[0fa88a]: / generating_matched_tiles_msi_he.py

Download this file

196 lines (168 with data), 8.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 9 14:34:02 2019
@author: m.beuque
"""
import numpy as np
import cv2
from pyimzML.ImzmlParser import ImzMLParser
from matplotlib import pyplot as plt
from PIL import Image, ImageDraw
from utils import extract_transform_matrix,process_spotlist,polygon_extraction
from tqdm import tqdm
import os
def generator_msi_data(slide, plot, generate,main_path):
# main_path : initialize the paths with the MSI slide folder
#find all necessary files
slide_files = os.listdir(os.path.join(main_path,slide))
sample_name = slide
path_slide = os.path.join(main_path, slide)
for file in slide_files:
if file.endswith('imzML'):
imzMLfile = os.path.join(path_slide,file)
elif file.endswith('mis'):
path_mis = os.path.join(path_slide,file)
elif file.endswith('txt'):
path_spotlist = os.path.join(path_slide,file)
elif file.endswith('jpg'):
path_jpg = os.path.join(path_slide,file)
histo_img = cv2.imread(path_jpg)
path_tiles_dir = os.path.join(path_slide, 'tiles')
if not os.path.exists(path_tiles_dir):
os.makedirs(path_tiles_dir)
##get informations from IMZML file
imzML = ImzMLParser(imzMLfile)
nr_of_datapoints = len(imzML.mzLengths)
nr_of_spectra = imzML.mzLengths[0]
array_coord = np.array(imzML.coordinates)
cols = max(array_coord[:,0])
rows = max(array_coord[:,1])
##reading and storing MSI data and read pixel coordinates
msidata = np.zeros((nr_of_datapoints,nr_of_spectra))
xy_positions = np.zeros((nr_of_datapoints, 2))
for idx, (x,y,z) in enumerate(imzML.coordinates):
mzs, intensities = imzML.getspectrum(idx)
msidata[idx, :] = intensities
xy_positions[idx,:]= [x, y]
msidata = np.transpose(msidata)
##calculate total ion count values for normalization
tics = np.sum(msidata,0)
canvas = np.zeros((rows,cols))
for i in range(nr_of_datapoints):
canvas[int(xy_positions[i,1]-1), int(xy_positions[i,0]-1)] = tics[i]
if plot :
plt.figure(figsize=(12,12))
plt.imshow(np.squeeze(canvas))
plt.title('Canvas')
plt.legend()
plt.show()
if plot :
plt.figure(figsize=(12,12))
plt.imshow(np.squeeze(histo_img))
plt.title('Canvas')
plt.legend()
plt.show()
#normalize msi_data
repeated_tics =np.repeat(tics, list( msidata.shape)[0], axis = 0)
repeated_tics = repeated_tics.reshape(msidata.shape)
msidata = np.divide(msidata, repeated_tics)
del repeated_tics
## create geometric transformations
fixed_points_optical, moving_points_motor,moving_points_optical,fixed_points_histo = extract_transform_matrix(path_mis)
motor2optical = cv2.getAffineTransform(np.float32(moving_points_motor), np.float32(fixed_points_optical))
optical2histo = cv2.getAffineTransform(np.float32(moving_points_optical), np.float32(fixed_points_histo))
spotlist = process_spotlist(path_spotlist)
moving_points_msi = np.float32(spotlist[:,[2,3]][[0, int(nr_of_datapoints/2), nr_of_datapoints -1]])
fixed_points_motor = np.float32(spotlist[:,[0,1]][[0, int(nr_of_datapoints/2), nr_of_datapoints -1]])
msi2motor = cv2.getAffineTransform(moving_points_msi, fixed_points_motor)
new_msi2motor = np.concatenate((np.transpose(msi2motor), np.array([[0],[0],[1]])), axis = 1)
new_motor2optical = np.concatenate((np.transpose(motor2optical), np.array([[0],[0],[1]])), axis = 1)
new_optical2histo = np.concatenate((np.transpose(optical2histo), np.array([[0],[0],[1]])), axis = 1)
new_msi3Dhisto = np.dot(np.dot(new_msi2motor,new_motor2optical), new_optical2histo)
new_msi2Dhisto = new_msi3Dhisto[:,0:2]
#overlay MSI image and histopathology image
img_rows, img_cols, ch = histo_img.shape
transform_img = cv2.warpAffine(canvas,np.transpose(new_msi2Dhisto),(img_cols,img_rows))
overlay = cv2.addWeighted(np.float64(histo_img[:,:,1]), 1, transform_img, 0.01, 0)
if plot :
plt.figure()
plt.imshow(transform_img)
plt.title('resized canvas')
plt.legend()
plt.show()
plt.figure()
plt.imshow(overlay)
plt.title('resized canvas and overlay')
plt.legend()
plt.show()
#create dictionnary with raster number and label
dict_roi = polygon_extraction(path_mis)
# consider region of interest
#find maximum coordinates for polygon
max_x = 0
max_y = 0
for i, poly in enumerate(list(dict_roi.keys())) :
polygon = np.array(dict_roi[poly])
if max(polygon[:,0]) > max_x :
max_x = max(polygon[:,0])
if max(polygon[:,1]) > max_y :
max_y = max(polygon[:,1])
img_test = Image.new('L', (max_x,max_y), 0)
for i, poly in enumerate(list(dict_roi.keys())) :
polygon = dict_roi[poly]
ImageDraw.Draw(img_test).polygon(polygon, outline=i+1, fill=i+1)
mask = np.array(img_test)
transform_poly = cv2.warpAffine(mask,np.transpose(new_optical2histo[:,0:2]),(img_cols,img_rows))
if plot :
plt.figure()
plt.imshow(mask)
plt.title('drawing of all the regions of interest')
plt.legend()
plt.show()
plt.figure()
plt.imshow(transform_poly)
plt.title('drawing of all the regions of interest resized')
plt.legend()
plt.show()
if generate:
#create the information table
collect_points = []
for i in tqdm(range(nr_of_datapoints)):
y_ms, x_ms = int(xy_positions[i,1]-1), int(xy_positions[i,0]-1)
x_histo = x_ms*np.transpose(new_msi2Dhisto)[1,0] + y_ms*np.transpose(new_msi2Dhisto)[1,1] + np.transpose(new_msi2Dhisto)[1,2]
y_histo = x_ms*np.transpose(new_msi2Dhisto)[0,0] + y_ms*np.transpose(new_msi2Dhisto)[0,1] + np.transpose(new_msi2Dhisto)[0,2]
collect_points.append([x_histo, y_histo])
collect_points = np.array(collect_points)
labels = []
size_image = 96
tile = np.float64(histo_img)
name_rois =list( dict_roi.keys())
histo_img = np.float64(histo_img)
with open(os.path.join(r'.\msi_tables','table_for_sample_' + sample_name + '.txt'), "a", encoding="utf-8") as file:
header = list(np.array(mzs, dtype = 'U25')) + ['label', 'image_name', 'x', 'y']
header = ';'.join(header)
file.write(header)
file.write("\n")
file.close()
for i in tqdm(range(nr_of_datapoints)):
with open(os.path.join(r'.\msi_tables','table_for_sample_' + sample_name + '.txt'), "a", encoding="utf-8") as file:
if int(collect_points[i,1] - size_image//2) > 0 and int(collect_points[i,0] - size_image//2) > 0 and collect_points[i,1] < img_cols and collect_points[i,0] < img_rows:
labeled_tile = transform_poly[int(collect_points[i,0] - size_image//2): int(collect_points[i,0] + size_image//2) ,int(collect_points[i,1] - size_image//2): int(collect_points[i,1] + size_image//2) ]
length, width = labeled_tile.shape
temp_label = transform_poly[int(collect_points[i,0]), int(collect_points[i,1])]
labels.append(temp_label)
if temp_label > 0:
temp_title = "tile_"+ str(int(xy_positions[i,1]-1)) + "_" + str(int(xy_positions[i,0]-1)) + ".jpg"
if not os.path.isfile(os.path.join(path_tiles_dir,temp_title)):
cv2.imwrite(os.path.join(path_tiles_dir,temp_title), tile[int(collect_points[i,0] - size_image//2): int(collect_points[i,0] + size_image//2) ,int(collect_points[i,1] - size_image//2): int(collect_points[i,1] + size_image//2) ])
row = np.concatenate((msidata[:,i], np.array([name_rois[temp_label-1], temp_title, int(xy_positions[i,1]-1), int(xy_positions[i,0]-1)])), axis = None)
row = ';'.join(list(row))
file.write(row)
file.write("\n")
file.close()
del histo_img
return('sample ' + sample_name + ' done')
main_path = '.'
for slide in os.listdir(main_path):
done = generator_msi_data(slide, plot = False, generate = True,main_path)
print(done)