[c3b4f8]: / R / 01_Dose-Response_Data_Preparation.R

Download this file

182 lines (147 with data), 8.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# PharmacoGx.R
# BiocManager::install("PharmacoGx")
require(PharmacoGx)
require(data.table)
path = "/Users/ftaj/OneDrive - University of Toronto/Drug_Response/"
dir.create(paste0(path, "Data/DRP_Training_Data"))
depmap_samples <- fread(paste0(path, "Data/DRP_Training_Data/DepMap_20Q2_Line_Info.csv"))
depmap_samples$stripped_cell_line_name
PharmacoGx::availablePSets()
# CTRPv2 ====
??summarizeSensitivityProfiles
require(PharmacoGx)
ctrp2 <- downloadPSet("CTRPv2_2015")
ctrp2_aac <- summarizeSensitivityProfiles(object = ctrp2, sensitivity.measure = "aac_recomputed", summary.stat = "median", fill.missing = T,)
fwrite(as.data.table(ctrp2@drug, keep.rownames = T), "Data/DRP_Training_Data/CTRP_DRUG_INFO.csv")
drug_info <- ctrp2@drug[, c("gene_symbol_of_protein_target", "target_or_activity_of_compound", "cpd_status")]
drug_info[1:5,]
drug_info <- as.data.table(drug_info, keep.rownames = T)
drug_info[rn %like% "Paclitaxel"]
drug_info[gene_symbol_of_protein_target != "" & cpd_status == "clinical"]$rn
# ctrp2@drug[1:20, c("drugid", "cpd_name")]
# ctrp2_ic50 <- PharmacoGx::summarizeSensitivityProfiles(object = ctrp2, sensitivity.measure = "ic50_recomputed", summary.stat = "median", fill.missing = T)
# Convert to data.table
ctrp2_aac <- as.data.table(ctrp2_aac, keep.rownames = T)
# ctrp2_ic50 <- as.data.table(ctrp2_ic50, keep.rownames = T)
dim(ctrp2_aac)
# dim(ctrp2_ic50)
# Convert to long format
ctrp2_aac <- melt.data.table(data = ctrp2_aac)
# ctrp2_ic50 <- melt.data.table(data = ctrp2_ic50)
# Remove NAs
ctrp2_aac <- ctrp2_aac[!is.na(value)]
# ctrp2_ic50 <- ctrp2_ic50[!is.na(value)]
colnames(ctrp2_aac) <- c("cpd_name", "ccl_name", "area_above_curve")
# colnames(ctrp2_ic50) <- c("cpd_name", "ccl_name", "ic50")
# Add smiles data
dim(ctrp2_aac) ### 363,634 dose-response curves
dim(ctrp2_ic50)
dim(ctrp2)
ctrp2_smiles <- data.table(drugid = ctrp2@drug$drugid, cpd_smiles = ctrp2@drug$cpd_smiles)
sum(unique(ctrp2@drug$drugid) %in% unique(ctrp2_aac$cpd_name)) / length(unique(ctrp2_aac$cpd_name))
length(unique(ctrp2_aac$cpd_name))
length(unique(ctrp2_ic50$cpd_name))
length(unique(ctrp2_smiles$drugid))
sum(unique(ctrp2_smiles$drugid) %in% unique(ctrp2_aac$cpd_name)) / length(unique(ctrp2_aac$cpd_name))
sum(unique(ctrp2_smiles$drugid) == unique(ctrp2_ic50$cpd_name))
sum(tolower(unique(ctrp2_smiles$drugid)) == tolower(unique(ctrp2_aac$cpd_name)))
sum(tolower(unique(ctrp2_smiles$drugid)) == tolower(unique(ctrp2_ic50$cpd_name)))
changed = !(tolower(unique(ctrp2_smiles$drugid)) == tolower(unique(ctrp2_aac$cpd_name)))
changed = !tolower(unique(ctrp2_smiles$drugid)) == tolower(unique(ctrp2_ic50$cpd_name))
temp = data.table(before = unique(ctrp2_smiles$drugid)[changed], after = unique(ctrp2_aac$cpd_name)[changed])
temp = data.table(before = unique(ctrp2_smiles$drugid)[changed], after = unique(ctrp2_ic50$cpd_name)[changed])
View(temp)
ctrp2_smiles
ctrp2_aac
unique(ctrp2_smiles$drugid)[!(unique(ctrp2_smiles$drugid) == unique(ctrp2_aac$cpd_name))]
unique(ctrp2_aac$cpd_name)[!(unique(ctrp2_smiles$cpd_name) == unique(ctrp2_aac$cpd_name))]
drug_table <- data.table(canonical_name = rownames(drugInfo(ctrp2)),
common_name = drugInfo(ctrp2)[, c("cpd_name")],
cpd_smiles = drugInfo(ctrp2)[, c("cpd_smiles")])
final_ctrpv2_aac <- merge(ctrp2_aac, drug_table[, c("canonical_name", "cpd_smiles")], by.x = "cpd_name", by.y = "canonical_name")
final_ctrpv2_ic50 <- merge(ctrp2_ic50, drug_table[, c("canonical_name", "cpd_smiles")], by.x = "drugid", by.y = "canonical_name")
# Save
fwrite(final_ctrpv2_aac, paste0(path, "Data/DRP_Training_Data/CTRP_AAC_SMILES.txt"))
fwrite(final_ctrpv2_ic50, paste0(path, "Data/DRP_Training_Data/CTRP_IC50_SMILES.txt"))
final_ctrpv2_aac <- fread(paste0(path, "Data/DRP_Training_Data/CTRP_AAC_SMILES.txt"))
final_ctrpv2_ic50 <- fread(paste0(path, "Data/DRP_Training_Data/CTRP_IC50_SMILES.txt"))
# Add disease information
require(stringr)
line_info <- fread("Data/DRP_Training_Data/DepMap_20Q2_Line_Info.csv")
final_ctrpv2_aac <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt")
# Remove all hyphens, convert to upper case
line_info$other_ccl_name <- str_replace_all(toupper(line_info$stripped_cell_line_name), "-", "")
final_ctrpv2_aac$other_ccl_name <- str_replace_all(toupper(final_ctrpv2_aac$ccl_name), "-", "")
# Remove all spaces
line_info$other_ccl_name <- str_replace_all(toupper(line_info$other_ccl_name), " ", "")
final_ctrpv2_aac$other_ccl_name <- str_replace_all(toupper(final_ctrpv2_aac$other_ccl_name), " ", "")
sum(unique(final_ctrpv2_aac$other_ccl_name) %in% unique(line_info$other_ccl_name)) / length(unique(final_ctrpv2_aac$other_ccl_name)) ### 0.89177!!!
# A quarter of the data cannot be paired...
# Find what cannot be paired
final_ctrpv2_aac[other_ccl_name %in% unique(final_ctrpv2_aac$other_ccl_name)[!(unique(final_ctrpv2_aac$other_ccl_name) %in% unique(line_info$other_ccl_name))]]
final_ctrpv2_aac <- merge(final_ctrpv2_aac, line_info[, c("other_ccl_name", "primary_disease")], by = "other_ccl_name")
final_ctrpv2_aac$other_ccl_name <- NULL
setcolorder(final_ctrpv2_aac, neworder = c("cpd_name", "ccl_name", "primary_disease", "area_above_curve", "cpd_smiles"))
fwrite(final_ctrpv2_aac, "Data/DRP_Training_Data/CTRP_AAC_SMILES.txt")
# ==== Update August 2021 =====
# Fix Tipifarnbi SMILES
require(data.table)
ctrp_aac <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt")
ctrp_aac[cpd_name == "Tipifarnib"]$cpd_smiles <- "CN1C=NC=C1C(C2=CC=C(C=C2)Cl)(C3=CC4=C(C=C3)N(C(=O)C=C4C5=CC(=CC=C5)Cl)C)N"
fwrite(ctrp_aac, "Data/DRP_Training_Data/CTRP_AAC_SMILES.txt")
# ctrp_aac <- fread("Data/DRP_Training_Data/CTRP_AAC_SMILES.txt")
# ==== Update September 2021 ====
# Add canonical SMILES for some drugs
require(data.table)
gdsc1_aac <- fread("Data/DRP_Training_Data/GDSC1_AAC_SMILES.txt")
gdsc1_aac[cpd_name == "Tamoxifen"]$cpd_smiles <- "CCC(=C(C1=CC=CC=C1)C2=CC=C(C=C2)OCCN(C)C)C3=CC=CC=C3"
gdsc1_aac[cpd_name == "JW-7-52-1"]$cpd_smiles <- "CCC(=O)N1CCN(CC1)C2=C(C=C(C=C2)N3C(=O)C=CC4=CN=C5C=CC(=CC5=C43)C6=CC7=CC=CC=C7N=C6)C(F)(F)F"
gdsc1_aac[cpd_name == "KIN001-135"]$cpd_smiles <- "COC1=C(C=C2C(=C1)N=CN2C3=CC(=C(S3)C#N)OCC4=CC=CC=C4S(=O)(=O)C)OC"
fwrite(gdsc1_aac, "Data/DRP_Training_Data/GDSC1_AAC_SMILES.txt")
gdsc2_aac <- fread("Data/DRP_Training_Data/GDSC2_AAC_SMILES.txt")
gdsc2_aac[cpd_name == "Tamoxifen"]$cpd_smiles <- "CCC(=C(C1=CC=CC=C1)C2=CC=C(C=C2)OCCN(C)C)C3=CC=CC=C3"
fwrite(gdsc2_aac, "Data/DRP_Training_Data/GDSC2_AAC_SMILES.txt")
# CCLE ====
# ccle <- downloadPSet("CCLE")
# ccle_auc <- summarizeSensitivityProfiles(pSet = ccle, sensitivity.measure = "auc_recomputed", summary.stat = "median", fill.missing = T)
# # Convert to data.table
# ccle_auc <- as.data.table(ccle_auc, keep.rownames = T)
# dim(ccle_auc)
# # Convert to long format
# ccle_auc <- melt.data.table(data = ccle_auc)
# # Remove NAs
# ccle_auc <- ccle_auc[!is.na(value)]
# colnames(ccle_auc) <- c("cpd_name", "ccl_name", "area_under_curve")
# drug_table <- data.table(canonical_name = rownames(drugInfo(ccle)), common_name = drugInfo(ccle)[, c("drug.name")], pubchem = drugInfo(ccle)[, "PubCHEM"])
# ccle_smiles <- webchem::pc_prop(cid = drug_table$pubchem, properties = "CanonicalSMILES")
# # Remove drugs without pubchem entries
# sum(is.na(drug_table$pubchem)) # 15
# drug_table <- drug_table[!is.na(pubchem)]
# drug_table <- merge(drug_table, ccle_smiles, by.x = "pubchem", by.y = "CID")
#
#
# ccle_final <- merge(ccle_auc, drug_table[, c("canonical_name", "CanonicalSMILES")], by.x = "cpd_name", by.y = "canonical_name")
# # Save
# fwrite(ccle_final, paste0(path, "Data/DRP_Training_Data/CCLE_AUC_SMILES.txt"))
# GDSC1 ====
gdsc2 <- downloadPSet("GDSC")
gdsc2_auc <- summarizeSensitivityProfiles(pSet = gdsc2, sensitivity.measure = "auc_recomputed", summary.stat = "median", fill.missing = T)
# Convert to data.table
gdsc2_auc <- as.data.table(gdsc2_auc, keep.rownames = T)
dim(gdsc2_auc)
# Convert to long format
gdsc2_auc <- melt.data.table(data = gdsc2_auc)
# Remove NAs
gdsc2_auc <- gdsc2_auc[!is.na(value)]
colnames(gdsc2_auc) <- c("cpd_name", "ccl_name", "area_under_curve")
drug_table <- data.table(canonical_name = rownames(drugInfo(gdsc2)), common_name = drugInfo(gdsc2)[, c("drug.name")], pubchem = drugInfo(gdsc2)[, "PubCHEM"])
gdsc2_smiles <- webchem::pc_prop(cid = drug_table$pubchem, properties = "CanonicalSMILES")
# Remove drugs without pubchem entries
sum(is.na(drug_table$pubchem)) # 15
drug_table <- drug_table[!is.na(pubchem)]
drug_table <- merge(drug_table, gdsc2_smiles, by.x = "pubchem", by.y = "CID")
gdsc2_final <- merge(gdsc2_auc, drug_table[, c("canonical_name", "CanonicalSMILES")], by.x = "cpd_name", by.y = "canonical_name")
# Save
fwrite(gdsc2_final, paste0(path, "Data/DRP_Training_Data/GDSC2_AUC_SMILES.txt"))
gdsc2_final <- fread(paste0(path, "Data/DRP_Training_Data/GDSC2_AUC_SMILES.txt"))
colnames(gdsc2_final)[4] <- "cpd_smiles"