_by = quote(Targeted), |
|
|
2677 |
facet_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
2678 |
legend_title = "Model Type:", |
|
|
2679 |
y_lim = 0.05) |
|
|
2680 |
|
|
|
2681 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_without_GNN_Targeted_vs_Untargeted_Upper_0.7_SplitByBoth_Comparison.pdf") |
|
|
2682 |
|
|
|
2683 |
# Box plot |
|
|
2684 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2685 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2686 |
loss_type == "Base Model + LDS" & |
|
|
2687 |
nchar(data_types) <= 5 & |
|
|
2688 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2689 |
bottleneck == "No Data Bottleneck")), |
|
|
2690 |
fill_by = quote(drug_type), |
|
|
2691 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2692 |
data_order = data_order, |
|
|
2693 |
facet_by = c("Targeted", "data_types"), |
|
|
2694 |
facet_level_order = NULL, |
|
|
2695 |
legend_title = "Model Type:", |
|
|
2696 |
y_lim = 0.05, |
|
|
2697 |
plot_type = "box_plot", |
|
|
2698 |
target_sub_by = "Target Above 0.7", |
|
|
2699 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2700 |
test = "wilcox.test", |
|
|
2701 |
paired = F |
|
|
2702 |
) |
|
|
2703 |
|
|
|
2704 |
ggsave(plot = cur_p, |
|
|
2705 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_without_GNN_Targeted_vs_Untargeted_Upper_0.7_SplitByBoth_Comparison_BoxPlot.pdf", |
|
|
2706 |
height = 8) |
|
|
2707 |
|
|
|
2708 |
### Split By Drug Scaffold ==== |
|
|
2709 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2710 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2711 |
loss_type == "Base Model + LDS" & |
|
|
2712 |
nchar(data_types) <= 5 & |
|
|
2713 |
split_method == "Split By Drug Scaffold" & |
|
|
2714 |
bottleneck == "No Data Bottleneck")), |
|
|
2715 |
fill_by = quote(drug_type), |
|
|
2716 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2717 |
data_order = data_order, |
|
|
2718 |
facet_by = quote(Targeted), |
|
|
2719 |
facet_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
2720 |
legend_title = "Model Type:", |
|
|
2721 |
y_lim = 0.05) |
|
|
2722 |
|
|
|
2723 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_without_GNN_Targeted_vs_Untargeted_Upper_0.7_SplitByDrugScaffold_Comparison.pdf") |
|
|
2724 |
|
|
|
2725 |
# Box plot |
|
|
2726 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2727 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2728 |
loss_type == "Base Model + LDS" & |
|
|
2729 |
nchar(data_types) <= 5 & |
|
|
2730 |
split_method == "Split By Drug Scaffold" & |
|
|
2731 |
bottleneck == "No Data Bottleneck")), |
|
|
2732 |
fill_by = quote(drug_type), |
|
|
2733 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2734 |
data_order = data_order, |
|
|
2735 |
facet_by = c("Targeted", "data_types"), |
|
|
2736 |
facet_level_order = NULL, |
|
|
2737 |
legend_title = "Model Type:", |
|
|
2738 |
y_lim = 0.05, |
|
|
2739 |
plot_type = "box_plot", |
|
|
2740 |
target_sub_by = "Target Above 0.7", |
|
|
2741 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2742 |
test = "wilcox.test", |
|
|
2743 |
paired = F |
|
|
2744 |
) |
|
|
2745 |
|
|
|
2746 |
ggsave(plot = cur_p, |
|
|
2747 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_without_GNN_Targeted_vs_Untargeted_Upper_0.7_SplitByDrugScaffold_Comparison_BoxPlot.pdf", |
|
|
2748 |
height = 8) |
|
|
2749 |
|
|
|
2750 |
### Split By Cell Line ==== |
|
|
2751 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2752 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2753 |
loss_type == "Base Model + LDS" & |
|
|
2754 |
nchar(data_types) <= 5 & |
|
|
2755 |
split_method == "Split By Cell Line" & |
|
|
2756 |
bottleneck == "No Data Bottleneck")), |
|
|
2757 |
fill_by = quote(drug_type), |
|
|
2758 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2759 |
data_order = data_order, |
|
|
2760 |
facet_by = quote(Targeted), |
|
|
2761 |
facet_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
2762 |
legend_title = "Model Type:", |
|
|
2763 |
y_lim = 0.05) |
|
|
2764 |
|
|
|
2765 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_without_GNN_Targeted_vs_Untargeted_Upper_0.7_SplitByCellLine_Comparison.pdf") |
|
|
2766 |
|
|
|
2767 |
# Box plot |
|
|
2768 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2769 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2770 |
loss_type == "Base Model + LDS" & |
|
|
2771 |
nchar(data_types) <= 5 & |
|
|
2772 |
split_method == "Split By Cell Line" & |
|
|
2773 |
bottleneck == "No Data Bottleneck")), |
|
|
2774 |
fill_by = quote(drug_type), |
|
|
2775 |
bar_level_order = c("LDS + LMF", "LDS + LMF + GNN"), |
|
|
2776 |
data_order = data_order, |
|
|
2777 |
facet_by = c("Targeted", "data_types"), |
|
|
2778 |
facet_level_order = NULL, |
|
|
2779 |
legend_title = "Model Type:", |
|
|
2780 |
y_lim = 0.05, |
|
|
2781 |
plot_type = "box_plot", |
|
|
2782 |
target_sub_by = "Target Above 0.7", |
|
|
2783 |
cur_comparisons = list(c("LDS + LMF", "LDS + LMF + GNN")), |
|
|
2784 |
test = "wilcox.test", |
|
|
2785 |
paired = F |
|
|
2786 |
) |
|
|
2787 |
|
|
|
2788 |
ggsave(plot = cur_p, |
|
|
2789 |
filename = "Plots/CV_Results/Bimodal_CV_Trifecta_without_GNN_Targeted_vs_Untargeted_Upper_0.7_SplitByCellLine_Comparison_BoxPlot.pdf", |
|
|
2790 |
height = 8) |
|
|
2791 |
|
|
|
2792 |
### Split Comparison ==== |
|
|
2793 |
# LDS + LMF - GNN, Upper Range, Targeted vs Untargeted |
|
|
2794 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2795 |
sub_results_by = quote((merge_method == "Base Model + LMF" & |
|
|
2796 |
loss_type == "Base Model + LDS" & |
|
|
2797 |
drug_type == "Base Model" & |
|
|
2798 |
nchar(data_types) <= 5 & |
|
|
2799 |
bottleneck == "No Data Bottleneck")), |
|
|
2800 |
fill_by = quote(split_method), |
|
|
2801 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
2802 |
data_order = data_order, |
|
|
2803 |
facet_by = quote(Targeted), |
|
|
2804 |
facet_level_order = c("Targeted Drug", "Untargeted Drug"), |
|
|
2805 |
legend_title = "Drug Model:", |
|
|
2806 |
y_lim = 0.05) |
|
|
2807 |
|
|
|
2808 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Trifecta_without_GNN_Targeted_vs_Untargeted_Upper_0.7_Split_Comparison.pdf") |
|
|
2809 |
|
|
|
2810 |
|
|
|
2811 |
# Bi-modal LDS + GNN without LMF ==== |
|
|
2812 |
all_results <- fread("Data/all_results.csv") |
|
|
2813 |
all_results <- all_results[nchar(data_types) <= 5] |
|
|
2814 |
|
|
|
2815 |
all_results_copy <- all_results |
|
|
2816 |
|
|
|
2817 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
2818 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
2819 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
2820 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
2821 |
|
|
|
2822 |
# Must rename some columns to better distinguish differences on the plot |
|
|
2823 |
all_results_copy[merge_method == "Base Model", merge_method := "LDS + GNN"] |
|
|
2824 |
all_results_copy[merge_method == "Base Model + LMF", merge_method := "LDS + LMF + GNN"] |
|
|
2825 |
all_results_copy[merge_method == "Base Model + Sum", merge_method := "LDS + Sum + GNN"] |
|
|
2826 |
|
|
|
2827 |
table(all_results_copy[(loss_type == "Base Model + LDS" & |
|
|
2828 |
drug_type == "Base Model + GNN" & |
|
|
2829 |
nchar(data_types) <= 5 & |
|
|
2830 |
split_method == "Split By Drug Scaffold" & |
|
|
2831 |
bottleneck == "No Data Bottleneck")]$merge_method) |
|
|
2832 |
|
|
|
2833 |
## Split By Both Cell Line & Drug Scaffold ==== |
|
|
2834 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2835 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
2836 |
drug_type == "Base Model + GNN" & |
|
|
2837 |
nchar(data_types) <= 5 & |
|
|
2838 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2839 |
bottleneck == "No Data Bottleneck")), |
|
|
2840 |
fill_by = quote(merge_method), |
|
|
2841 |
bar_level_order = c("LDS + GNN", "LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2842 |
data_order = data_order, |
|
|
2843 |
facet_by = quote(TargetRange), |
|
|
2844 |
facet_level_order = c("Target Above 0.7", |
|
|
2845 |
"Target Below 0.7"), |
|
|
2846 |
legend_title = "Model Type:", |
|
|
2847 |
y_lim = 0.05) |
|
|
2848 |
|
|
|
2849 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LMF_SplitByBoth_Comparison.pdf") |
|
|
2850 |
|
|
|
2851 |
# Box plot |
|
|
2852 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2853 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
2854 |
drug_type == "Base Model + GNN" & |
|
|
2855 |
nchar(data_types) <= 5 & |
|
|
2856 |
split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
2857 |
bottleneck == "No Data Bottleneck")), |
|
|
2858 |
fill_by = quote(merge_method), |
|
|
2859 |
bar_level_order = c("LDS + GNN", "LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2860 |
data_order = data_order, |
|
|
2861 |
facet_by = "data_types", |
|
|
2862 |
facet_level_order = NULL, |
|
|
2863 |
legend_title = "Model Type:", |
|
|
2864 |
y_lim = 0.05, |
|
|
2865 |
plot_type = "box_plot", |
|
|
2866 |
target_sub_by = "Target Above 0.7", |
|
|
2867 |
cur_comparisons = list(c("LDS + GNN", "LDS + Sum + GNN"), |
|
|
2868 |
c("LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2869 |
c("LDS + GNN", "LDS + LMF + GNN")), |
|
|
2870 |
test = "wilcox.test", |
|
|
2871 |
paired = F |
|
|
2872 |
) |
|
|
2873 |
|
|
|
2874 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LMF_SplitByBoth_Comparison_BoxPlot.pdf") |
|
|
2875 |
|
|
|
2876 |
## Split By Drug Scaffold ==== |
|
|
2877 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2878 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
2879 |
drug_type == "Base Model + GNN" & |
|
|
2880 |
nchar(data_types) <= 5 & |
|
|
2881 |
split_method == "Split By Drug Scaffold" & |
|
|
2882 |
bottleneck == "No Data Bottleneck")), |
|
|
2883 |
fill_by = quote(merge_method), |
|
|
2884 |
bar_level_order = c("LDS + GNN", "LDS + LMF + GNN"), |
|
|
2885 |
data_order = data_order, |
|
|
2886 |
facet_by = quote(TargetRange), |
|
|
2887 |
facet_level_order = c("Target Above 0.7", |
|
|
2888 |
"Target Below 0.7"), |
|
|
2889 |
legend_title = "Model Type:", |
|
|
2890 |
y_lim = 0.05) |
|
|
2891 |
|
|
|
2892 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LMF_SplitByDrugScaffold_Comparison.pdf") |
|
|
2893 |
|
|
|
2894 |
# Box plot |
|
|
2895 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2896 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
2897 |
drug_type == "Base Model + GNN" & |
|
|
2898 |
nchar(data_types) <= 5 & |
|
|
2899 |
split_method == "Split By Drug Scaffold" & |
|
|
2900 |
bottleneck == "No Data Bottleneck")), |
|
|
2901 |
fill_by = quote(merge_method), |
|
|
2902 |
bar_level_order = c("LDS + GNN", "LDS + LMF + GNN"), |
|
|
2903 |
data_order = data_order, |
|
|
2904 |
facet_by = "data_types", |
|
|
2905 |
facet_level_order = NULL, |
|
|
2906 |
legend_title = "Model Type:", |
|
|
2907 |
y_lim = 0.05, |
|
|
2908 |
plot_type = "box_plot", |
|
|
2909 |
target_sub_by = "Target Above 0.7", |
|
|
2910 |
cur_comparisons = list(c("LDS + GNN", "LDS + LMF + GNN")), |
|
|
2911 |
test = "wilcox.test", |
|
|
2912 |
paired = F |
|
|
2913 |
) |
|
|
2914 |
|
|
|
2915 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LMF_SplitByDrugScaffold_Comparison_BoxPlot.pdf") |
|
|
2916 |
|
|
|
2917 |
## Split By Cell Line ==== |
|
|
2918 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
2919 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
2920 |
|
|
|
2921 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2922 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
2923 |
drug_type == "Base Model + GNN" & |
|
|
2924 |
nchar(data_types) <= 5 & |
|
|
2925 |
split_method == "Split By Cell Line" & |
|
|
2926 |
bottleneck == "No Data Bottleneck")), |
|
|
2927 |
fill_by = quote(merge_method), |
|
|
2928 |
bar_level_order = c("LDS + GNN", "LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2929 |
data_order = data_order, |
|
|
2930 |
plot_type = "bar_plot", |
|
|
2931 |
facet_by = c("Targeted", "TargetRange"), |
|
|
2932 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
2933 |
c("Target Above 0.7", "Target Below 0.7")), |
|
|
2934 |
legend_title = "Model Type:", |
|
|
2935 |
calculate_avg_mae = F, y_lab = "Total RMSE Loss", |
|
|
2936 |
y_lim = 0.1) |
|
|
2937 |
|
|
|
2938 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
2939 |
|
|
|
2940 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LMF_SplitByCellLine_Comparison_BarPlot.pdf", |
|
|
2941 |
height = 10) |
|
|
2942 |
|
|
|
2943 |
# Box plot |
|
|
2944 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2945 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
2946 |
drug_type == "Base Model + GNN" & |
|
|
2947 |
nchar(data_types) <= 5 & |
|
|
2948 |
split_method == "Split By Cell Line" & |
|
|
2949 |
bottleneck == "No Data Bottleneck")), |
|
|
2950 |
fill_by = quote(merge_method), |
|
|
2951 |
bar_level_order = c("LDS + GNN", "LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2952 |
data_order = data_order, |
|
|
2953 |
facet_by = "data_types", |
|
|
2954 |
facet_level_order = NULL, |
|
|
2955 |
legend_title = "Model Type:", |
|
|
2956 |
y_lim = 0.05, |
|
|
2957 |
plot_type = "box_plot", |
|
|
2958 |
target_sub_by = "Target Above 0.7", |
|
|
2959 |
cur_comparisons = list(c("LDS + GNN", "LDS + Sum + GNN"), |
|
|
2960 |
c("LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2961 |
c("LDS + GNN", "LDS + LMF + GNN")), |
|
|
2962 |
test = "wilcox.test", |
|
|
2963 |
paired = F |
|
|
2964 |
) |
|
|
2965 |
|
|
|
2966 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LMF_SplitByCellLine_Comparison_BoxPlot.pdf") |
|
|
2967 |
|
|
|
2968 |
# Violin plot |
|
|
2969 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2970 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
2971 |
drug_type == "Base Model + GNN" & |
|
|
2972 |
nchar(data_types) <= 5 & |
|
|
2973 |
split_method == "Split By Cell Line" & |
|
|
2974 |
bottleneck == "No Data Bottleneck")), |
|
|
2975 |
fill_by = quote(merge_method), |
|
|
2976 |
bar_level_order = c("LDS + GNN", "LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2977 |
data_order = data_order, |
|
|
2978 |
facet_by = c("Targeted", "data_types"), |
|
|
2979 |
facet_level_order = NULL, |
|
|
2980 |
legend_title = "Model Type:", |
|
|
2981 |
y_lim = 0.05, |
|
|
2982 |
plot_type = "violin_plot", |
|
|
2983 |
target_sub_by = "Target Above 0.7", |
|
|
2984 |
cur_comparisons = list(c("LDS + GNN", "LDS + Sum + GNN"), |
|
|
2985 |
c("LDS + Sum + GNN", "LDS + LMF + GNN"), |
|
|
2986 |
c("LDS + GNN", "LDS + LMF + GNN")), |
|
|
2987 |
test = "ks.test", step_increase = 0.075, |
|
|
2988 |
paired = T |
|
|
2989 |
) |
|
|
2990 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) + |
|
|
2991 |
expand_limits(y = c(0, 1.7)) |
|
|
2992 |
|
|
|
2993 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_minus_LMF_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
2994 |
height = 12) |
|
|
2995 |
|
|
|
2996 |
## Split Comparison ==== |
|
|
2997 |
# LDS + GNN - LMF |
|
|
2998 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
2999 |
sub_results_by = quote((loss_type == "Base Model + LDS" & |
|
|
3000 |
drug_type == "Base Model + GNN" & |
|
|
3001 |
merge_method == "Base Model" & |
|
|
3002 |
nchar(data_types) <= 5 & |
|
|
3003 |
bottleneck == "No Data Bottleneck")), |
|
|
3004 |
fill_by = quote(split_method), |
|
|
3005 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
3006 |
data_order = data_order, |
|
|
3007 |
facet_by = quote(TargetRange), |
|
|
3008 |
facet_level_order = c("Target Above 0.7", |
|
|
3009 |
"Target Below 0.7"), |
|
|
3010 |
legend_title = "Split Method:", |
|
|
3011 |
y_lim = 0.05) |
|
|
3012 |
|
|
|
3013 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_per_fold_Trifecta_without_LMF_Split_Comparison.pdf") |
|
|
3014 |
|
|
|
3015 |
# Bi-modal Baseline vs Trifecta ==== |
|
|
3016 |
# all_results <- fread("Data/all_results.csv") |
|
|
3017 |
all_results_copy <- all_results |
|
|
3018 |
|
|
|
3019 |
avg_loss_by <- c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
3020 |
"split_method", "fold", "bottleneck", "TargetRange", "Targeted") |
|
|
3021 |
# all_results_copy[, loss_by_config := mean(RMSELoss), by = avg_loss_by] |
|
|
3022 |
data_order <- c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA") |
|
|
3023 |
|
|
|
3024 |
all_results_copy[(merge_method == "Base Model + LMF" & drug_type == "Base Model + GNN" & loss_type == "Base Model + LDS"), config_type := "Trifecta"] |
|
|
3025 |
all_results_copy[(merge_method == "Base Model" & drug_type == "Base Model" & loss_type == "Base Model"), config_type := "Baseline"] |
|
|
3026 |
all_results_copy <- all_results_copy[config_type == "Trifecta" | config_type == "Baseline"] |
|
|
3027 |
|
|
|
3028 |
avg_loss_by <- c(avg_loss_by, "config_type") |
|
|
3029 |
|
|
|
3030 |
table(all_results_copy[split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
3031 |
nchar(data_types) <= 5 & |
|
|
3032 |
bottleneck == "No Data Bottleneck"]$config_type) |
|
|
3033 |
|
|
|
3034 |
## Split By Both Cell Line & Drug Scaffold ==== |
|
|
3035 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3036 |
sub_results_by = quote(split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
3037 |
nchar(data_types) <= 5 & |
|
|
3038 |
bottleneck == "No Data Bottleneck"), |
|
|
3039 |
fill_by = quote(config_type), |
|
|
3040 |
bar_level_order = c("Baseline", "Trifecta"), |
|
|
3041 |
data_order = data_order, |
|
|
3042 |
facet_by = quote(TargetRange), |
|
|
3043 |
facet_level_order = c("Target Above 0.7", |
|
|
3044 |
"Target Below 0.7"), |
|
|
3045 |
legend_title = "Model Type:", |
|
|
3046 |
y_lim = 0.05) |
|
|
3047 |
|
|
|
3048 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_Trifecta_SplitByBoth_Comparison.pdf") |
|
|
3049 |
|
|
|
3050 |
# Box plot |
|
|
3051 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3052 |
sub_results_by = quote(split_method == "Split By Both Cell Line & Drug Scaffold" & |
|
|
3053 |
nchar(data_types) <= 5 & |
|
|
3054 |
bottleneck == "No Data Bottleneck"), |
|
|
3055 |
fill_by = quote(config_type), |
|
|
3056 |
bar_level_order = c("Baseline", "Trifecta"), |
|
|
3057 |
data_order = data_order, |
|
|
3058 |
facet_by = "data_types", |
|
|
3059 |
facet_level_order = NULL, |
|
|
3060 |
legend_title = "Model Type:", |
|
|
3061 |
y_lim = 0.05, |
|
|
3062 |
plot_type = "box_plot", |
|
|
3063 |
target_sub_by = "Target Above 0.7", |
|
|
3064 |
cur_comparisons = list(c("Baseline", "Trifecta")), |
|
|
3065 |
test = "wilcox.test", |
|
|
3066 |
paired = F |
|
|
3067 |
) |
|
|
3068 |
|
|
|
3069 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_Trifecta_SplitByBoth_Comparison_BoxPlot.pdf") |
|
|
3070 |
|
|
|
3071 |
## Split By Drug Scaffold ==== |
|
|
3072 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3073 |
sub_results_by = quote(split_method == "Split By Drug Scaffold" & |
|
|
3074 |
nchar(data_types) <= 5 & |
|
|
3075 |
bottleneck == "No Data Bottleneck"), |
|
|
3076 |
fill_by = quote(config_type), |
|
|
3077 |
bar_level_order = c("Baseline", "Trifecta"), |
|
|
3078 |
data_order = data_order, |
|
|
3079 |
facet_by = quote(TargetRange), |
|
|
3080 |
facet_level_order = c("Target Above 0.7", |
|
|
3081 |
"Target Below 0.7"), |
|
|
3082 |
legend_title = "Model Type:", |
|
|
3083 |
y_lim = 0.05) |
|
|
3084 |
|
|
|
3085 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_Trifecta_SplitByDrugScaffold_Comparison.pdf") |
|
|
3086 |
|
|
|
3087 |
# Box plot |
|
|
3088 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3089 |
sub_results_by = quote(split_method == "Split By Drug Scaffold" & |
|
|
3090 |
nchar(data_types) <= 5 & |
|
|
3091 |
bottleneck == "No Data Bottleneck"), |
|
|
3092 |
fill_by = quote(config_type), |
|
|
3093 |
bar_level_order = c("Baseline", "Trifecta"), |
|
|
3094 |
data_order = data_order, |
|
|
3095 |
facet_by = "data_types", |
|
|
3096 |
facet_level_order = NULL, |
|
|
3097 |
legend_title = "Model Type:", |
|
|
3098 |
y_lim = 0.05, |
|
|
3099 |
plot_type = "box_plot", |
|
|
3100 |
target_sub_by = "Target Above 0.7", |
|
|
3101 |
cur_comparisons = list(c("Baseline", "Trifecta")), |
|
|
3102 |
test = "wilcox.test", |
|
|
3103 |
paired = F |
|
|
3104 |
) |
|
|
3105 |
|
|
|
3106 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_Trifecta_SplitByDrugScaffold_Comparison_BoxPlot.pdf") |
|
|
3107 |
|
|
|
3108 |
## Split By Cell Line ==== |
|
|
3109 |
table(all_results_copy[split_method == "Split By Cell Line" & |
|
|
3110 |
nchar(data_types) <= 5 & |
|
|
3111 |
bottleneck == "No Data Bottleneck"]$config_type) |
|
|
3112 |
|
|
|
3113 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3114 |
sub_results_by = quote(split_method == "Split By Cell Line" & |
|
|
3115 |
nchar(data_types) <= 5 & |
|
|
3116 |
bottleneck == "No Data Bottleneck"), |
|
|
3117 |
fill_by = quote(config_type), |
|
|
3118 |
bar_level_order = c("Baseline", "Trifecta"), |
|
|
3119 |
data_order = data_order, |
|
|
3120 |
facet_by = c("Targeted", "TargetRange"), |
|
|
3121 |
facet_level_order = list(c("Targeted Drug", "Untargeted Drug"), |
|
|
3122 |
c("Target Above 0.7", "Target Below 0.7")), |
|
|
3123 |
legend_title = "Model Type:", |
|
|
3124 |
plot_type = "bar_plot", |
|
|
3125 |
y_lab = "Total RMSE Loss", calculate_avg_mae = F, |
|
|
3126 |
y_lim = 0.05) |
|
|
3127 |
|
|
|
3128 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) |
|
|
3129 |
|
|
|
3130 |
ggsave(plot = cur_p, |
|
|
3131 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_Trifecta_SplitByCellLine_Comparison_BarPlot.pdf", |
|
|
3132 |
height = 10) |
|
|
3133 |
|
|
|
3134 |
# Box plot |
|
|
3135 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3136 |
sub_results_by = quote(split_method == "Split By Cell Line" & |
|
|
3137 |
nchar(data_types) <= 5 & |
|
|
3138 |
bottleneck == "No Data Bottleneck"), |
|
|
3139 |
fill_by = quote(config_type), |
|
|
3140 |
bar_level_order = c("Baseline", "Trifecta"), |
|
|
3141 |
data_order = data_order, |
|
|
3142 |
facet_by = "data_types", |
|
|
3143 |
facet_level_order = NULL, |
|
|
3144 |
legend_title = "Model Type:", |
|
|
3145 |
y_lim = 0.05, |
|
|
3146 |
plot_type = "box_plot", |
|
|
3147 |
target_sub_by = "Target Above 0.7", |
|
|
3148 |
cur_comparisons = list(c("Baseline", "Trifecta")), |
|
|
3149 |
test = "wilcox.test", |
|
|
3150 |
paired = F |
|
|
3151 |
) |
|
|
3152 |
|
|
|
3153 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_Trifecta_SplitByCellLine_Comparison_BoxPlot.pdf") |
|
|
3154 |
|
|
|
3155 |
# Violin plot |
|
|
3156 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3157 |
sub_results_by = quote(split_method == "Split By Cell Line" & |
|
|
3158 |
nchar(data_types) <= 5 & |
|
|
3159 |
bottleneck == "No Data Bottleneck"), |
|
|
3160 |
fill_by = quote(config_type), |
|
|
3161 |
bar_level_order = c("Baseline", "Trifecta"), |
|
|
3162 |
data_order = data_order, |
|
|
3163 |
facet_by = c("Targeted", "data_types"), |
|
|
3164 |
facet_level_order = NULL, |
|
|
3165 |
legend_title = "Model Type:", |
|
|
3166 |
y_lim = 0.1, |
|
|
3167 |
plot_type = "violin_plot", |
|
|
3168 |
target_sub_by = "Target Above 0.7", |
|
|
3169 |
cur_comparisons = list(c("Baseline", "Trifecta")), |
|
|
3170 |
test = "ks.test", |
|
|
3171 |
paired = T |
|
|
3172 |
) |
|
|
3173 |
cur_p <- cur_p + theme(text = element_text(size = 14, face = "bold")) + expand_limits(y = c(0, 1.3)) |
|
|
3174 |
|
|
|
3175 |
ggsave(plot = cur_p, |
|
|
3176 |
filename = "Plots/CV_Results/Bimodal_CV_Baseline_vs_Trifecta_SplitByCellLine_Comparison_ViolinPlot.pdf", |
|
|
3177 |
height = 8) |
|
|
3178 |
|
|
|
3179 |
## Split Comparison ==== |
|
|
3180 |
# Trifecta by splitting method |
|
|
3181 |
cur_p <- my_plot_function(avg_loss_by = avg_loss_by, |
|
|
3182 |
sub_results_by = quote(config_type == "Trio" & |
|
|
3183 |
nchar(data_types) <= 5 & |
|
|
3184 |
bottleneck == "No Data Bottleneck"), |
|
|
3185 |
fill_by = quote(split_method), |
|
|
3186 |
bar_level_order = c("Split By Both Cell Line & Drug Scaffold", "Split By Cell Line", "Split By Drug Scaffold"), |
|
|
3187 |
data_order = data_order, |
|
|
3188 |
facet_by = quote(TargetRange), |
|
|
3189 |
facet_level_order = c("Target Above 0.7", |
|
|
3190 |
"Target Below 0.7"), |
|
|
3191 |
legend_title = "Model Type:", |
|
|
3192 |
y_lim = 0.05) |
|
|
3193 |
|
|
|
3194 |
ggsave(plot = cur_p, filename = "Plots/CV_Results/Bimodal_CV_Trifecta_Split_Comparison.pdf") |
|
|
3195 |
|
|
|
3196 |
# Trimodal Baseline vs Trifecta (Split By Both Cell Line & Drug Scaffold) ==== |
|
|
3197 |
# install.packages("gt") |
|
|
3198 |
require(gt) |
|
|
3199 |
library(stringr) |
|
|
3200 |
all_results_copy <- all_results[str_count(data_types, "_") == 1] |
|
|
3201 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")] |
|
|
3202 |
# all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
3203 |
|
|
|
3204 |
all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "TargetRange")]), |
|
|
3205 |
id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")) |
|
|
3206 |
|
|
|
3207 |
all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange")] |
|
|
3208 |
all_results_long_copy[, cv_sd := sd(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange")] |
|
|
3209 |
length(unique(all_results_long_copy$data_types)) # 28 unique trimodal combinations |
|
|
3210 |
|
|
|
3211 |
baseline_vs_trifecta <- all_results_long_copy[split_method == "Split By Both Cell Line & Drug Scaffold" & ((drug_type == "Base Model + GNN" & |
|
|
3212 |
merge_method == "Base Model + LMF" & |
|
|
3213 |
loss_type == "Base Model + LDS") | |
|
|
3214 |
(drug_type == "Base Model" & |
|
|
3215 |
merge_method == "Base Model" & |
|
|
3216 |
loss_type == "Base Model"))] |
|
|
3217 |
|
|
|
3218 |
baseline_vs_trifecta[split_method == "Split By Both Cell Line & Drug Scaffold" & ((drug_type == "Base Model + GNN" & |
|
|
3219 |
merge_method == "Base Model + LMF" & |
|
|
3220 |
loss_type == "Base Model + LDS")), config_type := "Trio "] |
|
|
3221 |
baseline_vs_trifecta[split_method == "Split By Both Cell Line & Drug Scaffold" & ((drug_type == "Base Model" & |
|
|
3222 |
merge_method == "Base Model" & |
|
|
3223 |
loss_type == "Base Model")), config_type := "Baseline"] |
|
|
3224 |
# baseline_with_lmf <- all_results_long_copy[(nchar(data_types) > 5)] |
|
|
3225 |
dodge2 <- position_dodge2(width = 0.9, padding = 0) |
|
|
3226 |
cur_data <- unique(baseline_vs_trifecta[,-c("fold", "value")]) |
|
|
3227 |
# Split data types column (cool function!) |
|
|
3228 |
cur_data[, c("data_1", "data_2") := tstrsplit(data_types, "_", fixed = T)] |
|
|
3229 |
|
|
|
3230 |
gt(cur_data, rowname_col = "data_1") %>% |
|
|
3231 |
tab_header(title = "Comparison of Baseline ANN and Trio of techniques in the tri-modal case", |
|
|
3232 |
subtitle = "5-fold validation RMSE loss using strict splitting") |
|
|
3233 |
|
|
|
3234 |
|
|
|
3235 |
p <- ggplot(cur_data) + |
|
|
3236 |
geom_bar(mapping = aes(x = data_types, y = cv_mean, fill = config_type), stat = "identity", position='dodge') + |
|
|
3237 |
facet_wrap(~TargetRange, ncol = 2) + |
|
|
3238 |
scale_fill_discrete(name = "CV Fold:") + |
|
|
3239 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
3240 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
3241 |
geom_errorbar(aes(x=data_types, |
|
|
3242 |
y=cv_mean, |
|
|
3243 |
ymax=cv_mean + cv_sd, |
|
|
3244 |
ymin=cv_mean - cv_sd, col='red'), |
|
|
3245 |
linetype=1, show.legend = FALSE, position = dodge2, width = 0.9) + |
|
|
3246 |
theme(axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
3247 |
axis.title.x = element_blank()) + |
|
|
3248 |
ylab("RMSE Loss") + |
|
|
3249 |
ylim(0, max(cur_data$cv_mean) + max(cur_data$cv_sd) + 0.05) + |
|
|
3250 |
ggtitle(label = tools::toTitleCase("Comparison of Baseline ANN and Trio of techniques in the tri-modal case"), |
|
|
3251 |
subtitle = "5-fold validation RMSE loss using strict splitting") + |
|
|
3252 |
geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), vjust = -0.5) |
|
|
3253 |
|
|
|
3254 |
ggsave(plot = p, filename = "Plots/CV_Results/Trimodal_CV_per_fold_Baseline_vs_Trifecta_SplitByBoth_Comparison.pdf", |
|
|
3255 |
width = 24, height = 16, units = "in") |
|
|
3256 |
|
|
|
3257 |
|
|
|
3258 |
|
|
|
3259 |
# Tri-modal Baseline Bottleneck Comparison (split by cell line) ==== |
|
|
3260 |
all_results_copy <- all_results |
|
|
3261 |
# all_results_copy_sub <- all_results_copy[TargetRange == "TargetAbove 0.7"] |
|
|
3262 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange", "bottleneck")] |
|
|
3263 |
# all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
3264 |
|
|
|
3265 |
all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "TargetRange", "bottleneck")]), |
|
|
3266 |
id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange", "bottleneck")) |
|
|
3267 |
|
|
|
3268 |
all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange", "bottleneck")] |
|
|
3269 |
all_results_long_copy[, cv_sd := sd(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange", "bottleneck")] |
|
|
3270 |
|
|
|
3271 |
baseline <- all_results_long_copy[(split_method == "Split By Cell Line" & merge_method == "Base Model" & loss_type == "Base Model" & |
|
|
3272 |
drug_type == "Base Model" & nchar(data_types) > 6)] |
|
|
3273 |
dodge2 <- position_dodge2(width = 0.9, padding = 0) |
|
|
3274 |
cur_data <- unique(baseline[,-c("fold", "value")]) |
|
|
3275 |
|
|
|
3276 |
p <- ggplot(cur_data) + |
|
|
3277 |
geom_bar(mapping = aes(x = data_types, y = cv_mean, |
|
|
3278 |
fill = factor(bottleneck, |
|
|
3279 |
levels = c("With Data Bottleneck", |
|
|
3280 |
"No Data Bottleneck"))), |
|
|
3281 |
stat = "identity", position='dodge') + |
|
|
3282 |
facet_wrap(~factor(TargetRange, |
|
|
3283 |
levels = c("Target Above 0.7", |
|
|
3284 |
"Target Below 0.7")), ncol = 2) + |
|
|
3285 |
geom_errorbar(aes(x=data_types, |
|
|
3286 |
y=cv_mean, |
|
|
3287 |
ymax=cv_mean + cv_sd, |
|
|
3288 |
ymin=cv_mean - cv_sd, col='red'), |
|
|
3289 |
linetype=1, show.legend = FALSE, position = dodge2, width = 0.9) + |
|
|
3290 |
scale_fill_discrete(name = "Loss Type:") + |
|
|
3291 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
3292 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
3293 |
theme(axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
3294 |
axis.title.x = element_blank(), |
|
|
3295 |
legend.position = c(.9,.85)) + |
|
|
3296 |
ylab("RMSE Loss") + |
|
|
3297 |
ylim(0, max(cur_data$cv_mean) + max(cur_data$cv_sd) + 0.05) |
|
|
3298 |
# ggtitle(label = tools::toTitleCase("Comparison of LDS Loss Weighting across three true AAC range groups"), |
|
|
3299 |
# subtitle = "5-fold validation RMSE loss using strict splitting by cell lines") + |
|
|
3300 |
# geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean + cv_sd), |
|
|
3301 |
# vjust = 0.5, hjust = -0.25, angle = 90, position = position_dodge2(width = .9)) |
|
|
3302 |
|
|
|
3303 |
ggsave(plot = p, filename = "Plots/CV_Results/Trimodal_CV_Baseline_Bottleneck_Comparison.pdf") |
|
|
3304 |
# width = 24, height = 16, units = "in") |
|
|
3305 |
|
|
|
3306 |
# Tri-modal Trifecta (Splitting Comparison) ==== |
|
|
3307 |
all_results_copy <- all_results |
|
|
3308 |
# all_results_copy[target > 0.7 & target < 0.9]$TargetRange <- "Target Between 0.7 & 0.9" |
|
|
3309 |
# all_results_copy[target >= 0.9]$TargetRange <- "Target Above 0.9" |
|
|
3310 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")] |
|
|
3311 |
# all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
3312 |
|
|
|
3313 |
all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "TargetRange")]), |
|
|
3314 |
id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")) |
|
|
3315 |
|
|
|
3316 |
all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange")] |
|
|
3317 |
all_results_long_copy[, cv_sd := sd(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange")] |
|
|
3318 |
|
|
|
3319 |
|
|
|
3320 |
# trifecta_vs_baseline <- all_results_long_copy[((merge_method == "Base Model + LMF" & drug_type == "Base Model + GNN" & loss_type == "Base Model + LDS") | |
|
|
3321 |
# (merge_method == "Base Model" & drug_type == "Base Model" & loss_type == "Base Model")) & |
|
|
3322 |
# split_method == "Split By Both Cell Line & Drug Scaffold" & nchar(data_types) <= 5] |
|
|
3323 |
trifecta <- all_results_long_copy[(merge_method == "Base Model + LMF" & drug_type == "Base Model + GNN" & |
|
|
3324 |
loss_type == "Base Model + LDS") & nchar(data_types) > 6] |
|
|
3325 |
|
|
|
3326 |
dodge2 <- position_dodge2(width = 0.9, padding = 0) |
|
|
3327 |
# cur_data <- unique(trifecta_vs_baseline[,-c("fold", "value")]) |
|
|
3328 |
cur_data <- unique(trifecta[,-c("fold", "value")]) |
|
|
3329 |
# cur_data[(merge_method == "Base Model + LMF" & drug_type == "Base Model + GNN" & loss_type == "Base Model + LDS"), config_type := "Trio"] |
|
|
3330 |
# cur_data[(merge_method == "Base Model" & drug_type == "Base Model" & loss_type == "Base Model"), config_type := "Baseline"] |
|
|
3331 |
|
|
|
3332 |
p <- ggplot(cur_data) + |
|
|
3333 |
geom_bar(mapping = aes(x = data_types, y = cv_mean, fill = split_method), |
|
|
3334 |
stat = "identity", position='dodge') + |
|
|
3335 |
facet_wrap(~TargetRange, ncol = 2) + |
|
|
3336 |
scale_fill_discrete(name = "Configuration:") + |
|
|
3337 |
scale_x_discrete() + |
|
|
3338 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
3339 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
3340 |
geom_errorbar(aes(x=data_types, |
|
|
3341 |
y=cv_mean, |
|
|
3342 |
ymax=cv_mean + cv_sd, |
|
|
3343 |
ymin=cv_mean - cv_sd, col='red'), |
|
|
3344 |
linetype=1, show.legend = FALSE, position = dodge2, width = 0.9) + |
|
|
3345 |
theme(axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
3346 |
axis.title.x = element_blank(), |
|
|
3347 |
legend.position = c(.9,.85)) + |
|
|
3348 |
ylab("RMSE Loss") + |
|
|
3349 |
ylim(0, max(cur_data$cv_mean) + max(cur_data$cv_sd) + 0.05) |
|
|
3350 |
# ggtitle(label = tools::toTitleCase("Comparison of Baseline with LDS + LMF + GNN across two true AAC range groups"), |
|
|
3351 |
# subtitle = "5-fold validation RMSE loss using strict splitting by both drugs and cell lines") + |
|
|
3352 |
# geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean + cv_sd), |
|
|
3353 |
# vjust = 0.5, hjust = -0.25, angle = 90, position = position_dodge2(width = .9)) |
|
|
3354 |
|
|
|
3355 |
ggsave(plot = p, filename = "Plots/CV_Results/Trimodal_CV_Trifecta_Split_Comparison.pdf") |
|
|
3356 |
# width = 24, height = 16, units = "in") |
|
|
3357 |
|
|
|
3358 |
|
|
|
3359 |
|
|
|
3360 |
|
|
|
3361 |
# Trimodal Heatmap for Best Combinations ==== |
|
|
3362 |
library(stringr) |
|
|
3363 |
all_results_copy <- all_results[str_count(data_types, "_") == 1] |
|
|
3364 |
all_results_copy[, loss_by_config := rmse(target, predicted), by = c("data_types", "merge_method", "loss_type", |
|
|
3365 |
"drug_type", "split_method", "bottleneck", |
|
|
3366 |
"TargetRange")] |
|
|
3367 |
|
|
|
3368 |
# No drug targetedness separation |
|
|
3369 |
all_results_copy <- unique(all_results_copy[, c("data_types", "merge_method", "loss_type", |
|
|
3370 |
"drug_type", "split_method", "bottleneck", |
|
|
3371 |
"TargetRange", "loss_by_config")]) |
|
|
3372 |
|
|
|
3373 |
all_results_copy <- all_results_copy[bottleneck == "No Data Bottleneck"] |
|
|
3374 |
|
|
|
3375 |
# all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
3376 |
|
|
|
3377 |
# all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck", "loss_by_config", "TargetRange")]), |
|
|
3378 |
# id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "bottleneck", "TargetRange")) |
|
|
3379 |
|
|
|
3380 |
# all_results_long_copy[, loss_by_config := rmse(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck", "TargetRange")] |
|
|
3381 |
# all_results_long_copy[, cv_sd := sd(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck", "TargetRange")] |
|
|
3382 |
length(unique(all_results_long_copy$data_types)) # 28 unique trimodal combinations |
|
|
3383 |
|
|
|
3384 |
save_pheatmap_pdf <- function(x, filename, width=7, height=7) { |
|
|
3385 |
stopifnot(!missing(x)) |
|
|
3386 |
stopifnot(!missing(filename)) |
|
|
3387 |
pdf(filename, width=width, height=height) |
|
|
3388 |
grid::grid.newpage() |
|
|
3389 |
grid::grid.draw(x$gtable) |
|
|
3390 |
dev.off() |
|
|
3391 |
} |
|
|
3392 |
|
|
|
3393 |
require(pheatmap) |
|
|
3394 |
require(igraph) |
|
|
3395 |
## Split By Cell Line ==== |
|
|
3396 |
baseline_trimodal <- all_results_copy[split_method == "Split By Cell Line" & (drug_type == "Base Model" & |
|
|
3397 |
merge_method == "Base Model" & |
|
|
3398 |
loss_type == "Base Model")] |
|
|
3399 |
trifectra_trimodal <- all_results_copy[split_method == "Split By Cell Line" & (drug_type == "Base Model + GNN" & |
|
|
3400 |
merge_method == "Base Model + LMF" & |
|
|
3401 |
loss_type == "Base Model + LDS")] |
|
|
3402 |
baseline_trimodal_cv <- unique(baseline_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
3403 |
"TargetRange", "loss_by_config")]) |
|
|
3404 |
trifecta_trimodal_cv <- unique(trifectra_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
3405 |
"TargetRange", "loss_by_config")]) |
|
|
3406 |
|
|
|
3407 |
all_tri_omic_combos_el <- utils::combn(c("MUT", 'CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA'), 2, simplify = T) |
|
|
3408 |
all_tri_omic_combos_el <- t(all_tri_omic_combos_el) |
|
|
3409 |
|
|
|
3410 |
all_tri_omic_combos_el <- cbind(all_tri_omic_combos_el, rep(0.5, 28)) |
|
|
3411 |
baseline_trimodal_cv[TargetRange == "Target Below 0.7"] |
|
|
3412 |
temp <- baseline_trimodal_cv[TargetRange == "Target Below 0.7"] |
|
|
3413 |
all_cv_means <- vector(mode = "numeric", length = nrow(temp)) |
|
|
3414 |
for (i in 1:nrow(temp)) { |
|
|
3415 |
cur_combo <- paste(all_tri_omic_combos_el[i, 1:2], collapse = "_") |
|
|
3416 |
cur_cv_mean <- temp[data_types == cur_combo]$loss_by_config |
|
|
3417 |
all_cv_means[i] <- cur_cv_mean |
|
|
3418 |
} |
|
|
3419 |
|
|
|
3420 |
all_tri_omic_combos_el[,3] <- all_cv_means |
|
|
3421 |
colnames(all_tri_omic_combos_el) <- c("first", "second", "Weight") |
|
|
3422 |
g=graph.data.frame(all_tri_omic_combos_el) |
|
|
3423 |
m <- get.adjacency(g,sparse=FALSE, attr = 'Weight') |
|
|
3424 |
storage.mode(m) <- "numeric" |
|
|
3425 |
m <- round(m, 4) |
|
|
3426 |
m2 <- m |
|
|
3427 |
m2[is.na(m)] <- "" |
|
|
3428 |
|
|
|
3429 |
p <- pheatmap(t(m), cluster_rows = FALSE, cluster_cols = FALSE, display_numbers = t(m2), angle_col = "0", legend = F, |
|
|
3430 |
na_col = "white", border_color = NA, fontsize_number = 12) |
|
|
3431 |
save_pheatmap_pdf(p, "Plots/CV_Results/Trimodal_RMSE_Baseline_LowerAAC_SplitByCellLine_Heatmap.pdf", 8, 8) |
|
|
3432 |
|
|
|
3433 |
|
|
|
3434 |
all_tri_omic_combos_el <- utils::combn(c("MUT", 'CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA'), 2, simplify = T) |
|
|
3435 |
all_tri_omic_combos_el <- t(all_tri_omic_combos_el) |
|
|
3436 |
|
|
|
3437 |
all_tri_omic_combos_el <- cbind(all_tri_omic_combos_el, rep(0.5, 28)) |
|
|
3438 |
baseline_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
3439 |
temp <- baseline_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
3440 |
all_cv_means <- vector(mode = "numeric", length = nrow(temp)) |
|
|
3441 |
for (i in 1:nrow(temp)) { |
|
|
3442 |
cur_combo <- paste(all_tri_omic_combos_el[i, 1:2], collapse = "_") |
|
|
3443 |
cur_cv_mean <- temp[data_types == cur_combo]$loss_by_config |
|
|
3444 |
all_cv_means[i] <- cur_cv_mean |
|
|
3445 |
} |
|
|
3446 |
|
|
|
3447 |
all_tri_omic_combos_el[,3] <- all_cv_means |
|
|
3448 |
colnames(all_tri_omic_combos_el) <- c("first", "second", "Weight") |
|
|
3449 |
g=graph.data.frame(all_tri_omic_combos_el) |
|
|
3450 |
m <- get.adjacency(g,sparse=FALSE, attr = 'Weight') |
|
|
3451 |
storage.mode(m) <- "numeric" |
|
|
3452 |
m <- round(m, 4) |
|
|
3453 |
m2 <- m |
|
|
3454 |
m2[is.na(m)] <- "" |
|
|
3455 |
|
|
|
3456 |
p <- pheatmap(t(m), cluster_rows = FALSE, cluster_cols = FALSE, display_numbers = t(m2), angle_col = "0", legend = F, |
|
|
3457 |
na_col = "white", border_color = NA, fontsize_number = 12) |
|
|
3458 |
save_pheatmap_pdf(p, "Plots/CV_Results/Trimodal_RMSE_Baseline_UpperAAC_SplitByCellLine_Heatmap.pdf", 8, 8) |
|
|
3459 |
|
|
|
3460 |
|
|
|
3461 |
## Split By Both Cell Line & Drug Scaffold ==== |
|
|
3462 |
baseline_trimodal <- all_results_long_copy[split_method == "Split By Both Cell Line & Drug Scaffold" & (drug_type == "Base Model" & |
|
|
3463 |
merge_method == "Base Model" & |
|
|
3464 |
loss_type == "Base Model")] |
|
|
3465 |
trifectra_trimodal <- all_results_long_copy[split_method == "Split By Both Cell Line & Drug Scaffold" & (drug_type == "Base Model + GNN" & |
|
|
3466 |
merge_method == "Base Model + LMF" & |
|
|
3467 |
loss_type == "Base Model + LDS")] |
|
|
3468 |
baseline_trimodal_cv <- unique(baseline_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
3469 |
"TargetRange", "cv_mean")]) |
|
|
3470 |
trifecta_trimodal_cv <- unique(trifectra_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
3471 |
"TargetRange", "cv_mean")]) |
|
|
3472 |
|
|
|
3473 |
all_tri_omic_combos_el <- utils::combn(c("MUT", 'CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA'), 2, simplify = T) |
|
|
3474 |
all_tri_omic_combos_el <- t(all_tri_omic_combos_el) |
|
|
3475 |
# |
|
|
3476 |
# MUT CNV |
|
|
3477 |
# MUT EXP |
|
|
3478 |
# MUT PROT |
|
|
3479 |
# MUT MIRNA |
|
|
3480 |
# MUT METAB |
|
|
3481 |
# MUT HIST |
|
|
3482 |
# MUT RPPA |
|
|
3483 |
# CNV EXP |
|
|
3484 |
# CNV PROT |
|
|
3485 |
# CNV MIRNA |
|
|
3486 |
# CNV METAB |
|
|
3487 |
# CNV HIST |
|
|
3488 |
# CNV RPPA |
|
|
3489 |
# EXP PROT |
|
|
3490 |
# EXP MIRNA |
|
|
3491 |
# EXP METAB |
|
|
3492 |
# EXP HIST |
|
|
3493 |
# EXP RPPA |
|
|
3494 |
# PROT MIRNA |
|
|
3495 |
# PROT METAB |
|
|
3496 |
# PROT HIST |
|
|
3497 |
# PROT RPPA |
|
|
3498 |
# MIRNA METAB |
|
|
3499 |
# MIRNA HIST |
|
|
3500 |
# MIRNA RPPA |
|
|
3501 |
# METAB HIST |
|
|
3502 |
# METAB RPPA |
|
|
3503 |
# HIST RPPA |
|
|
3504 |
|
|
|
3505 |
all_tri_omic_combos_el <- cbind(all_tri_omic_combos_el, rep(0.5, 28)) |
|
|
3506 |
baseline_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
3507 |
temp <- baseline_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
3508 |
all_cv_means <- vector(mode = "numeric", length = nrow(temp)) |
|
|
3509 |
for (i in 1:nrow(temp)) { |
|
|
3510 |
cur_combo <- paste(all_tri_omic_combos_el[i, 1:2], collapse = "_") |
|
|
3511 |
cur_cv_mean <- temp[data_types == cur_combo]$cv_mean |
|
|
3512 |
all_cv_means[i] <- cur_cv_mean |
|
|
3513 |
} |
|
|
3514 |
|
|
|
3515 |
all_tri_omic_combos_el[,3] <- all_cv_means |
|
|
3516 |
colnames(all_tri_omic_combos_el) <- c("first", "second", "Weight") |
|
|
3517 |
|
|
|
3518 |
g=graph.data.frame(all_tri_omic_combos_el) |
|
|
3519 |
m <- get.adjacency(g,sparse=FALSE, attr = 'Weight') |
|
|
3520 |
storage.mode(m) <- "numeric" |
|
|
3521 |
m <- round(m, 4) |
|
|
3522 |
m2 <- m |
|
|
3523 |
m2[is.na(m)] <- "" |
|
|
3524 |
|
|
|
3525 |
# install.packages("pheatmap") |
|
|
3526 |
require(pheatmap) |
|
|
3527 |
p <- pheatmap(t(m), cluster_rows = FALSE, cluster_cols = FALSE, display_numbers = t(m2), angle_col = "0", legend = F, |
|
|
3528 |
na_col = "white", border_color = NA, fontsize_number = 12) |
|
|
3529 |
|
|
|
3530 |
save_pheatmap_pdf(p, "Plots/CV_Results/Trimodal_CV_Mean_Baseline_SplitByBoth_Heatmap.pdf", 8, 8) |
|
|
3531 |
|
|
|
3532 |
## Split By Drug Scaffold ==== |
|
|
3533 |
baseline_trimodal <- all_results_long_copy[split_method == "Split By Drug Scaffold" & (drug_type == "Base Model" & |
|
|
3534 |
merge_method == "Base Model" & |
|
|
3535 |
loss_type == "Base Model")] |
|
|
3536 |
trifectra_trimodal <- all_results_long_copy[split_method == "Split By Drug Scaffold" & (drug_type == "Base Model + GNN" & |
|
|
3537 |
merge_method == "Base Model + LMF" & |
|
|
3538 |
loss_type == "Base Model + LDS")] |
|
|
3539 |
baseline_trimodal_cv <- unique(baseline_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
3540 |
"TargetRange", "cv_mean")]) |
|
|
3541 |
trifecta_trimodal_cv <- unique(trifectra_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
3542 |
"TargetRange", "cv_mean")]) |
|
|
3543 |
|
|
|
3544 |
all_tri_omic_combos_el <- utils::combn(c("MUT", 'CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA'), 2, simplify = T) |
|
|
3545 |
all_tri_omic_combos_el <- t(all_tri_omic_combos_el) |
|
|
3546 |
|
|
|
3547 |
all_tri_omic_combos_el <- cbind(all_tri_omic_combos_el, rep(0.5, 28)) |
|
|
3548 |
baseline_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
3549 |
temp <- baseline_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
3550 |
all_cv_means <- vector(mode = "numeric", length = nrow(temp)) |
|
|
3551 |
for (i in 1:nrow(temp)) { |
|
|
3552 |
cur_combo <- paste(all_tri_omic_combos_el[i, 1:2], collapse = "_") |
|
|
3553 |
cur_cv_mean <- temp[data_types == cur_combo]$cv_mean |
|
|
3554 |
all_cv_means[i] <- cur_cv_mean |
|
|
3555 |
} |
|
|
3556 |
|
|
|
3557 |
all_tri_omic_combos_el[,3] <- all_cv_means |
|
|
3558 |
colnames(all_tri_omic_combos_el) <- c("first", "second", "Weight") |
|
|
3559 |
g=graph.data.frame(all_tri_omic_combos_el) |
|
|
3560 |
m <- get.adjacency(g,sparse=FALSE, attr = 'Weight') |
|
|
3561 |
storage.mode(m) <- "numeric" |
|
|
3562 |
m <- round(m, 4) |
|
|
3563 |
m2 <- m |
|
|
3564 |
m2[is.na(m)] <- "" |
|
|
3565 |
|
|
|
3566 |
p <- pheatmap(t(m), cluster_rows = FALSE, cluster_cols = FALSE, display_numbers = t(m2), angle_col = "0", legend = F, |
|
|
3567 |
na_col = "white", border_color = NA, fontsize_number = 12) |
|
|
3568 |
|
|
|
3569 |
save_pheatmap_pdf(p, "Plots/CV_Results/Trimodal_CV_Mean_Baseline_SplitByDrugScaffold_Heatmap.pdf", 8, 8) |
|
|
3570 |
|
|
|
3571 |
# Trimodal Baseline vs Trifecta Bar Plot ==== |
|
|
3572 |
require(ggplot2) |
|
|
3573 |
require(grid) |
|
|
3574 |
library(stringr) |
|
|
3575 |
require(data.table) |
|
|
3576 |
dodge2 <- position_dodge2(width = 0.9, padding = 0) |
|
|
3577 |
rmse <- function(x, y) sqrt(mean((x - y)^2)) |
|
|
3578 |
|
|
|
3579 |
|
|
|
3580 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
3581 |
|
|
|
3582 |
# all_results_copy <- all_results_copy[str_count(data_types, "_") == 1] |
|
|
3583 |
|
|
|
3584 |
unique_combos <- fread("Data/shared_unique_combinations.csv") |
|
|
3585 |
unique_combos[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
3586 |
all_results_copy[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
3587 |
all_results_copy <- all_results_copy[unique_samples %in% unique_combos$unique_samples] |
|
|
3588 |
|
|
|
3589 |
all_results_copy[, loss_by_config := rmse(target, predicted), |
|
|
3590 |
by = c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
3591 |
"split_method", "bottleneck", "TargetRange")] |
|
|
3592 |
# all_results_copy[, loss_by_config := rmse(target, predicted), |
|
|
3593 |
# by = c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
3594 |
# "split_method", "bottleneck", "TargetRange", "Targeted")] |
|
|
3595 |
all_results_copy <- unique(all_results_copy[, c("data_types", "merge_method", "loss_type", |
|
|
3596 |
"drug_type", "split_method", "bottleneck", |
|
|
3597 |
"TargetRange", "loss_by_config")]) |
|
|
3598 |
# all_results_copy <- unique(all_results_copy[, c("data_types", "merge_method", "loss_type", |
|
|
3599 |
# "drug_type", "split_method", "bottleneck", |
|
|
3600 |
# "TargetRange", "Targeted", "loss_by_config")]) |
|
|
3601 |
length(unique(all_results_copy$data_types)) # 28 unique trimodal combinations |
|
|
3602 |
|
|
|
3603 |
all_results_copy <- all_results_copy[bottleneck == "No Data Bottleneck"] |
|
|
3604 |
|
|
|
3605 |
## Split By Both Cell Line ==== |
|
|
3606 |
# Subset by splitting method and AAC range |
|
|
3607 |
all_results_long_copy <- |
|
|
3608 |
all_results_copy[split_method == "Split By Cell Line" & |
|
|
3609 |
bottleneck == "No Data Bottleneck" & |
|
|
3610 |
TargetRange == "Target Above 0.7" & |
|
|
3611 |
(( |
|
|
3612 |
drug_type == "Base Model" & |
|
|
3613 |
merge_method == "Base Model" & |
|
|
3614 |
loss_type == "Base Model" |
|
|
3615 |
) | ( |
|
|
3616 |
drug_type == "Base Model + GNN" & |
|
|
3617 |
merge_method == "Base Model + LMF" & |
|
|
3618 |
loss_type == "Base Model + LDS" |
|
|
3619 |
))] |
|
|
3620 |
# Assign model name |
|
|
3621 |
all_results_long_copy[( |
|
|
3622 |
drug_type == "Base Model" & |
|
|
3623 |
merge_method == "Base Model" & |
|
|
3624 |
loss_type == "Base Model" |
|
|
3625 |
), model_type := "Baseline"] |
|
|
3626 |
all_results_long_copy[( |
|
|
3627 |
drug_type == "Base Model + GNN" & |
|
|
3628 |
merge_method == "Base Model + LMF" & |
|
|
3629 |
loss_type == "Base Model + LDS" |
|
|
3630 |
), model_type := "Trifecta"] |
|
|
3631 |
|
|
|
3632 |
|
|
|
3633 |
all_results_long_copy <- unique(all_results_long_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "model_type", |
|
|
3634 |
"TargetRange", "loss_by_config")]) |
|
|
3635 |
# all_results_long_copy <- unique(all_results_long_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "model_type", |
|
|
3636 |
# "TargetRange", "Targeted", "loss_by_config")]) |
|
|
3637 |
|
|
|
3638 |
all_results_long_copy[, first_data := strsplit(data_types, "_", fixed = T)[[1]][1], by = "data_types"] |
|
|
3639 |
all_results_long_copy[, second_data := strsplit(data_types, "_", fixed = T)[[1]][2], by = "data_types"] |
|
|
3640 |
all_results_long_copy$first_data <- factor(all_results_long_copy$first_data, |
|
|
3641 |
levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
3642 |
all_results_long_copy$second_data <- factor(all_results_long_copy$second_data, |
|
|
3643 |
levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
3644 |
|
|
|
3645 |
# all_results_long_copy[, max_config_cv_mean := max(loss_by_config), by = c("data_types")] |
|
|
3646 |
|
|
|
3647 |
# all_top_trimodal[, data_types := factor(data_types, levels = data_order)] |
|
|
3648 |
all_results_long_copy[, model_type := factor(unlist(all_results_long_copy[, "model_type", with = F]), |
|
|
3649 |
levels = c("Baseline", "Trifecta"))] |
|
|
3650 |
|
|
|
3651 |
p <- ggplot(all_results_long_copy) + |
|
|
3652 |
geom_bar(mapping = aes(x = model_type, |
|
|
3653 |
y = loss_by_config, |
|
|
3654 |
# fill = factor(model_type, |
|
|
3655 |
# levels = c("Baseline", |
|
|
3656 |
# "Trifecta"))), |
|
|
3657 |
fill = factor(Targeted, |
|
|
3658 |
levels = c("Untargeted Drug", |
|
|
3659 |
"Targeted Drug"))), |
|
|
3660 |
# fill = c("Targeted", "model_type")), |
|
|
3661 |
stat = "identity", position='dodge', width = 0.9) + |
|
|
3662 |
scale_color_manual(values = c(NA, 'red'), guide='none') + |
|
|
3663 |
# facet_geo(~ data_types, grid = mygrid, scales = "free_x", |
|
|
3664 |
# strip.position = "left", |
|
|
3665 |
# drop = T |
|
|
3666 |
# # switch = "x" |
|
|
3667 |
# ) + |
|
|
3668 |
facet_grid(rows = vars(second_data), cols = vars(first_data), |
|
|
3669 |
scales = "free_x", switch = "both") + |
|
|
3670 |
# scale_x_reordered() + |
|
|
3671 |
# facet_wrap(~second_data + first_data, |
|
|
3672 |
# scales = "free_x", strip.position = "bottom") + |
|
|
3673 |
scale_fill_discrete(name = "Drug Type:") + |
|
|
3674 |
# scale_x_discrete(name = "Model Type") + |
|
|
3675 |
# scale_x_discrete() + |
|
|
3676 |
# scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
3677 |
# "#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
3678 |
# geom_errorbar(aes(x = model_type, |
|
|
3679 |
# y=cv_mean, |
|
|
3680 |
# ymax=cv_mean + cv_sd, |
|
|
3681 |
# ymin=cv_mean - cv_sd, col='red'), |
|
|
3682 |
# linetype=1, show.legend = FALSE, position = dodge2, width = 0.9, colour = "black") + |
|
|
3683 |
theme( |
|
|
3684 |
text = element_text(size = 20, face = "bold"), |
|
|
3685 |
axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
3686 |
# axis.text.x = element_blank(), |
|
|
3687 |
# axis.ticks = element_blank(), |
|
|
3688 |
axis.title.x = element_blank(), |
|
|
3689 |
legend.direction="horizontal", |
|
|
3690 |
legend.position="top", |
|
|
3691 |
legend.justification="right" |
|
|
3692 |
# strip.background = element_blank(), |
|
|
3693 |
# strip.text.x = element_blank(), |
|
|
3694 |
# legend.position = c(.8,.75) |
|
|
3695 |
) + |
|
|
3696 |
# legend.position = c(.9,.85)) + |
|
|
3697 |
# ylab("Total RMSE Loss") + |
|
|
3698 |
# ylim(0, max(all_results_long_copy$cv_mean) + max(all_results_long_copy$cv_sd) + 0.05) + |
|
|
3699 |
# ylim(0, 1.2) + |
|
|
3700 |
scale_y_continuous(name = "Total RMSE Loss", limits = c(0, 1.25), breaks = c(0, 0.25, 0.5, 0.75, 1)) + |
|
|
3701 |
geom_text(aes(x=model_type, label = round(loss_by_config, 3), angle = 90, |
|
|
3702 |
group = factor(Targeted, |
|
|
3703 |
levels = c("Untargeted Drug", |
|
|
3704 |
"Targeted Drug")), |
|
|
3705 |
y = loss_by_config), vjust = 0.5, hjust = -0.1, position = position_dodge(width = 0.9)) |
|
|
3706 |
|
|
|
3707 |
# p <- p + coord_flip() |
|
|
3708 |
# all_results_long_copy[data_types %like% "MUT"] |
|
|
3709 |
|
|
|
3710 |
# Get ggplot grob |
|
|
3711 |
g = ggplotGrob(p) |
|
|
3712 |
|
|
|
3713 |
# Get the layout dataframe. |
|
|
3714 |
# Note the names. |
|
|
3715 |
# g$layout |
|
|
3716 |
|
|
|
3717 |
# gtable::gtable_show_layout(g) # Might also be useful |
|
|
3718 |
|
|
|
3719 |
# Replace the grobs with the nullGrob |
|
|
3720 |
cur_patterns <- c("panel-6-7", "panel-5-7", "panel-4-7", "panel-3-7", "panel-2-7", "panel-1-7", |
|
|
3721 |
"panel-5-6", "panel-4-6", "panel-3-6", "panel-2-6", "panel-1-6", |
|
|
3722 |
"panel-4-5", "panel-3-5", "panel-2-5", "panel-1-5", |
|
|
3723 |
"panel-3-4", "panel-2-4", "panel-1-4", |
|
|
3724 |
"panel-2-3", "panel-1-3", |
|
|
3725 |
"panel-1-2") |
|
|
3726 |
g = ggplotGrob(p) |
|
|
3727 |
for (pattern in cur_patterns) { |
|
|
3728 |
pos <- grep(pattern = pattern, g$layout$name) |
|
|
3729 |
g$grobs[[pos]] <- nullGrob() |
|
|
3730 |
} |
|
|
3731 |
|
|
|
3732 |
# If you want, move the axis |
|
|
3733 |
# g$layout[g$layout$name == "axis-b-2", c("t", "b")] = c(8, 8) |
|
|
3734 |
|
|
|
3735 |
# Draw the plot |
|
|
3736 |
grid.newpage() |
|
|
3737 |
grid.draw(g) |
|
|
3738 |
|
|
|
3739 |
ggsave(filename = "Plots/CV_Results/Trimodal_CV_Baseline_vs_Trifecta_BarPlot_Comparison_Grid.pdf", |
|
|
3740 |
plot = g, |
|
|
3741 |
height = 12, units = "in") |
|
|
3742 |
|
|
|
3743 |
|
|
|
3744 |
cur_func <- function(data_name) { |
|
|
3745 |
if (!is.na(data_name)) { |
|
|
3746 |
return(all_results_long_copy[first_data == data_name & |
|
|
3747 |
is.na(second_data)]$loss_by_config) |
|
|
3748 |
} else { |
|
|
3749 |
return(NA) |
|
|
3750 |
} |
|
|
3751 |
} |
|
|
3752 |
|
|
|
3753 |
all_results_long_copy <- all_results_long_copy[str_count(data_types, "_") < 2] |
|
|
3754 |
all_results_long_copy <- all_results_long_copy[model_type == "Baseline"] |
|
|
3755 |
all_results_long_copy$first_loss <- sapply(all_results_long_copy$first_data, cur_func) |
|
|
3756 |
all_results_long_copy$second_loss <- sapply(all_results_long_copy$second_data, cur_func) |
|
|
3757 |
|
|
|
3758 |
all_results_long_copy <- all_results_long_copy[!is.na(second_data)] |
|
|
3759 |
|
|
|
3760 |
molten_results <- melt(all_results_long_copy[, c("first_data", "second_data", |
|
|
3761 |
"first_loss", "second_loss", |
|
|
3762 |
"loss_by_config")], |
|
|
3763 |
id.vars = c("first_data", "second_data"), |
|
|
3764 |
measure.vars = c("first_loss", "second_loss", "loss_by_config")) |
|
|
3765 |
|
|
|
3766 |
molten_results[variable == "first_loss", variable := "Bimodal 1"] |
|
|
3767 |
molten_results[variable == "second_loss", variable := "Bimodal 2"] |
|
|
3768 |
molten_results[variable == "loss_by_config", variable := "Trimodal"] |
|
|
3769 |
# Compare BiModal and TriModal Performances |
|
|
3770 |
p <- ggplot(molten_results) + |
|
|
3771 |
geom_bar(mapping = aes(x = variable, |
|
|
3772 |
y = value, |
|
|
3773 |
fill = factor(variable, |
|
|
3774 |
levels = c("Bimodal 1", |
|
|
3775 |
"Bimodal 2", |
|
|
3776 |
"Trimodal"))), |
|
|
3777 |
stat = "identity", position='dodge', width = 0.9) + |
|
|
3778 |
scale_color_manual(values = c(NA, 'red'), guide='none') + |
|
|
3779 |
facet_grid(rows = vars(second_data), cols = vars(first_data), |
|
|
3780 |
scales = "free_x", switch = "both") + |
|
|
3781 |
# scale_x_reordered() + |
|
|
3782 |
# facet_wrap(~second_data + first_data, |
|
|
3783 |
# scales = "free_x", strip.position = "bottom") + |
|
|
3784 |
scale_fill_discrete(name = "Drug Type:") + |
|
|
3785 |
# scale_x_discrete(name = "Model Type") + |
|
|
3786 |
# scale_x_discrete() + |
|
|
3787 |
# scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
3788 |
# "#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
3789 |
# geom_errorbar(aes(x = model_type, |
|
|
3790 |
# y=cv_mean, |
|
|
3791 |
# ymax=cv_mean + cv_sd, |
|
|
3792 |
# ymin=cv_mean - cv_sd, col='red'), |
|
|
3793 |
# linetype=1, show.legend = FALSE, position = dodge2, width = 0.9, colour = "black") + |
|
|
3794 |
theme( |
|
|
3795 |
text = element_text(size = 20, face = "bold"), |
|
|
3796 |
axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
3797 |
# axis.text.x = element_blank(), |
|
|
3798 |
# axis.ticks = element_blank(), |
|
|
3799 |
axis.title.x = element_blank(), |
|
|
3800 |
# legend.direction="horizontal", |
|
|
3801 |
# legend.position="top", |
|
|
3802 |
# legend.justification="right" |
|
|
3803 |
# strip.background = element_blank(), |
|
|
3804 |
# strip.text.x = element_blank(), |
|
|
3805 |
# legend.position = c(.8,.75) |
|
|
3806 |
legend.position = "none" |
|
|
3807 |
) + |
|
|
3808 |
# legend.position = c(.9,.85)) + |
|
|
3809 |
# ylab("Total RMSE Loss") + |
|
|
3810 |
# ylim(0, max(all_results_long_copy$cv_mean) + max(all_results_long_copy$cv_sd) + 0.05) + |
|
|
3811 |
# ylim(0, 1.2) + |
|
|
3812 |
# scale_y_continuous(name = "Total RMSE Loss", limits = c(0, .5), breaks = c(0, 0.15, 0.2, 0.25, 0.35, 0.45)) + |
|
|
3813 |
scale_y_continuous(name = "Total RMSE Loss", limits = c(0, 1), breaks = c(0, 0.25, 0.5, 0.75, 1)) + |
|
|
3814 |
geom_text(aes(x=variable, label = round(value, 3), angle = 90, |
|
|
3815 |
group = factor(variable, |
|
|
3816 |
levels = c("Bimodal 1", |
|
|
3817 |
"Bimodal 2", |
|
|
3818 |
"Trimodal")), |
|
|
3819 |
y = value), vjust = 0.5, hjust = -0.1, position = position_dodge(width = 0.9)) |
|
|
3820 |
|
|
|
3821 |
g = ggplotGrob(p) |
|
|
3822 |
|
|
|
3823 |
# Get the layout dataframe. |
|
|
3824 |
# Note the names. |
|
|
3825 |
# g$layout |
|
|
3826 |
|
|
|
3827 |
# gtable::gtable_show_layout(g) # Might also be useful |
|
|
3828 |
|
|
|
3829 |
# Replace the grobs with the nullGrob |
|
|
3830 |
cur_patterns <- c("panel-6-7", "panel-5-7", "panel-4-7", "panel-3-7", "panel-2-7", "panel-1-7", |
|
|
3831 |
"panel-5-6", "panel-4-6", "panel-3-6", "panel-2-6", "panel-1-6", |
|
|
3832 |
"panel-4-5", "panel-3-5", "panel-2-5", "panel-1-5", |
|
|
3833 |
"panel-3-4", "panel-2-4", "panel-1-4", |
|
|
3834 |
"panel-2-3", "panel-1-3", |
|
|
3835 |
"panel-1-2") |
|
|
3836 |
g = ggplotGrob(p) |
|
|
3837 |
for (pattern in cur_patterns) { |
|
|
3838 |
pos <- grep(pattern = pattern, g$layout$name) |
|
|
3839 |
g$grobs[[pos]] <- nullGrob() |
|
|
3840 |
} |
|
|
3841 |
|
|
|
3842 |
# If you want, move the axis |
|
|
3843 |
# g$layout[g$layout$name == "axis-b-2", c("t", "b")] = c(8, 8) |
|
|
3844 |
|
|
|
3845 |
# Draw the plot |
|
|
3846 |
grid.newpage() |
|
|
3847 |
grid.draw(g) |
|
|
3848 |
|
|
|
3849 |
ggsave(filename = "Plots/CV_Results/Trimodal_vs_Bimodal_Baseline_BarPlot_Comparison_Grid.pdf", |
|
|
3850 |
plot = g, |
|
|
3851 |
height = 12, units = "in") |
|
|
3852 |
|
|
|
3853 |
# Repeat for Trifecta Models |
|
|
3854 |
cur_func <- function(data_name) { |
|
|
3855 |
if (!is.na(data_name)) { |
|
|
3856 |
return(all_results_long_copy[first_data == data_name & |
|
|
3857 |
is.na(second_data)]$loss_by_config) |
|
|
3858 |
} else { |
|
|
3859 |
return(NA) |
|
|
3860 |
} |
|
|
3861 |
} |
|
|
3862 |
|
|
|
3863 |
all_results_long_copy <- all_results_long_copy[str_count(data_types, "_") < 2] |
|
|
3864 |
all_results_long_copy <- all_results_long_copy[model_type == "Trifecta"] |
|
|
3865 |
all_results_long_copy$first_loss <- sapply(all_results_long_copy$first_data, cur_func) |
|
|
3866 |
all_results_long_copy$second_loss <- sapply(all_results_long_copy$second_data, cur_func) |
|
|
3867 |
cur_func("RPPA") |
|
|
3868 |
cur_func(NA) |
|
|
3869 |
|
|
|
3870 |
all_results_long_copy <- all_results_long_copy[!is.na(second_data)] |
|
|
3871 |
|
|
|
3872 |
molten_results <- melt(all_results_long_copy[, c("first_data", "second_data", |
|
|
3873 |
"first_loss", "second_loss", |
|
|
3874 |
"loss_by_config")], |
|
|
3875 |
id.vars = c("first_data", "second_data"), |
|
|
3876 |
measure.vars = c("first_loss", "second_loss", "loss_by_config")) |
|
|
3877 |
|
|
|
3878 |
molten_results[variable == "first_loss", variable := "Bimodal 1"] |
|
|
3879 |
molten_results[variable == "second_loss", variable := "Bimodal 2"] |
|
|
3880 |
molten_results[variable == "loss_by_config", variable := "Trimodal"] |
|
|
3881 |
# Compare BiModal and TriModal Performances |
|
|
3882 |
p <- ggplot(molten_results) + |
|
|
3883 |
geom_bar(mapping = aes(x = variable, |
|
|
3884 |
y = value, |
|
|
3885 |
fill = factor(variable, |
|
|
3886 |
levels = c("Bimodal 1", |
|
|
3887 |
"Bimodal 2", |
|
|
3888 |
"Trimodal"))), |
|
|
3889 |
# fill = factor(model_type, |
|
|
3890 |
# levels = c("Baseline", |
|
|
3891 |
# "Trifecta"))), |
|
|
3892 |
# fill = factor(Targeted, |
|
|
3893 |
# levels = c("Untargeted Drug", |
|
|
3894 |
# "Targeted Drug"))), |
|
|
3895 |
# fill = c("Targeted", "model_type")), |
|
|
3896 |
stat = "identity", position='dodge', width = 0.9) + |
|
|
3897 |
scale_color_manual(values = c(NA, 'red'), guide='none') + |
|
|
3898 |
# facet_geo(~ data_types, grid = mygrid, scales = "free_x", |
|
|
3899 |
# strip.position = "left", |
|
|
3900 |
# drop = T |
|
|
3901 |
# # switch = "x" |
|
|
3902 |
# ) + |
|
|
3903 |
facet_grid(rows = vars(second_data), cols = vars(first_data), |
|
|
3904 |
scales = "free_x", switch = "both") + |
|
|
3905 |
# scale_x_reordered() + |
|
|
3906 |
# facet_wrap(~second_data + first_data, |
|
|
3907 |
# scales = "free_x", strip.position = "bottom") + |
|
|
3908 |
scale_fill_discrete(name = "Drug Type:") + |
|
|
3909 |
# scale_x_discrete(name = "Model Type") + |
|
|
3910 |
# scale_x_discrete() + |
|
|
3911 |
# scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
3912 |
# "#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
3913 |
# geom_errorbar(aes(x = model_type, |
|
|
3914 |
# y=cv_mean, |
|
|
3915 |
# ymax=cv_mean + cv_sd, |
|
|
3916 |
# ymin=cv_mean - cv_sd, col='red'), |
|
|
3917 |
# linetype=1, show.legend = FALSE, position = dodge2, width = 0.9, colour = "black") + |
|
|
3918 |
theme( |
|
|
3919 |
text = element_text(size = 20, face = "bold"), |
|
|
3920 |
axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
3921 |
# axis.text.x = element_blank(), |
|
|
3922 |
# axis.ticks = element_blank(), |
|
|
3923 |
axis.title.x = element_blank(), |
|
|
3924 |
# legend.direction="horizontal", |
|
|
3925 |
# legend.position="top", |
|
|
3926 |
# legend.justification="right" |
|
|
3927 |
# strip.background = element_blank(), |
|
|
3928 |
# strip.text.x = element_blank(), |
|
|
3929 |
# legend.position = c(.8,.75) |
|
|
3930 |
legend.position = "none" |
|
|
3931 |
) + |
|
|
3932 |
# legend.position = c(.9,.85)) + |
|
|
3933 |
# ylab("Total RMSE Loss") + |
|
|
3934 |
# ylim(0, max(all_results_long_copy$cv_mean) + max(all_results_long_copy$cv_sd) + 0.05) + |
|
|
3935 |
# ylim(0, 1.2) + |
|
|
3936 |
# scale_y_continuous(name = "Total RMSE Loss", limits = c(0, .5), breaks = c(0, 0.15, 0.2, 0.25, 0.35, 0.45)) + |
|
|
3937 |
scale_y_continuous(name = "Total RMSE Loss", limits = c(0, 1), breaks = c(0, 0.25, 0.5, 0.75, 1)) + |
|
|
3938 |
geom_text(aes(x=variable, label = round(value, 3), angle = 90, |
|
|
3939 |
group = factor(variable, |
|
|
3940 |
levels = c("Bimodal 1", |
|
|
3941 |
"Bimodal 2", |
|
|
3942 |
"Trimodal")), |
|
|
3943 |
y = value), vjust = 0.5, hjust = -0.1, position = position_dodge(width = 0.9)) |
|
|
3944 |
|
|
|
3945 |
g = ggplotGrob(p) |
|
|
3946 |
|
|
|
3947 |
# Get the layout dataframe. |
|
|
3948 |
# Note the names. |
|
|
3949 |
# g$layout |
|
|
3950 |
|
|
|
3951 |
# gtable::gtable_show_layout(g) # Might also be useful |
|
|
3952 |
|
|
|
3953 |
# Replace the grobs with the nullGrob |
|
|
3954 |
cur_patterns <- c("panel-6-7", "panel-5-7", "panel-4-7", "panel-3-7", "panel-2-7", "panel-1-7", |
|
|
3955 |
"panel-5-6", "panel-4-6", "panel-3-6", "panel-2-6", "panel-1-6", |
|
|
3956 |
"panel-4-5", "panel-3-5", "panel-2-5", "panel-1-5", |
|
|
3957 |
"panel-3-4", "panel-2-4", "panel-1-4", |
|
|
3958 |
"panel-2-3", "panel-1-3", |
|
|
3959 |
"panel-1-2") |
|
|
3960 |
g = ggplotGrob(p) |
|
|
3961 |
for (pattern in cur_patterns) { |
|
|
3962 |
pos <- grep(pattern = pattern, g$layout$name) |
|
|
3963 |
g$grobs[[pos]] <- nullGrob() |
|
|
3964 |
} |
|
|
3965 |
|
|
|
3966 |
# If you want, move the axis |
|
|
3967 |
# g$layout[g$layout$name == "axis-b-2", c("t", "b")] = c(8, 8) |
|
|
3968 |
|
|
|
3969 |
# Draw the plot |
|
|
3970 |
grid.newpage() |
|
|
3971 |
grid.draw(g) |
|
|
3972 |
|
|
|
3973 |
ggsave(filename = "Plots/CV_Results/Trimodal_vs_Bimodal_Trifecta_BarPlot_Comparison_Grid.pdf", |
|
|
3974 |
plot = g, |
|
|
3975 |
height = 12, units = "in") |
|
|
3976 |
|
|
|
3977 |
# Trimodal Trifecta Splitting Comparison ==== |
|
|
3978 |
# install.packages("geofacet") |
|
|
3979 |
# require(geofacet) |
|
|
3980 |
# require(ggforce) |
|
|
3981 |
# require(tidytext) |
|
|
3982 |
require(ggplot2) |
|
|
3983 |
require(grid) |
|
|
3984 |
library(stringr) |
|
|
3985 |
require(data.table) |
|
|
3986 |
dodge2 <- position_dodge2(width = 0.9, padding = 0) |
|
|
3987 |
rmse <- function(x, y) sqrt(mean((x - y)^2)) |
|
|
3988 |
|
|
|
3989 |
all_results_copy <- fread("Data/all_results.csv") |
|
|
3990 |
all_results_copy <- all_results_copy[str_count(data_types, "_") == 1] |
|
|
3991 |
|
|
|
3992 |
unique_combos <- fread("Data/shared_unique_combinations.csv") |
|
|
3993 |
unique_combos[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
3994 |
all_results_copy[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
3995 |
all_results_copy <- all_results_copy[unique_samples %in% unique_combos$unique_samples] |
|
|
3996 |
|
|
|
3997 |
all_results_copy <- all_results_copy[bottleneck == "No Data Bottleneck"] |
|
|
3998 |
|
|
|
3999 |
# grid_design() |
|
|
4000 |
|
|
|
4001 |
# mygrid <- data.frame( |
|
|
4002 |
# code = c("MUT_CNV", "MUT_EXP", "CNV_EXP", "CNV_PROT", "MUT_PROT", "EXP_PROT", "EXP_MIRNA", "CNV_MIRNA", "MUT_MIRNA", "PROT_MIRNA", "MIRNA_METAB", "PROT_METAB", "CNV_METAB", "EXP_METAB", "MUT_METAB", "MIRNA_HIST", "CNV_HIST", "EXP_HIST", "PROT_HIST", "MUT_HIST", "EXP_RPPA", "CNV_RPPA", "PROT_RPPA", "MIRNA_RPPA", "MUT_RPPA", "METAB_HIST", "METAB_RPPA", "HIST_RPPA"), |
|
|
4003 |
# name = c("", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""), |
|
|
4004 |
# row = c(1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 6, 7, 7), |
|
|
4005 |
# col = c(1, 1, 2, 2, 1, 3, 3, 2, 1, 4, 5, 4, 2, 3, 1, 5, 2, 3, 4, 1, 3, 2, 4, 5, 1, 6, 6, 7), |
|
|
4006 |
# stringsAsFactors = FALSE |
|
|
4007 |
# ) |
|
|
4008 |
# geofacet::grid_preview(mygrid) |
|
|
4009 |
|
|
|
4010 |
|
|
|
4011 |
all_results_copy[, loss_by_config := rmse(target, predicted), |
|
|
4012 |
by = c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
4013 |
"split_method", "bottleneck", "TargetRange", "Targeted")] |
|
|
4014 |
|
|
|
4015 |
all_results_copy <- unique(all_results_copy[, c("data_types", "merge_method", "loss_type", |
|
|
4016 |
"drug_type", "split_method", "bottleneck", |
|
|
4017 |
"TargetRange", "Targeted", "loss_by_config")]) |
|
|
4018 |
length(unique(all_results_copy$data_types)) # 28 unique trimodal combinations |
|
|
4019 |
|
|
|
4020 |
# all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck", "TargetRange")] |
|
|
4021 |
# all_results_long_copy[, cv_sd := sd(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "bottleneck", "TargetRange")] |
|
|
4022 |
length(unique(all_results_copy$data_types)) # 28 unique trimodal combinations |
|
|
4023 |
|
|
|
4024 |
|
|
|
4025 |
# Show only trifecta results |
|
|
4026 |
all_results_long_copy <- |
|
|
4027 |
all_results_copy[bottleneck == "No Data Bottleneck" & |
|
|
4028 |
TargetRange == "Target Above 0.7" & |
|
|
4029 |
( |
|
|
4030 |
drug_type == "Base Model + GNN" & |
|
|
4031 |
merge_method == "Base Model + LMF" & |
|
|
4032 |
loss_type == "Base Model + LDS" |
|
|
4033 |
)] |
|
|
4034 |
# Assign model name |
|
|
4035 |
# all_results_long_copy[( |
|
|
4036 |
# drug_type == "Base Model" & |
|
|
4037 |
# merge_method == "Base Model" & |
|
|
4038 |
# loss_type == "Base Model" |
|
|
4039 |
# ), model_type := "Baseline"] |
|
|
4040 |
all_results_long_copy[( |
|
|
4041 |
drug_type == "Base Model + GNN" & |
|
|
4042 |
merge_method == "Base Model + LMF" & |
|
|
4043 |
loss_type == "Base Model + LDS" |
|
|
4044 |
), model_type := "Trifecta"] |
|
|
4045 |
|
|
|
4046 |
|
|
|
4047 |
|
|
|
4048 |
all_results_long_copy <- unique(all_results_long_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "model_type", |
|
|
4049 |
"TargetRange", "Targeted", "loss_by_config")]) |
|
|
4050 |
|
|
|
4051 |
all_results_long_copy[, first_data := strsplit(data_types, "_", fixed = T)[[1]][1], by = "data_types"] |
|
|
4052 |
all_results_long_copy[, second_data := strsplit(data_types, "_", fixed = T)[[1]][2], by = "data_types"] |
|
|
4053 |
all_results_long_copy$first_data <- factor(all_results_long_copy$first_data, |
|
|
4054 |
levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
4055 |
all_results_long_copy$second_data <- factor(all_results_long_copy$second_data, |
|
|
4056 |
levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
4057 |
|
|
|
4058 |
all_results_long_copy[, max_config_cv_mean := max(loss_by_config), by = c("data_types")] |
|
|
4059 |
|
|
|
4060 |
# all_top_trimodal[, data_types := factor(data_types, levels = data_order)] |
|
|
4061 |
# all_results_long_copy[, model_type := factor(unlist(all_results_long_copy[, "model_type", with = F]), |
|
|
4062 |
# levels = c("Baseline", "Trifecta"))] |
|
|
4063 |
|
|
|
4064 |
table(all_results_long_copy[model_type == "Trifecta"]$data_types) |
|
|
4065 |
|
|
|
4066 |
# baseline_trimodal <- |
|
|
4067 |
# all_results_copy[( |
|
|
4068 |
# drug_type == "Base Model" & |
|
|
4069 |
# merge_method == "Base Model" & |
|
|
4070 |
# loss_type == "Base Model" |
|
|
4071 |
# )] |
|
|
4072 |
# trifectra_trimodal <- |
|
|
4073 |
# all_results_copy[( |
|
|
4074 |
# drug_type == "Base Model + GNN" & |
|
|
4075 |
# merge_method == "Base Model + LMF" & |
|
|
4076 |
# loss_type == "Base Model + LDS" |
|
|
4077 |
# )] |
|
|
4078 |
# baseline_trimodal_cv <- unique(baseline_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
4079 |
# "TargetRange", "cv_mean")]) |
|
|
4080 |
# trifecta_trimodal_cv <- unique(trifectra_trimodal[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", |
|
|
4081 |
# "TargetRange", "cv_mean", "cv_sd")]) |
|
|
4082 |
# |
|
|
4083 |
# upper_trifecta_trimodal_cv <- trifecta_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
4084 |
# |
|
|
4085 |
# upper_trifecta_trimodal_cv[, first_data := strsplit(data_types, "_", fixed = T)[[1]][1], by = "data_types"] |
|
|
4086 |
# upper_trifecta_trimodal_cv[, second_data := strsplit(data_types, "_", fixed = T)[[1]][2], by = "data_types"] |
|
|
4087 |
# upper_trifecta_trimodal_cv$first_data <- factor(upper_trifecta_trimodal_cv$first_data, |
|
|
4088 |
# levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
4089 |
# upper_trifecta_trimodal_cv$second_data <- factor(upper_trifecta_trimodal_cv$second_data, |
|
|
4090 |
# levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
4091 |
# |
|
|
4092 |
# upper_trifecta_trimodal_cv[, max_config_cv_mean := max(cv_mean), by = c("data_types")] |
|
|
4093 |
|
|
|
4094 |
all_results_long_copy[split_method == "Split By Both Cell Line & Drug Scaffold", |
|
|
4095 |
split_method := "Cell Line & Drug Scaffold"] |
|
|
4096 |
all_results_long_copy[split_method == "Split By Cell Line", |
|
|
4097 |
split_method := "Cell Line"] |
|
|
4098 |
all_results_long_copy[split_method == "Split By Drug Scaffold", |
|
|
4099 |
split_method := "Drug Scaffold"] |
|
|
4100 |
all_results_long_copy[split_method == "Split By Cancer Type", |
|
|
4101 |
split_method := "Cancer Type"] |
|
|
4102 |
p <- ggplot(all_results_long_copy) + |
|
|
4103 |
geom_bar(mapping = aes(x = split_method, |
|
|
4104 |
y = loss_by_config, |
|
|
4105 |
# fill = factor(split_method, |
|
|
4106 |
# levels = c("Split By Cell Line", |
|
|
4107 |
# "Split By Drug Scaffold", |
|
|
4108 |
# "Split By Both Cell Line & Drug Scaffold", |
|
|
4109 |
# "Split By Cancer Type")), |
|
|
4110 |
fill = factor(Targeted, |
|
|
4111 |
levels = c("Untargeted Drug", |
|
|
4112 |
"Targeted Drug")), |
|
|
4113 |
color = loss_by_config == max_config_cv_mean), |
|
|
4114 |
stat = "identity", position='dodge', width = 0.9) + |
|
|
4115 |
scale_color_manual(values = c(NA, 'red'), guide='none') + |
|
|
4116 |
# facet_geo(~ data_types, grid = mygrid, scales = "free_x", |
|
|
4117 |
# strip.position = "left", |
|
|
4118 |
# drop = T |
|
|
4119 |
# # switch = "x" |
|
|
4120 |
# ) + |
|
|
4121 |
facet_grid(rows = vars(second_data), cols = vars(first_data), |
|
|
4122 |
scales = "free_x", switch = "both") + |
|
|
4123 |
# scale_x_reordered() + |
|
|
4124 |
# facet_wrap(~second_data + first_data, |
|
|
4125 |
# scales = "free_x", strip.position = "bottom") + |
|
|
4126 |
scale_fill_discrete(name = "Splitting Method:") + |
|
|
4127 |
# scale_x_discrete() + |
|
|
4128 |
# scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
4129 |
# "#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
4130 |
# geom_errorbar(aes(x = split_method, |
|
|
4131 |
# y=cv_mean, |
|
|
4132 |
# ymax=cv_mean + cv_sd, |
|
|
4133 |
# ymin=cv_mean - cv_sd, col='red'), |
|
|
4134 |
# linetype=1, show.legend = FALSE, position = dodge2, width = 0.9, colour = "black") + |
|
|
4135 |
theme( |
|
|
4136 |
text = element_text(size = 20, face = "bold"), |
|
|
4137 |
axis.text.x = element_text(angle = 45, hjust = 1), |
|
|
4138 |
# axis.text.x = element_blank(), |
|
|
4139 |
axis.title.x = element_blank(), |
|
|
4140 |
# axis.ticks = element_blank(), |
|
|
4141 |
legend.direction="horizontal", |
|
|
4142 |
legend.position="top", |
|
|
4143 |
legend.justification="right" |
|
|
4144 |
# strip.background = element_blank(), |
|
|
4145 |
# strip.text.x = element_blank(), |
|
|
4146 |
# legend.position = c(.8,.75) |
|
|
4147 |
) + |
|
|
4148 |
# legend.position = c(.9,.85)) + |
|
|
4149 |
# ylab("RMSE Loss") + |
|
|
4150 |
# ylim(0, max(all_results_long_copy$loss_by_config) + 0.1) |
|
|
4151 |
# ylim(0, 1) + |
|
|
4152 |
scale_y_continuous(name = "Total RMSE Loss", limits = c(0, 1.25), breaks = c(0, 0.25, 0.5, 0.75, 1)) + |
|
|
4153 |
geom_text(aes(x=split_method, label = round(loss_by_config, 3), angle = 90, |
|
|
4154 |
group = factor(Targeted, |
|
|
4155 |
levels = c("Untargeted Drug", |
|
|
4156 |
"Targeted Drug")), |
|
|
4157 |
y = loss_by_config), vjust = 0.5, hjust = -0.1, position = position_dodge(width = 0.9)) |
|
|
4158 |
|
|
|
4159 |
|
|
|
4160 |
p |
|
|
4161 |
# Get ggplot grob |
|
|
4162 |
g = ggplotGrob(p) |
|
|
4163 |
|
|
|
4164 |
# Get the layout dataframe. |
|
|
4165 |
# Note the names. |
|
|
4166 |
# g$layout |
|
|
4167 |
|
|
|
4168 |
# gtable::gtable_show_layout(g) # Might also be useful |
|
|
4169 |
|
|
|
4170 |
# Replace the grobs with the nullGrob |
|
|
4171 |
cur_patterns <- c("panel-6-7", "panel-5-7", "panel-4-7", "panel-3-7", "panel-2-7", "panel-1-7", |
|
|
4172 |
"panel-5-6", "panel-4-6", "panel-3-6", "panel-2-6", "panel-1-6", |
|
|
4173 |
"panel-4-5", "panel-3-5", "panel-2-5", "panel-1-5", |
|
|
4174 |
"panel-3-4", "panel-2-4", "panel-1-4", |
|
|
4175 |
"panel-2-3", "panel-1-3", |
|
|
4176 |
"panel-1-2") |
|
|
4177 |
g = ggplotGrob(p) |
|
|
4178 |
for (pattern in cur_patterns) { |
|
|
4179 |
pos <- grep(pattern = pattern, g$layout$name) |
|
|
4180 |
g$grobs[[pos]] <- nullGrob() |
|
|
4181 |
} |
|
|
4182 |
|
|
|
4183 |
# If you want, move the axis |
|
|
4184 |
# g$layout[g$layout$name == "axis-b-2", c("t", "b")] = c(8, 8) |
|
|
4185 |
|
|
|
4186 |
# Draw the plot |
|
|
4187 |
grid.newpage() |
|
|
4188 |
grid.draw(g) |
|
|
4189 |
|
|
|
4190 |
|
|
|
4191 |
ggsave(filename = "Plots/CV_Results/Trimodal_CV_Trifecta_Split_Comparison_Grid.pdf", |
|
|
4192 |
plot = g, |
|
|
4193 |
height = 12, units = "in") |
|
|
4194 |
|
|
|
4195 |
|
|
|
4196 |
# ==== Show sample counts for each trimodal combination (DepMap + CTRPv2 overlap) |
|
|
4197 |
require(stringr) |
|
|
4198 |
line_info <- fread("Data/DRP_Training_Data/DepMap_21Q2_Line_Info.csv") |
|
|
4199 |
ctrp <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt") |
|
|
4200 |
|
|
|
4201 |
exp <- fread("Data/DRP_Training_Data/DepMap_21Q2_Expression.csv") |
|
|
4202 |
mut <- fread("Data/DRP_Training_Data/DepMap_21Q2_Mutations_by_Cell.csv") |
|
|
4203 |
cnv <- fread("Data/DRP_Training_Data/DepMap_21Q2_CopyNumber.csv") |
|
|
4204 |
prot <- fread("Data/DRP_Training_Data/DepMap_20Q2_No_NA_ProteinQuant.csv") |
|
|
4205 |
|
|
|
4206 |
mirna <- fread("Data/DRP_Training_Data/DepMap_2019_miRNA.csv") |
|
|
4207 |
metab <- fread("Data/DRP_Training_Data/DepMap_2019_Metabolomics.csv") |
|
|
4208 |
hist <- fread("Data/DRP_Training_Data/DepMap_2019_ChromatinProfiling.csv") |
|
|
4209 |
rppa <- fread("Data/DRP_Training_Data/DepMap_2019_RPPA.csv") |
|
|
4210 |
|
|
|
4211 |
mut$stripped_cell_line_name = str_replace(toupper(mut$stripped_cell_line_name), "-", "") |
|
|
4212 |
cnv$stripped_cell_line_name = str_replace(toupper(cnv$stripped_cell_line_name), "-", "") |
|
|
4213 |
exp$stripped_cell_line_name = str_replace(toupper(exp$stripped_cell_line_name), "-", "") |
|
|
4214 |
prot$stripped_cell_line_name = str_replace(toupper(prot$stripped_cell_line_name), "-", "") |
|
|
4215 |
|
|
|
4216 |
mirna$stripped_cell_line_name = str_replace(toupper(mirna$stripped_cell_line_name), "-", "") |
|
|
4217 |
hist$stripped_cell_line_name = str_replace(toupper(hist$stripped_cell_line_name), "-", "") |
|
|
4218 |
metab$stripped_cell_line_name = str_replace(toupper(metab$stripped_cell_line_name), "-", "") |
|
|
4219 |
rppa$stripped_cell_line_name = str_replace(toupper(rppa$stripped_cell_line_name), "-", "") |
|
|
4220 |
|
|
|
4221 |
ctrp$ccl_name = str_replace(toupper(ctrp$ccl_name), "-", "") |
|
|
4222 |
|
|
|
4223 |
mut_line_info <- line_info[stripped_cell_line_name %in% unique(mut$stripped_cell_line_name)] |
|
|
4224 |
cnv_line_info <- line_info[stripped_cell_line_name %in% unique(cnv$stripped_cell_line_name)] |
|
|
4225 |
exp_line_info <- line_info[stripped_cell_line_name %in% unique(exp$stripped_cell_line_name)] |
|
|
4226 |
prot_line_info <- line_info[stripped_cell_line_name %in% unique(prot$stripped_cell_line_name)] |
|
|
4227 |
|
|
|
4228 |
mirna_line_info <- line_info[stripped_cell_line_name %in% unique(mirna$stripped_cell_line_name)] |
|
|
4229 |
hist_line_info <- line_info[stripped_cell_line_name %in% unique(hist$stripped_cell_line_name)] |
|
|
4230 |
metab_line_info <- line_info[stripped_cell_line_name %in% unique(metab$stripped_cell_line_name)] |
|
|
4231 |
rppa_line_info <- line_info[stripped_cell_line_name %in% unique(rppa$stripped_cell_line_name)] |
|
|
4232 |
|
|
|
4233 |
ctrp_line_info <- line_info[stripped_cell_line_name %in% unique(ctrp$ccl_name)] |
|
|
4234 |
|
|
|
4235 |
mut_line_info <- mut_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4236 |
mut_line_info$data_type <- "MUT" |
|
|
4237 |
cnv_line_info <- cnv_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4238 |
cnv_line_info$data_type <- "CNV" |
|
|
4239 |
exp_line_info <- exp_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4240 |
exp_line_info$data_type <- "EXP" |
|
|
4241 |
prot_line_info <- prot_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4242 |
prot_line_info$data_type <- "PROT" |
|
|
4243 |
|
|
|
4244 |
mirna_line_info <- mirna_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4245 |
mirna_line_info$data_type <- "MIRNA" |
|
|
4246 |
hist_line_info <- hist_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4247 |
hist_line_info$data_type <- "HIST" |
|
|
4248 |
metab_line_info <- metab_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4249 |
metab_line_info$data_type <- "METAB" |
|
|
4250 |
rppa_line_info <- rppa_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4251 |
rppa_line_info$data_type <- "RPPA" |
|
|
4252 |
|
|
|
4253 |
ctrp_line_info <- ctrp_line_info[, c("stripped_cell_line_name", "primary_disease")] |
|
|
4254 |
ctrp_line_info$data_type <- "CTRP" |
|
|
4255 |
|
|
|
4256 |
all_cells <- rbindlist(list(mut_line_info, cnv_line_info, exp_line_info, prot_line_info, |
|
|
4257 |
mirna_line_info, metab_line_info, hist_line_info, rppa_line_info)) |
|
|
4258 |
all_cells <- unique(all_cells) |
|
|
4259 |
|
|
|
4260 |
rm(list = c("mut", "cnv", "exp", "prot", "mirna", "metab", "hist", "rppa")) |
|
|
4261 |
gc() |
|
|
4262 |
|
|
|
4263 |
all_tri_omic_combos_el <- utils::combn(c("MUT", 'CNV', 'EXP', 'PROT', 'MIRNA', 'METAB', 'HIST', 'RPPA'), 2, simplify = T) |
|
|
4264 |
all_tri_omic_combos_el <- t(all_tri_omic_combos_el) |
|
|
4265 |
all_tri_omic_combos_el <- as.data.table(all_tri_omic_combos_el) |
|
|
4266 |
|
|
|
4267 |
# all_sample_counts <- vector(mode = "numeric", length = nrow(temp)) |
|
|
4268 |
ctrp_cells <- unique(ctrp_line_info$stripped_cell_line_name) |
|
|
4269 |
all_tri_omic_combos_el$sample_counts <- vector(mode = "integer") |
|
|
4270 |
for (i in 1:nrow(all_tri_omic_combos_el)) { |
|
|
4271 |
first_cells <- all_cells[data_type == all_tri_omic_combos_el[i, 1]]$stripped_cell_line_name |
|
|
4272 |
second_cells <- all_cells[data_type == all_tri_omic_combos_el[i, 2]]$stripped_cell_line_name |
|
|
4273 |
cell_overlap <- Reduce(intersect, list(first_cells, second_cells, ctrp_cells)) |
|
|
4274 |
ctrp_overlap <- uniqueN(ctrp[ccl_name %in% cell_overlap]) |
|
|
4275 |
all_tri_omic_combos_el[i, 3] <- ctrp_overlap |
|
|
4276 |
} |
|
|
4277 |
|
|
|
4278 |
temp <- trifecta_trimodal_cv[TargetRange == "Target Above 0.7"] |
|
|
4279 |
|
|
|
4280 |
# ==== Trimodal Trifecta minus LMF (Split By Both Cell Line & Drug Scaffold) ==== |
|
|
4281 |
library(stringr) |
|
|
4282 |
all_results_copy <- all_results[str_count(data_types, "_") == 1] |
|
|
4283 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")] |
|
|
4284 |
# all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
4285 |
|
|
|
4286 |
all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "TargetRange")]), |
|
|
4287 |
id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")) |
|
|
4288 |
|
|
|
4289 |
all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange")] |
|
|
4290 |
length(unique(all_results_long_copy$data_types)) # 28 unique trimodal combinations |
|
|
4291 |
|
|
|
4292 |
baseline_with_lmf <- all_results_long_copy[split_method == "SplitByDrugScaffold"] |
|
|
4293 |
# baseline_with_lmf <- all_results_long_copy[(nchar(data_types) > 5)] |
|
|
4294 |
p <- ggplot(baseline_with_lmf) + |
|
|
4295 |
geom_bar(mapping = aes(x = data_types, y = value, fill = fold), stat = "identity", position='dodge') + |
|
|
4296 |
facet_wrap(~drug_type+merge_method+loss_type+split_method+TargetRange, ncol = 2) + |
|
|
4297 |
scale_fill_discrete(name = "CV Fold:") + |
|
|
4298 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
4299 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
4300 |
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
|
|
4301 |
ggtitle(label = tools::toTitleCase("Comparison of LMF Fusion across two true AAC range groups"), |
|
|
4302 |
subtitle = "5-fold validation RMSE loss using strict splitting") + |
|
|
4303 |
geom_errorbar(aes(x=data_types, |
|
|
4304 |
y=cv_mean, |
|
|
4305 |
ymax=cv_mean, |
|
|
4306 |
ymin=cv_mean, col='red'), linetype=2, show.legend = FALSE) + |
|
|
4307 |
geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), vjust = -0.5) |
|
|
4308 |
|
|
|
4309 |
ggsave(plot = p, filename = "Plots/CV_Results/Trimodal_CV_per_fold_Baseline_vs_Trifecta_SplitByBoth_Comparison.pdf", |
|
|
4310 |
width = 24, height = 16, units = "in") |
|
|
4311 |
|
|
|
4312 |
|
|
|
4313 |
# Multi-modal Baseline vs Trifecta Bar Plot ==== |
|
|
4314 |
require(ggplot2) |
|
|
4315 |
require(grid) |
|
|
4316 |
library(stringr) |
|
|
4317 |
require(data.table) |
|
|
4318 |
dodge2 <- position_dodge2(width = 0.9, padding = 0) |
|
|
4319 |
rmse <- function(x, y) sqrt(mean((x - y)^2)) |
|
|
4320 |
|
|
|
4321 |
|
|
|
4322 |
# all_results_copy <- fread("Data/all_results.csv") |
|
|
4323 |
|
|
|
4324 |
all_results_copy <- all_results_copy[str_count(data_types, "_") > 1] |
|
|
4325 |
|
|
|
4326 |
unique_combos <- fread("Data/shared_unique_combinations.csv") |
|
|
4327 |
unique_combos[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
4328 |
all_results_copy[, unique_samples := paste0(cpd_name, "_", cell_name)] |
|
|
4329 |
all_results_copy <- all_results_copy[unique_samples %in% unique_combos$unique_samples] |
|
|
4330 |
|
|
|
4331 |
all_results_copy[, loss_by_config := rmse(target, predicted), |
|
|
4332 |
by = c("data_types", "merge_method", "loss_type", "drug_type", |
|
|
4333 |
"split_method", "bottleneck", "TargetRange", "Targeted")] |
|
|
4334 |
all_results_copy <- unique(all_results_copy[, c("data_types", "merge_method", "loss_type", |
|
|
4335 |
"drug_type", "split_method", "bottleneck", |
|
|
4336 |
"TargetRange", "Targeted", "loss_by_config")]) |
|
|
4337 |
length(unique(all_results_copy$data_types)) # 9 unique multimodal combinations |
|
|
4338 |
|
|
|
4339 |
all_results_copy <- all_results_copy[bottleneck == "No Data Bottleneck"] |
|
|
4340 |
|
|
|
4341 |
## Split By Both Cell Line ==== |
|
|
4342 |
# Subset by splitting method and AAC range |
|
|
4343 |
all_results_long_copy <- |
|
|
4344 |
all_results_copy[split_method == "Split By Cell Line" & |
|
|
4345 |
bottleneck == "No Data Bottleneck" & |
|
|
4346 |
TargetRange == "Target Above 0.7" & |
|
|
4347 |
(( |
|
|
4348 |
drug_type == "Base Model" & |
|
|
4349 |
merge_method == "Base Model" & |
|
|
4350 |
loss_type == "Base Model" |
|
|
4351 |
) | ( |
|
|
4352 |
drug_type == "Base Model + GNN" & |
|
|
4353 |
merge_method == "Base Model + LMF" & |
|
|
4354 |
loss_type == "Base Model + LDS" |
|
|
4355 |
))] |
|
|
4356 |
# Assign model name |
|
|
4357 |
all_results_long_copy[( |
|
|
4358 |
drug_type == "Base Model" & |
|
|
4359 |
merge_method == "Base Model" & |
|
|
4360 |
loss_type == "Base Model" |
|
|
4361 |
), model_type := "Baseline"] |
|
|
4362 |
all_results_long_copy[( |
|
|
4363 |
drug_type == "Base Model + GNN" & |
|
|
4364 |
merge_method == "Base Model + LMF" & |
|
|
4365 |
loss_type == "Base Model + LDS" |
|
|
4366 |
), model_type := "Trifecta"] |
|
|
4367 |
|
|
|
4368 |
# all_results_long_copy <- unique(all_results_long_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "model_type", |
|
|
4369 |
# "TargetRange", "Targeted", "loss_by_config")]) |
|
|
4370 |
|
|
|
4371 |
# all_results_long_copy[, first_data := strsplit(data_types, "_", fixed = T)[[1]][1], by = "data_types"] |
|
|
4372 |
# all_results_long_copy[, second_data := strsplit(data_types, "_", fixed = T)[[1]][2], by = "data_types"] |
|
|
4373 |
# all_results_long_copy$first_data <- factor(all_results_long_copy$first_data, |
|
|
4374 |
# levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
4375 |
# all_results_long_copy$second_data <- factor(all_results_long_copy$second_data, |
|
|
4376 |
# levels = c("MUT", "CNV", "EXP", "PROT", "MIRNA", "METAB", "HIST", "RPPA")) |
|
|
4377 |
|
|
|
4378 |
all_results_long_copy[, max_config_cv_mean := max(loss_by_config), by = c("data_types")] |
|
|
4379 |
|
|
|
4380 |
# all_top_trimodal[, data_types := factor(data_types, levels = data_order)] |
|
|
4381 |
all_results_long_copy[, model_type := factor(unlist(all_results_long_copy[, "model_type", with = F]), |
|
|
4382 |
levels = c("Baseline", "Trifecta"))] |
|
|
4383 |
|
|
|
4384 |
all_results_long_copy[, data_types := gsub("_", "+", data_types, fixed = T)] |
|
|
4385 |
p <- ggplot(all_results_long_copy) + |
|
|
4386 |
geom_bar(mapping = aes(x = model_type, |
|
|
4387 |
y = loss_by_config, |
|
|
4388 |
# fill = factor(model_type, |
|
|
4389 |
# levels = c("Baseline", |
|
|
4390 |
# "Trifecta"))), |
|
|
4391 |
fill = factor(Targeted, |
|
|
4392 |
levels = c("Untargeted Drug", |
|
|
4393 |
"Targeted Drug"))), |
|
|
4394 |
# fill = c("Targeted", "model_type")), |
|
|
4395 |
stat = "identity", position='dodge', width = 0.9) + |
|
|
4396 |
scale_color_manual(values = c(NA, 'red'), guide='none') + |
|
|
4397 |
# facet_geo(~ data_types, grid = mygrid, scales = "free_x", |
|
|
4398 |
# strip.position = "left", |
|
|
4399 |
# drop = T |
|
|
4400 |
# # switch = "x" |
|
|
4401 |
# ) + |
|
|
4402 |
# facet_grid(rows = vars(second_data), cols = vars(first_data), |
|
|
4403 |
# scales = "free_x", switch = "both") + |
|
|
4404 |
# scale_x_reordered() + |
|
|
4405 |
facet_wrap(~data_types, |
|
|
4406 |
scales = "free_x", strip.position = "bottom") + |
|
|
4407 |
scale_fill_discrete(name = "Drug Type:") + |
|
|
4408 |
# scale_x_discrete(name = "Model Type") + |
|
|
4409 |
# scale_x_discrete() + |
|
|
4410 |
# scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
4411 |
# "#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
4412 |
# geom_errorbar(aes(x = model_type, |
|
|
4413 |
# y=cv_mean, |
|
|
4414 |
# ymax=cv_mean + cv_sd, |
|
|
4415 |
# ymin=cv_mean - cv_sd, col='red'), |
|
|
4416 |
# linetype=1, show.legend = FALSE, position = dodge2, width = 0.9, colour = "black") + |
|
|
4417 |
theme( |
|
|
4418 |
text = element_text(size = 20, face = "bold"), |
|
|
4419 |
# axis.text.x = element_text(angle = 0), |
|
|
4420 |
# axis.text.x = element_blank(), |
|
|
4421 |
# axis.ticks = element_blank(), |
|
|
4422 |
axis.title.x = element_blank(), |
|
|
4423 |
legend.direction="horizontal", |
|
|
4424 |
legend.position="top", |
|
|
4425 |
legend.justification="right" |
|
|
4426 |
# strip.background = element_blank(), |
|
|
4427 |
# strip.text.x = element_blank(), |
|
|
4428 |
# legend.position = c(.8,.75) |
|
|
4429 |
) + |
|
|
4430 |
# legend.position = c(.9,.85)) + |
|
|
4431 |
# ylab("Total RMSE Loss") + |
|
|
4432 |
# ylim(0, max(all_results_long_copy$cv_mean) + max(all_results_long_copy$cv_sd) + 0.05) + |
|
|
4433 |
# ylim(0, 1.2) + |
|
|
4434 |
scale_y_continuous(name = "Total RMSE Loss", limits = c(0, 1.25), breaks = c(0, 0.25, 0.5, 0.75, 1)) + |
|
|
4435 |
geom_text(aes(x=model_type, label = round(loss_by_config, 3), angle = 90, |
|
|
4436 |
group = factor(Targeted, |
|
|
4437 |
levels = c("Untargeted Drug", |
|
|
4438 |
"Targeted Drug")), |
|
|
4439 |
y = loss_by_config), vjust = 0.5, hjust = -0.1, position = position_dodge(width = 0.9)) |
|
|
4440 |
|
|
|
4441 |
ggsave(filename = "Plots/CV_Results/Multimodal_CV_Baseline_vs_Trifecta_BarPlot_Comparison_Grid.pdf", |
|
|
4442 |
plot = p, |
|
|
4443 |
height = 12, width = 14, units = "in") |
|
|
4444 |
|
|
|
4445 |
# p <- p + coord_flip() |
|
|
4446 |
# all_results_long_copy[data_types %like% "MUT"] |
|
|
4447 |
|
|
|
4448 |
# Get ggplot grob |
|
|
4449 |
g = ggplotGrob(p) |
|
|
4450 |
|
|
|
4451 |
# Get the layout dataframe. |
|
|
4452 |
# Note the names. |
|
|
4453 |
# g$layout |
|
|
4454 |
|
|
|
4455 |
# gtable::gtable_show_layout(g) # Might also be useful |
|
|
4456 |
|
|
|
4457 |
# Replace the grobs with the nullGrob |
|
|
4458 |
cur_patterns <- c("panel-6-7", "panel-5-7", "panel-4-7", "panel-3-7", "panel-2-7", "panel-1-7", |
|
|
4459 |
"panel-5-6", "panel-4-6", "panel-3-6", "panel-2-6", "panel-1-6", |
|
|
4460 |
"panel-4-5", "panel-3-5", "panel-2-5", "panel-1-5", |
|
|
4461 |
"panel-3-4", "panel-2-4", "panel-1-4", |
|
|
4462 |
"panel-2-3", "panel-1-3", |
|
|
4463 |
"panel-1-2") |
|
|
4464 |
g = ggplotGrob(p) |
|
|
4465 |
for (pattern in cur_patterns) { |
|
|
4466 |
pos <- grep(pattern = pattern, g$layout$name) |
|
|
4467 |
g$grobs[[pos]] <- nullGrob() |
|
|
4468 |
} |
|
|
4469 |
|
|
|
4470 |
# If you want, move the axis |
|
|
4471 |
# g$layout[g$layout$name == "axis-b-2", c("t", "b")] = c(8, 8) |
|
|
4472 |
|
|
|
4473 |
# Draw the plot |
|
|
4474 |
grid.newpage() |
|
|
4475 |
grid.draw(g) |
|
|
4476 |
|
|
|
4477 |
ggsave(filename = "Plots/CV_Results/Trimodal_CV_Baseline_vs_Trifecta_BarPlot_Comparison_Grid.pdf", |
|
|
4478 |
plot = g, |
|
|
4479 |
height = 12, units = "in") |
|
|
4480 |
|
|
|
4481 |
|
|
|
4482 |
|
|
|
4483 |
|
|
|
4484 |
# ==== Multimodal Baseline vs LMF (Split By Both Cell Line & Drug Scaffold) ==== |
|
|
4485 |
all_results_copy <- all_results |
|
|
4486 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")] |
|
|
4487 |
# all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
4488 |
|
|
|
4489 |
all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "TargetRange")]), |
|
|
4490 |
id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")) |
|
|
4491 |
|
|
|
4492 |
all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange")] |
|
|
4493 |
|
|
|
4494 |
baseline_with_lmf <- all_results_long_copy[(drug_type == "Morgan" & |
|
|
4495 |
split_method == "SplitByBoth" & nchar(data_types) > 5)] |
|
|
4496 |
baseline_with_lmf <- all_results_long_copy[(nchar(data_types) > 5)] |
|
|
4497 |
p <- ggplot(baseline_with_lmf) + |
|
|
4498 |
geom_bar(mapping = aes(x = data_types, y = value, fill = fold), stat = "identity", position='dodge') + |
|
|
4499 |
facet_wrap(~merge_method+loss_type+split_method+TargetRange, ncol = 2) + |
|
|
4500 |
scale_fill_discrete(name = "CV Fold:") + |
|
|
4501 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
4502 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
4503 |
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
|
|
4504 |
ggtitle(label = tools::toTitleCase("Comparison of LMF Fusion across two true AAC range groups"), |
|
|
4505 |
subtitle = "5-fold validation RMSE loss using strict splitting") + |
|
|
4506 |
geom_errorbar(aes(x=data_types, |
|
|
4507 |
y=cv_mean, |
|
|
4508 |
ymax=cv_mean, |
|
|
4509 |
ymin=cv_mean, col='red'), linetype=2, show.legend = FALSE) + |
|
|
4510 |
geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), vjust = -0.5) |
|
|
4511 |
|
|
|
4512 |
ggsave(plot = p, filename = "Plots/CV_Results/Multimodal_CV_per_fold_Baseline_vs_LMF_SplitByBoth_Comparison.pdf", |
|
|
4513 |
width = 24, height = 16, units = "in") |
|
|
4514 |
# ggsave(filename = "Plots/CV_Results/Bimodal_CV_per_fold_Baseline_with_GNN_Upper_0.7_Comparison_long.pdf", |
|
|
4515 |
# width = 24, height = 48, units = "in") |
|
|
4516 |
|
|
|
4517 |
# ==== Multimodal Baseline vs LDS (Split By Both Cell Line & Drug Scaffold) ==== |
|
|
4518 |
all_results_copy <- all_results |
|
|
4519 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")] |
|
|
4520 |
# all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
4521 |
|
|
|
4522 |
all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "TargetRange")]), |
|
|
4523 |
id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "TargetRange")) |
|
|
4524 |
|
|
|
4525 |
all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "TargetRange")] |
|
|
4526 |
|
|
|
4527 |
baseline_with_lmf <- all_results_long_copy[(drug_type == "Morgan" & merge_method == "MergeByConcat" & |
|
|
4528 |
split_method == "SplitByBoth" & nchar(data_types) > 5)] |
|
|
4529 |
# baseline_with_lmf <- all_results_long_copy[(nchar(data_types) > 5)] |
|
|
4530 |
p <- ggplot(baseline_with_lmf) + |
|
|
4531 |
geom_bar(mapping = aes(x = data_types, y = value, fill = fold), stat = "identity", position='dodge') + |
|
|
4532 |
facet_wrap(~merge_method+loss_type+split_method+TargetRange, ncol = 2) + |
|
|
4533 |
scale_fill_discrete(name = "CV Fold:") + |
|
|
4534 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
4535 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
4536 |
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
|
|
4537 |
ggtitle(label = tools::toTitleCase("Comparison of LMF Fusion across two true AAC range groups"), |
|
|
4538 |
subtitle = "5-fold validation RMSE loss using strict splitting") + |
|
|
4539 |
geom_errorbar(aes(x=data_types, |
|
|
4540 |
y=cv_mean, |
|
|
4541 |
ymax=cv_mean, |
|
|
4542 |
ymin=cv_mean, col='red'), linetype=2, show.legend = FALSE) + |
|
|
4543 |
geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), vjust = -0.5) |
|
|
4544 |
|
|
|
4545 |
ggsave(plot = p, filename = "Plots/CV_Results/Multimodal_CV_per_fold_Baseline_vs_LMF_SplitByBoth_Comparison.pdf", |
|
|
4546 |
width = 24, height = 16, units = "in") |
|
|
4547 |
# ==== Upper Range AAC Comparison ==== |
|
|
4548 |
# targeted_drug_results <- all_results[cpd_name %in% targeted_drugs] |
|
|
4549 |
all_results_copy <- all_results |
|
|
4550 |
all_results_copy <- all_results_copy[target >= 0.7] |
|
|
4551 |
all_results_copy[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold")] |
|
|
4552 |
all_results_copy[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
4553 |
|
|
|
4554 |
all_results_long_copy <- melt(unique(all_results_copy[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "Targeted")]), |
|
|
4555 |
id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "Targeted")) |
|
|
4556 |
all_results_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "split_method", "Targeted")] |
|
|
4557 |
|
|
|
4558 |
baseline_with_lds <- all_results_long_copy[(merge_method == "Concat" & drug_type == "DRUG" & split_method == "DRUG")] |
|
|
4559 |
|
|
|
4560 |
ggplot(baseline_with_lds) + |
|
|
4561 |
geom_bar(mapping = aes(x = data_types, y = value, fill = fold), stat = "identity", position='dodge') + |
|
|
4562 |
facet_wrap(~merge_method+loss_type+drug_type+split_method+Targeted, nrow = 2) + |
|
|
4563 |
scale_fill_discrete(name = "CV Fold:") + |
|
|
4564 |
scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
4565 |
"#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
4566 |
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
|
|
4567 |
ggtitle(label = tools::toTitleCase("Comparison of Loss-weighting, fusion method and drug representation in the bi-modal case"), |
|
|
4568 |
subtitle = "Validation RMSE loss using strict splitting") + |
|
|
4569 |
geom_errorbar(aes(x=data_types, |
|
|
4570 |
y=cv_mean, |
|
|
4571 |
ymax=cv_mean, |
|
|
4572 |
ymin=cv_mean, col='red'), linetype=2, show.legend = FALSE) + |
|
|
4573 |
geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), vjust = -0.5) |
|
|
4574 |
|
|
|
4575 |
|
|
|
4576 |
# ==== 4 targeted drugs ("Gefitinib", "Tamoxifen", "MK-2206", "PLX-4720") ==== |
|
|
4577 |
temp <- all_results[cpd_name %in% c("Gefitinib", "Tamoxifen", "MK-2206", "PLX-4720", "Imatinib")] |
|
|
4578 |
temp[, loss_by_config := mean(RMSELoss), by = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold")] |
|
|
4579 |
# temp[, Targeted := ifelse(cpd_name %in% targeted_drugs, T, F)] |
|
|
4580 |
|
|
|
4581 |
# temp_long_copy <- melt(unique(temp[, c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "loss_by_config", "Targeted")]), |
|
|
4582 |
# id.vars = c("data_types", "merge_method", "loss_type", "drug_type", "split_method", "fold", "Targeted")) |
|
|
4583 |
# temp_long_copy[, cv_mean := mean(value), by = c("data_types", "merge_method", "loss_type", "split_method", "Targeted")] |
|
|
4584 |
# |
|
|
4585 |
# baseline_with_lds <- temp_long_copy[(merge_method == "Concat" & drug_type == "DRUG" & split_method == "DRUG")] |
|
|
4586 |
# se <- function(y) sd(y)/length(y) |
|
|
4587 |
temp_baseline_with_lds <- temp[(merge_method == "Concat" & drug_type == "DRUG" & split_method == "DRUG")] |
|
|
4588 |
ggplot(data = temp_baseline_with_lds, mapping = aes(x = cpd_name, y = RMSELoss)) + |
|
|
4589 |
# geom_bar(stat = "identity", position='dodge') + |
|
|
4590 |
facet_wrap(~loss_type+split_method+data_types, nrow = 2) + |
|
|
4591 |
scale_fill_discrete(name = "CV Fold:") + |
|
|
4592 |
# stat_summary_bin(geom = "errorbar", fun.data=function(RMSELoss)c(ymin=mean(RMSELoss)-se(RMSELoss),ymax=mean(RMSELoss)+se(RMSELoss)), position = "dodge") + |
|
|
4593 |
# stat_summary_bin(geom = "errorbar", fun.data='mean', position = "dodge") + |
|
|
4594 |
stat_summary(fun = mean, geom = "bar") + |
|
|
4595 |
stat_summary(fun.data = mean_se, geom = "errorbar") + |
|
|
4596 |
|
|
|
4597 |
|
|
|
4598 |
# scale_colour_manual(values=c("#000000", "#E69F00", "#56B4E9", "#009E73", |
|
|
4599 |
# "#F0E442", "#0072B2", "#D55E00", "#CC79A7")) + |
|
|
4600 |
theme(axis.text.x = element_text(angle = 90, hjust = 1)) + |
|
|
4601 |
ggtitle(label = tools::toTitleCase("Comparison of Loss-weighting, fusion method and drug representation in the bi-modal case"), |
|
|
4602 |
subtitle = "Validation RMSE loss using strict splitting") |
|
|
4603 |
# geom_errorbar(aes(x=data_types, |
|
|
4604 |
# y=cv_mean, |
|
|
4605 |
# ymax=cv_mean, |
|
|
4606 |
# ymin=cv_mean, col='red'), linetype=2, show.legend = FALSE) + |
|
|
4607 |
# geom_text(aes(x=data_types, label = round(cv_mean, 3), y = cv_mean), vjust = -0.5) |