--- a +++ b/main.py @@ -0,0 +1,134 @@ +''' +About: The main Python script to develop a classification program based on MLP neural networks, + a spectroscopic dataset as the predictor variables, and an 1D histology score dataset as the target variable. +Author: Iman Kafian-Attari +Date: 20.07.2021 +Licence: MIT +version: 0.1 +========================================================= +How to use: +1. Select the output directory. +1. Select the training X 2D numpy array. +1. Select the test X 2D numpy array. +1. Select the training Y 2D numpy array. +1. Select the test Y 2D numpy array. +========================================================= +Notes: +1. This code is meant to create a classification problem using the following: + - different MLP neural networks, + - a spectroscopic dataset as predictors, + - a 1D histoloy score as the target. +2. It requires the following inputs from the user: + - an output directory, + - two numpy 2D matrices containing the information on the training and test datasets for the predictor in the form of mxn + where m: number of observation and n: number of predictor variables, + - two numpy 2D matrices containing the information on the training and test datasets for the target in the form of mx1 + where m: number of observation and 1: the only target variable, +3. It automatically creates the classification problem for four different MLP architectures. +4. It stores and plots the performance of each model on the training and test datasets. +========================================================= +TODO for version O.2 +1. Modify the code in a functional form. +2. Modify to code to work for any number of target variables. +========================================================= +''' + +print(__doc__) + +import numpy as np +from matplotlib import pyplot as plt +from sklearn.metrics import multilabel_confusion_matrix, confusion_matrix, classification_report +import pandas as pd + +from tensorflow import keras +from keras.models import Sequential +from tensorflow.keras.callbacks import EarlyStopping +from keras.layers import * +from keras.optimizers import * +from keras.losses import * +from tensorflow.keras.losses import categorical_crossentropy + +from architectures.neural_network_models import neural_model1, neural_model2, neural_model3, neural_model4 + +import tkinter as tk +from tkinter import filedialog + +root = tk.Tk() +root.withdraw() + +output_dir = filedialog.askdirectory(parent=root, initialdir='C:\\', title='Select the output directory') + +# Reading the predictors and references +x_train = np.loadtxt(filedialog.askopenfilename(parent=root, initialdir='C:\\', title='Select the training input file, a 2D numpy array')) +x_test = np.loadtxt(filedialog.askopenfilename(parent=root, initialdir='C:\\', title='Select the test input file, a 2D numpy array')) +y_train = np.loadtxt(filedialog.askopenfilename(parent=root, initialdir='C:\\', title='Select the training output file, a 2D numpy array')) +y_test = np.loadtxt(filedialog.askopenfilename(parent=root, initialdir='C:\\', title='Select the test output file, a 2D numpy array')) +y_test1 = y_test + +# Reading the range of categorical histology score: +labels = ','.split(input('Please insert the range of labels used for the target score, separated with a comma (,),' + ' e.g. 0,1,2,3,4 --> ')) + +# Dimension of the train set +dim_x_input, dim_y_input = x_train.shape + +# Normalizing the targeted data to a categorical dataset +y_train = keras.utils.to_categorical(y_train, len(labels)) +y_test = keras.utils.to_categorical(y_test, len(labels)) + +# Creating a Pandas dataframe to store the performance of the NN models +performance = {'loss': [], + 'accuracy': []} +architecture_report = {'NN1': {}, 'NN2': {}, 'NN3': {}, 'NN4': {}} + +# Compiling and fitting the model based on the 1st neural network architecture +models = [neural_model1(dim_y_input), neural_model2(dim_y_input), neural_model3(dim_y_input), neural_model4(dim_y_input)] +for architecture in range(len(models)): + model = models[architecture] + model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) + history = model.fit(x_train, y_train, batch_size=60, epochs=500, verbose=1) + score = model.evaluate(x_test, y_test, verbose=0) + + # Visualizing the performance of the model + print(f'\n Architecture {architecture+1} Performance') + print(f'Total loss: {score[0]}') + performance['loss'].append(score[0]) + print(f'Total accuracy: {score[1]*100}') + performance['accuracy'].append(score[1]*100) + + fig = plt.figure(figsize=(12, 6)) + plt.subplot(1, 2, 1) + plt.plot(history.history['accuracy']) + plt.plot(history.history['val_accuracy']) + plt.legend(['train accuracy', 'test accuracy'], loc='best') + plt.title('model accuracy') + plt.xlabel('epoch') + plt.ylabel('accuracy') + plt.subplot(1, 2, 2) + plt.plot(history.history['loss']) + plt.plot(history.history['val_loss']) + plt.legend(['train loss', 'test loss'], loc='best') + plt.title('model loss') + plt.xlabel('epoch') + plt.ylabel('loss') + plt.suptitle(f'Performance of Architecture {architecture+1}') + plt.savefig(f'{output_dir}\\PerformanceArchitecture{architecture+1}.png', dpi=300) + plt.show(block=False) + plt.pause(10) + plt.close() + + # Prediction + y_pred = np.argmax(model.predict(x_test), axis=-1) + pred_acc = confusion_matrix(y_test1.ravel(), y_pred, labels=list(labels)) + print(pred_acc) + report = classification_report(y_test1.ravel(), y_pred, labels=list(labels), output_dict=True, zero_division=0) + architecture_report[f'NN{architecture+1}'] = report + print(report) + +performance = pd.DataFrame(performance, index=['NN1', 'NN2', 'NN3', 'NN4']) +performance.to_csv(f'{output_dir}\\ArchitecturePerformance.csv', sep='\t') +print(performance) + +architecture_report = pd.DataFrame.from_dict(architecture_report) +architecture_report.to_csv(f'{output_dir}\\ArchitectureClassificationReport.csv', sep='\t') +print(architecture_report)