--- a +++ b/full pipeline for classification grade with MSI data.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "#from pyimzml.ImzMLParser import ImzMLParser\n", + "from tqdm import tqdm\n", + "import os\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.neural_network import MLPClassifier\n", + "from sklearn.model_selection import train_test_split \n", + "from sklearn.ensemble import RandomForestClassifier, VotingClassifier\n", + "from sklearn import preprocessing\n", + "from sklearn.metrics import roc_curve, auc,classification_report\n", + "from utils import print_confusion_matrix, assemble_dataset_supervised_learning\n", + "from sklearn.utils import shuffle\n", + "from sklearn.svm import SVC\n", + "from itertools import product\n", + "import xgboost as xgb\n", + "from sklearn.model_selection import GridSearchCV\n", + "from itertools import cycle\n", + "from scipy import interp\n", + "from sklearn.calibration import calibration_curve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## load data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "peaklist = np.array(pd.read_csv(r'.\\\\regions_peaklist_from_marta.txt', sep = \" \"))\n", + "\n", + "\n", + "\n", + "path_data = r'.\\msi_tables_filtered'\n", + "list_dataset = os.listdir(path_data)\n", + "\n", + "##classification per tiles _ supervised \n", + "\n", + "labels = pd.read_csv('.\\labels_frozen.txt',sep = ';' ) #table with slide;label;unified_label;image_name\n", + "\n", + "full_dataset, y_labels = assemble_dataset_supervised_learning(labels,list_dataset,path_data, \"grade\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## pre-process data per patient with box cox and 10**5 factor" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dict_X_gauss = {}\n", + "\n", + "pt = preprocessing.PowerTransformer(method='box-cox', standardize=False)\n", + "name_images = full_dataset[full_dataset[\"dataset_name\"]==\"SlideA1\"][\"image_name\"]\n", + "temp_patient_data = full_dataset[full_dataset[\"dataset_name\"]==\"SlideA1\"].drop(columns = ['dataset_name','image_name'])*10**5\n", + "X_gaus = pt.fit_transform(temp_patient_data)\n", + "\n", + "columns = np.unique(full_dataset[\"dataset_name\"])\n", + "\n", + "for col in tqdm( columns[1:]):\n", + " name_images = full_dataset[full_dataset[\"dataset_name\"]==col][\"image_name\"]\n", + " temp_patient_data = full_dataset[full_dataset[\"dataset_name\"]==col].drop(columns = ['dataset_name','image_name'])*10**5\n", + " array_trans = pt.fit_transform(temp_patient_data)\n", + " X_gaus=np.concatenate((X_gaus,array_trans),axis =0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test_and_valid, y_train, y_test_and_valid, data_train, data_test_and_valid = train_test_split(X_gaus,y_labels , full_dataset[[\"dataset_name\",'image_name']],test_size = 0.30, random_state=10) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#create test dataset\n", + "len_half = len(y_test_and_valid)//2\n", + "X_test = X_test_and_valid[:len_half]\n", + "data_test = data_test_and_valid[:len_half]\n", + "y_test = y_test_and_valid[:len_half]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#create validation dataset\n", + "X_valid = X_test_and_valid[len_half:]\n", + "data_valid = data_test_and_valid[len_half:]\n", + "y_valid = y_test_and_valid[len_half:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## balancing training data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "max_len = X_train[y_train == 'high grade'].shape[0]\n", + "len_h = X_train[y_train == 'non-dysplasia'].shape[0]\n", + "len_lg = X_train[y_train == 'low grade'].shape[0]\n", + "\n", + "balanced_X_train = np.concatenate((X_train[y_train == 'non-dysplasia'][np.random.randint(0,len_h,max_len)], X_train[y_train == 'low grade'][np.random.randint(0,len_lg,max_len)],X_train[y_train == 'high grade']))\n", + "balanced_y_train = np.array(['non-dysplasia']*max_len + ['low grade']*max_len + ['high grade']*X_train[y_train == 'highgrade'].shape[0])\n", + "balanced_X_train,balanced_y_train = shuffle(balanced_X_train,balanced_y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## grid search for MLP" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "parameters = { 'batch_size':[32,64,128,356], 'alpha': 10.0 ** -np.arange(1, 10), 'hidden_layer_sizes':list(product(np.arange(10,21,10),np.arange(10,21,10)))}\n", + "mlp_model = GridSearchCV(MLPClassifier(solver='adam',max_iter = 1100), parameters, n_jobs=20, , cv= 5, verbose = 2)\n", + "\n", + "mlp_model.fit(balanced_X_train,balanced_y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## gridsearchCV for random forest" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "param_grid = { \n", + " 'n_estimators': [100,200,500],\n", + " 'max_depth' : [4,8,16],\n", + " 'criterion' :['gini', 'entropy']\n", + "}\n", + "\n", + "rf_model = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5, verbose=1,n_jobs=20)\n", + "rf_model.fit(balanced_X_train,balanced_y_train)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## gridsearchCV for XGBoost" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "params = {\n", + " \"min_child_weight\":range(1,6,2),\n", + " \"gamma\": uniform(0, 0.5),\n", + " \"learning_rate\": uniform(0.03, 0.3),\n", + " \"max_depth\": range(3,10,2), \n", + " \"n_estimators\": randint(100, 150),\n", + " \"subsample\": uniform(0.6, 0.4)\n", + "}\n", + "\n", + "xgb_model = GridSearchCV(estimator = xgb.XGBClassifier(colsample_bytree=0.8,\n", + " objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27), \n", + " param_grid = params, scoring='roc_auc',n_jobs=12,iid=False, cv=5,verbose=1)\n", + "\n", + "xgb_model.fit(balanced_X_train,balanced_y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## save feature importance" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "results=pd.DataFrame()\n", + "results['columns']=list(full_dataset.columns)[2:]\n", + "results['importances_rf'] = CV_rfc.feature_importances_\n", + "results['importances_xgboost'] = xgb1.feature_importances_\n", + "results['importances_mean'] = np.mean([xgb1.feature_importances_,CV_rfc.feature_importances_],axis=0)\n", + "results.sort_values(by='importances_mean',ascending=False,inplace=True)\n", + "results.to_excel(r\".\\features_rf_xgboost_msi_grade.xlsx\",index=None)\n", + "other_results= pd.read_excel(r\".\\features_rf_xgboost_msi_gland_vs_tissue.xlsx\")\n", + "other_results.sort_values(by='importances_mean',ascending=False,inplace=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## ensemble all best model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#ensemble all best model\n", + "\n", + "vc = VotingClassifier(estimators=[\n", + " ('mlp', mlp_model.best_estimator_), ('rf', rf_model.best_estimator_), ('xgb', xgb_model.best_estimator_)],\n", + " voting='soft',n_jobs=12)\n", + "vc = vc.fit(balanced_X_train,balanced_y_train)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}