|
a |
|
b/preprocessing.py |
|
|
1 |
''' |
|
|
2 |
About: Python script to preprocess the predictor and target matrices for the MLP classification program. |
|
|
3 |
Author: Iman Kafian-Attari |
|
|
4 |
Date: 20.07.2021 |
|
|
5 |
Licence: MIT |
|
|
6 |
version: 0.1 |
|
|
7 |
========================================================= |
|
|
8 |
How to use: |
|
|
9 |
1. Select the output directory. |
|
|
10 |
2. Select the file containing information on the predictor matrix. |
|
|
11 |
3. Select the file containing information on the target matrix. |
|
|
12 |
========================================================= |
|
|
13 |
Notes: |
|
|
14 |
1. This script is meant to create the training and test datasets for the MLP neural network for the classification problem. |
|
|
15 |
2. This script must be executed before running the main script. |
|
|
16 |
3. It requires the following inputs from the user: |
|
|
17 |
- an output directory, |
|
|
18 |
- a numpy 2D matrix containing the information on the predictor in the form of mxn |
|
|
19 |
where m: number of observation and n: number of predictor variables, |
|
|
20 |
- a numpy 2D matrix containing the information on the predictor in the form of mx1 |
|
|
21 |
where m: number of observation and 1: the only target variable, |
|
|
22 |
4. It randomly creates the training and test sets for the predictor and target variables, |
|
|
23 |
5. It transfer the range of values for the predictor variables to the range of [0, 1], |
|
|
24 |
6. It stores the following data: |
|
|
25 |
- x_train, |
|
|
26 |
- x_test, |
|
|
27 |
- y_train, |
|
|
28 |
- y_test, |
|
|
29 |
7. The output files are saved as a numpy 2D arrays. |
|
|
30 |
8. To use this program without any errors, the target variables should be in the form of mx1 where m: number of samples. |
|
|
31 |
========================================================= |
|
|
32 |
TODO for version O.2 |
|
|
33 |
1. Modify the code in a functional form. |
|
|
34 |
2. Modify to code to work for any number of target variables. |
|
|
35 |
========================================================= |
|
|
36 |
''' |
|
|
37 |
|
|
|
38 |
print(__doc__) |
|
|
39 |
|
|
|
40 |
import numpy as np |
|
|
41 |
from sklearn.preprocessing import MinMaxScaler |
|
|
42 |
from sklearn.model_selection import train_test_split |
|
|
43 |
import tkinter as tk |
|
|
44 |
from tkinter import filedialog |
|
|
45 |
|
|
|
46 |
root = tk.Tk() |
|
|
47 |
root.withdraw() |
|
|
48 |
|
|
|
49 |
output_dir = filedialog.askdirectory(parent=root, initialdir='C:\\', title='Select the output directory') |
|
|
50 |
|
|
|
51 |
# Import the data |
|
|
52 |
# PREDICTORS: |
|
|
53 |
us = np.loadtxt(filedialog.askopenfilename(parent=root, initialdir='C:\\', title='Select the input file, a 2D numpy array')) |
|
|
54 |
|
|
|
55 |
# REFERENCES: |
|
|
56 |
cells = np.loadtxt(filedialog.askopenfilename(parent=root, initialdir='C:\\', title='Select the output file, a 2D numpy array')) |
|
|
57 |
|
|
|
58 |
# Normalizing the data into [0, 1] |
|
|
59 |
scaler = MinMaxScaler() |
|
|
60 |
us = scaler.fit_transform(us) |
|
|
61 |
|
|
|
62 |
# Making the train and test set |
|
|
63 |
x_train, x_test, y_train, y_test = train_test_split(us, cells, test_size=0.25) |
|
|
64 |
np.savetxt(f'{output_dir}\\x_train.txt', x_train, delimiter='\t') |
|
|
65 |
np.savetxt(f'{output_dir}\\x_test.txt', x_test, delimiter='\t') |
|
|
66 |
np.savetxt(f'{output_dir}\\y_train.txt', y_train, delimiter='\t') |
|
|
67 |
np.savetxt(f'{output_dir}\\y_test.txt', y_test, delimiter='\t') |