a b/full pipeline for classification grade with MSI data.ipynb
1
{
2
 "cells": [
3
  {
4
   "cell_type": "code",
5
   "execution_count": 1,
6
   "metadata": {},
7
   "outputs": [],
8
   "source": [
9
    "import numpy as np\n",
10
    "#from pyimzml.ImzMLParser import ImzMLParser\n",
11
    "from tqdm import tqdm\n",
12
    "import os\n",
13
    "import pandas as pd\n",
14
    "import matplotlib.pyplot as plt\n",
15
    "from sklearn.neural_network import MLPClassifier\n",
16
    "from sklearn.model_selection import train_test_split \n",
17
    "from sklearn.ensemble import RandomForestClassifier, VotingClassifier\n",
18
    "from sklearn import preprocessing\n",
19
    "from sklearn.metrics import roc_curve, auc,classification_report\n",
20
    "from utils import print_confusion_matrix, assemble_dataset_supervised_learning\n",
21
    "from sklearn.utils import shuffle\n",
22
    "from sklearn.svm import SVC\n",
23
    "from itertools import product\n",
24
    "import xgboost as xgb\n",
25
    "from sklearn.model_selection import GridSearchCV\n",
26
    "from itertools import cycle\n",
27
    "from scipy import interp\n",
28
    "from sklearn.calibration import calibration_curve"
29
   ]
30
  },
31
  {
32
   "cell_type": "markdown",
33
   "metadata": {},
34
   "source": [
35
    "## load data"
36
   ]
37
  },
38
  {
39
   "cell_type": "code",
40
   "execution_count": null,
41
   "metadata": {},
42
   "outputs": [],
43
   "source": [
44
    "peaklist = np.array(pd.read_csv(r'.\\\\regions_peaklist_from_marta.txt', sep = \" \"))\n",
45
    "\n",
46
    "\n",
47
    "\n",
48
    "path_data = r'.\\msi_tables_filtered'\n",
49
    "list_dataset = os.listdir(path_data)\n",
50
    "\n",
51
    "##classification per tiles _ supervised \n",
52
    "\n",
53
    "labels = pd.read_csv('.\\labels_frozen.txt',sep = ';' ) #table with slide;label;unified_label;image_name\n",
54
    "\n",
55
    "full_dataset, y_labels = assemble_dataset_supervised_learning(labels,list_dataset,path_data, \"grade\")"
56
   ]
57
  },
58
  {
59
   "cell_type": "markdown",
60
   "metadata": {},
61
   "source": [
62
    "## pre-process data per patient with box cox and 10**5 factor"
63
   ]
64
  },
65
  {
66
   "cell_type": "code",
67
   "execution_count": null,
68
   "metadata": {},
69
   "outputs": [],
70
   "source": [
71
    "dict_X_gauss = {}\n",
72
    "\n",
73
    "pt = preprocessing.PowerTransformer(method='box-cox', standardize=False)\n",
74
    "name_images = full_dataset[full_dataset[\"dataset_name\"]==\"SlideA1\"][\"image_name\"]\n",
75
    "temp_patient_data = full_dataset[full_dataset[\"dataset_name\"]==\"SlideA1\"].drop(columns = ['dataset_name','image_name'])*10**5\n",
76
    "X_gaus = pt.fit_transform(temp_patient_data)\n",
77
    "\n",
78
    "columns = np.unique(full_dataset[\"dataset_name\"])\n",
79
    "\n",
80
    "for col in tqdm( columns[1:]):\n",
81
    "    name_images = full_dataset[full_dataset[\"dataset_name\"]==col][\"image_name\"]\n",
82
    "    temp_patient_data = full_dataset[full_dataset[\"dataset_name\"]==col].drop(columns = ['dataset_name','image_name'])*10**5\n",
83
    "    array_trans = pt.fit_transform(temp_patient_data)\n",
84
    "    X_gaus=np.concatenate((X_gaus,array_trans),axis =0)"
85
   ]
86
  },
87
  {
88
   "cell_type": "code",
89
   "execution_count": null,
90
   "metadata": {},
91
   "outputs": [],
92
   "source": [
93
    "X_train, X_test_and_valid, y_train, y_test_and_valid, data_train, data_test_and_valid = train_test_split(X_gaus,y_labels , full_dataset[[\"dataset_name\",'image_name']],test_size = 0.30, random_state=10) "
94
   ]
95
  },
96
  {
97
   "cell_type": "code",
98
   "execution_count": null,
99
   "metadata": {},
100
   "outputs": [],
101
   "source": [
102
    "#create test dataset\n",
103
    "len_half = len(y_test_and_valid)//2\n",
104
    "X_test = X_test_and_valid[:len_half]\n",
105
    "data_test = data_test_and_valid[:len_half]\n",
106
    "y_test = y_test_and_valid[:len_half]"
107
   ]
108
  },
109
  {
110
   "cell_type": "code",
111
   "execution_count": null,
112
   "metadata": {},
113
   "outputs": [],
114
   "source": [
115
    "#create validation dataset\n",
116
    "X_valid = X_test_and_valid[len_half:]\n",
117
    "data_valid = data_test_and_valid[len_half:]\n",
118
    "y_valid = y_test_and_valid[len_half:]"
119
   ]
120
  },
121
  {
122
   "cell_type": "markdown",
123
   "metadata": {},
124
   "source": [
125
    "## balancing training data"
126
   ]
127
  },
128
  {
129
   "cell_type": "code",
130
   "execution_count": null,
131
   "metadata": {},
132
   "outputs": [],
133
   "source": [
134
    "max_len = X_train[y_train == 'high grade'].shape[0]\n",
135
    "len_h = X_train[y_train == 'non-dysplasia'].shape[0]\n",
136
    "len_lg = X_train[y_train == 'low grade'].shape[0]\n",
137
    "\n",
138
    "balanced_X_train = np.concatenate((X_train[y_train == 'non-dysplasia'][np.random.randint(0,len_h,max_len)], X_train[y_train == 'low grade'][np.random.randint(0,len_lg,max_len)],X_train[y_train == 'high grade']))\n",
139
    "balanced_y_train = np.array(['non-dysplasia']*max_len + ['low grade']*max_len  + ['high grade']*X_train[y_train == 'highgrade'].shape[0])\n",
140
    "balanced_X_train,balanced_y_train = shuffle(balanced_X_train,balanced_y_train)"
141
   ]
142
  },
143
  {
144
   "cell_type": "markdown",
145
   "metadata": {},
146
   "source": [
147
    "## grid search for MLP"
148
   ]
149
  },
150
  {
151
   "cell_type": "code",
152
   "execution_count": null,
153
   "metadata": {},
154
   "outputs": [],
155
   "source": [
156
    "parameters = { 'batch_size':[32,64,128,356], 'alpha': 10.0 ** -np.arange(1, 10), 'hidden_layer_sizes':list(product(np.arange(10,21,10),np.arange(10,21,10)))}\n",
157
    "mlp_model = GridSearchCV(MLPClassifier(solver='adam',max_iter = 1100), parameters, n_jobs=20, , cv= 5, verbose = 2)\n",
158
    "\n",
159
    "mlp_model.fit(balanced_X_train,balanced_y_train)"
160
   ]
161
  },
162
  {
163
   "cell_type": "markdown",
164
   "metadata": {},
165
   "source": [
166
    "## gridsearchCV for random forest"
167
   ]
168
  },
169
  {
170
   "cell_type": "code",
171
   "execution_count": null,
172
   "metadata": {},
173
   "outputs": [],
174
   "source": [
175
    "param_grid = { \n",
176
    "   'n_estimators': [100,200,500],\n",
177
    "   'max_depth' : [4,8,16],\n",
178
    "   'criterion' :['gini', 'entropy']\n",
179
    "}\n",
180
    "\n",
181
    "rf_model = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5, verbose=1,n_jobs=20)\n",
182
    "rf_model.fit(balanced_X_train,balanced_y_train)\n"
183
   ]
184
  },
185
  {
186
   "cell_type": "markdown",
187
   "metadata": {},
188
   "source": [
189
    "## gridsearchCV for XGBoost"
190
   ]
191
  },
192
  {
193
   "cell_type": "code",
194
   "execution_count": null,
195
   "metadata": {},
196
   "outputs": [],
197
   "source": [
198
    "params = {\n",
199
    "   \"min_child_weight\":range(1,6,2),\n",
200
    "   \"gamma\": uniform(0, 0.5),\n",
201
    "   \"learning_rate\": uniform(0.03, 0.3),\n",
202
    "   \"max_depth\": range(3,10,2), \n",
203
    "   \"n_estimators\": randint(100, 150),\n",
204
    "   \"subsample\": uniform(0.6, 0.4)\n",
205
    "}\n",
206
    "\n",
207
    "xgb_model = GridSearchCV(estimator = xgb.XGBClassifier(colsample_bytree=0.8,\n",
208
    " objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27), \n",
209
    " param_grid = params, scoring='roc_auc',n_jobs=12,iid=False, cv=5,verbose=1)\n",
210
    "\n",
211
    "xgb_model.fit(balanced_X_train,balanced_y_train)"
212
   ]
213
  },
214
  {
215
   "cell_type": "markdown",
216
   "metadata": {},
217
   "source": [
218
    "## save feature importance"
219
   ]
220
  },
221
  {
222
   "cell_type": "code",
223
   "execution_count": null,
224
   "metadata": {},
225
   "outputs": [],
226
   "source": [
227
    "results=pd.DataFrame()\n",
228
    "results['columns']=list(full_dataset.columns)[2:]\n",
229
    "results['importances_rf'] = CV_rfc.feature_importances_\n",
230
    "results['importances_xgboost'] = xgb1.feature_importances_\n",
231
    "results['importances_mean'] = np.mean([xgb1.feature_importances_,CV_rfc.feature_importances_],axis=0)\n",
232
    "results.sort_values(by='importances_mean',ascending=False,inplace=True)\n",
233
    "results.to_excel(r\".\\features_rf_xgboost_msi_grade.xlsx\",index=None)\n",
234
    "other_results= pd.read_excel(r\".\\features_rf_xgboost_msi_gland_vs_tissue.xlsx\")\n",
235
    "other_results.sort_values(by='importances_mean',ascending=False,inplace=True)"
236
   ]
237
  },
238
  {
239
   "cell_type": "markdown",
240
   "metadata": {},
241
   "source": [
242
    "## ensemble all best model"
243
   ]
244
  },
245
  {
246
   "cell_type": "code",
247
   "execution_count": null,
248
   "metadata": {},
249
   "outputs": [],
250
   "source": [
251
    "#ensemble all best model\n",
252
    "\n",
253
    "vc = VotingClassifier(estimators=[\n",
254
    "     ('mlp', mlp_model.best_estimator_), ('rf', rf_model.best_estimator_), ('xgb', xgb_model.best_estimator_)],\n",
255
    "     voting='soft',n_jobs=12)\n",
256
    "vc = vc.fit(balanced_X_train,balanced_y_train)"
257
   ]
258
  }
259
 ],
260
 "metadata": {
261
  "kernelspec": {
262
   "display_name": "Python 3",
263
   "language": "python",
264
   "name": "python3"
265
  },
266
  "language_info": {
267
   "codemirror_mode": {
268
    "name": "ipython",
269
    "version": 3
270
   },
271
   "file_extension": ".py",
272
   "mimetype": "text/x-python",
273
   "name": "python",
274
   "nbconvert_exporter": "python",
275
   "pygments_lexer": "ipython3",
276
   "version": "3.7.3"
277
  }
278
 },
279
 "nbformat": 4,
280
 "nbformat_minor": 2
281
}