|
a |
|
b/man/permutation_pc.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/helper_function.R |
|
|
3 |
\name{permutation_pc} |
|
|
4 |
\alias{permutation_pc} |
|
|
5 |
\title{Permutations to build differential network based on partial correlation analysis} |
|
|
6 |
\usage{ |
|
|
7 |
permutation_pc( |
|
|
8 |
m, |
|
|
9 |
p, |
|
|
10 |
n_group_1, |
|
|
11 |
n_group_2, |
|
|
12 |
data_group_1, |
|
|
13 |
data_group_2, |
|
|
14 |
rho_group_1_opt, |
|
|
15 |
rho_group_2_opt |
|
|
16 |
) |
|
|
17 |
} |
|
|
18 |
\arguments{ |
|
|
19 |
\item{m}{This is the number of permutations.} |
|
|
20 |
|
|
|
21 |
\item{p}{This is the number of biomarker candidates.} |
|
|
22 |
|
|
|
23 |
\item{n_group_1}{This is the number of subjects in group 1.} |
|
|
24 |
|
|
|
25 |
\item{n_group_2}{This is the number of subjects in group 2.} |
|
|
26 |
|
|
|
27 |
\item{data_group_1}{This is a \eqn{n*p} matrix containing group 1 data.} |
|
|
28 |
|
|
|
29 |
\item{data_group_2}{This is a \eqn{n*p} matrix containing group 2 data.} |
|
|
30 |
|
|
|
31 |
\item{rho_group_1_opt}{This is an optimal tuning parameter to obtain a sparse differential |
|
|
32 |
network for group 1.} |
|
|
33 |
|
|
|
34 |
\item{rho_group_2_opt}{This is an optimal tuning parameter to obtain a sparse differential |
|
|
35 |
network for group 2.} |
|
|
36 |
} |
|
|
37 |
\value{ |
|
|
38 |
A multi-dimensional matrix that contains the permutation result. |
|
|
39 |
} |
|
|
40 |
\description{ |
|
|
41 |
A permutation test that randomly permutes the sample labels in distinct |
|
|
42 |
biological groups for each biomolecule. The difference in paired partial correlation |
|
|
43 |
is considered statistically significant if it falls into the 2.5% tails on either end of the |
|
|
44 |
empirical distribution curve. |
|
|
45 |
} |